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Supplementary Material

In this Supplement we provide some of the simulations and technical proofs.

Equations in this Supplement are indicated by S, e.g., (S3.1), and similarly,

lemmas that appear only in the Supplement are numbered with S, e.g., Lemma

S3.1. Equations, lemmas, and Theorems without S, refer to the article itself.

Most of the notation is defined in the article, and this Supplement cannot be

read independently.

S1. Simulations for Conjecture 1

Conjecture 1. The optimal γ in the sense of Theorem 4, γ o, satisfies

lim
m→∞ γ o =

√
γ∗.

We justify Conjecture 1 by simulations. First we consider the case that both

the area random effect ui and the sampling error ei have a normal distribution,

and take m = 5, 10, 20, 100, and then repeat the simulation with ei having a

translated exponential distribution. The red lines in Figure 1S are the lower

and upper bounds of (3.6) to the optimal γ of Theorem 4 and the blue line is

the optimal γ, both as functions of γ∗. The simulations were done as follows:

we set σ2
u = 1. Different values of σ2

e define the different values of γ∗. Setting

without loss of generality µ = 0, we generated yi = 0 + ui + ei, i = 1, . . . ,m.

For each value of γ∗ we ran 1,000 simulations. By suitably averaging over these

simulations, we then approximated E{L(θ̂ [2]
( ) (γ), θ( ))} for each γ ∈ [0, 1] using

an exhaustive search with step-size of 0.001 and found γ o, the value of γ that

minimizes E{L(θ̂ [2]
( ) (γ),θ( ))}.
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Figure 1S: γ o (the optimal γ) as a function of γ∗ (blue line) and the range of

optimal γ from Theorem 4 as a function of γ∗ (red lines) when:

1. Both the area random effect ui and the sampling error ei are normal (left

four graphs).

2. The area random effects ui are normal, but the sampling errors ei are from

a location exponential distribution (an exponential distribution translated

by a constant) (right four graphs).

S2. Simulations for Conjecture 2, and comparison of predictors

S2.1. Known variances

For normal F and G, Conjecture 2 says that the predictor θ̂
[3]

(i) is better than

θ̂
[2]

(i) (γ) for all values of γ (including the optimal) in the sense that E{L(θ̂ [3]
( ) , θ( ))} ≤

E{L(θ̂ [2]
( ) (γ), θ( ))}. Recall that E{L(θ̂ [2]

( ) (γ
o), θ( ))} ≤ E{L(θ̂ [2]

( ) (γ), θ( ))} for all

γ. The simulations below support Conjecture 2. Figure 2S shows a sample of

simulation results for m = 30 and 100. We compare the expected loss in pre-

dicting θ( ) by θ̂
[2]
( ) (γ

o) to that of θ̂
[3]
( ) . While doing these simulations, we also

compared the expected loss in predicting θ(m) by θ̂
[2]

(m)(γ
o) to that of θ̂

[3]
(m).

The simulations show that the expected losses of the predictors θ̂
[2]
( ) (γ

o) and

θ̂
[3]
( ) are rather close, while the predictor θ̂

[2]
( ) (γ

∗) is far worse. This suggests that

the linear predictor θ̂
[2]
( ) (γ

o) can be used without much loss. It is important to

note that given γ o, this estimator is easy to calculate. For large m one may take

γ o =
√

γ∗, whereas for small m, the approximation of Section 3.2 can be used.
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The simulation was done as follows: we set σ2
u = 1. Different values of σ2

e

define the different values of γ∗. Setting µ = 0, we generated yi = 0 + ui + ei,

i = 1, .., m. For each value of γ∗ we ran 1,000 simulations and approximated

E{L(θ̂ [2]
( ) (γ), θ( ))} for each γ in the range (3.6). Using an exhaustive search

with step-size of 0.001 we found γ o, the minimizer of E{L(θ̂ [2]
( ) (γ), θ( ))}. We

approximated θ̂
[3]

(i) in the following way: when both F and G are normal, θi|yi ∼
N

(
γ∗yi + (1− γ∗)µ, γ∗σ2

e

)
. Hence, for each yi, i = 1, ..., m, we generated 1,000

random variables from N
(
γ∗yi + (1− γ∗)y, γ∗σ2

e

)
, sorted them, and approxi-

mated θ̂
[3]

(i) . We approximated E{L(θ̂ [3]
( ) ,θ( ))} in the same way as we approxi-

mated E{L(θ̂ [2]
( ) (γ

∗),θ( ))}.
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Figure 2S:

• Comparison of E{L(θ̂( ), θ( ))} as a function of γ∗, for the predictors θ̂
[2]
( ) (γ

∗),

θ̂
[2]
( ) (γ

o), θ̂
[3]
( ) (red, black, green lines), where F and G are normal and

m = 100 (upper left ), m = 30 (upper right)

• Comparison of the MSE of θ̂
[2]

(m)(γ
∗), θ̂

[2]
(m)(γ

o), θ̂
[3]

(m) (red, black, green lines)

for predicting θ(m), as a function of γ∗, where F and G are normal and

m = 100 (bottom left), m = 30 (bottom right)
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S2.2. Unknown variances

Figure 3S compares the risks when only σ2
u is unknown and its estimator (4.1)

is plugged-in. Otherwise, the simulations are similar to those of the previous

section. The case that both variances, σ2
u and σ2

e are unknown is considered in

Section 4 in the article.
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Figure 3S:

• Comparison of E{L(θ̂( ), θ( ))} as a function of γ∗, for the predictors θ̂
[2]
( ) (γ

∗),

θ̂
[2]
( ) (
√

γ ∗), θ̂
[3]
( ) (red, black, green lines), where F and G are normal and

m = 100 (upper left ), m = 30 (upper right)

• Comparison of the MSE of θ̂
[2]

(m)(γ
∗), θ̂

[2]
(m)(

√
γ∗), θ̂

[3]
(m) (red, black, green

lines) for predicting θ(m), as a function of γ∗, where F and G are normal

and m = 100 (bottom left), m = 30 (bottom right)
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S3. Proof of Theorem 5

For the proof of Theorem 5 we need some further lemmas. In the sequel, I
denotes an indicator function, and ϕ and Φ denote the standard normal density

and cdf.

Lemma S3.1. Set ψ(a) :=
∫∞
0 t2Φ(at) ϕ(t)dt, %1(a) = 1

4 +
(

1
4π + 1

8

)
I (a ≥ 1),

and %2(a) = 1
4I (a = 0) +

(
3
8 + a

4π

)
I
(
0 < a < π

2

)
+ 1

2I
(
a ≥ π

2

)
. Then

%1(a) ≤ ψ(a) ≤ %2(a) for all a ≥ 0,with equalities for a = 0, a = 1.

Proof of Lemma S3.1. Note that ψ(a) =
∫∞
0 t2Φ(at) ϕ(t)dt is increasing in

a, and thus for 0 ≤ a < ∞, we have 1/4 = ψ(0) ≤ ψ(a) ≤ ψ(∞) = 1/2. A simple

calculation shows that ψ(1) = 1
4 +

(
1
4π + 1

8

)
, and the lower bound follows.

The upper bound follows readily once we show that for a > 0, ψ(a) ≤(
3
8 + a

4π

)
. We use the latter inequality only for 0 < a ≤ π

2 since for a ≥ π/2, 1/2

is a better upper bound. (In fact 1/2 is a good bound since for a > 1, that

ψ(a) > ψ(1) = 1
4 +

(
1
4π + 1

8

)
≈ 0.4546.)

To show ψ(a) ≤ (
3
8 + a

4π

)
for a > 0 we compute Taylor’s expansion around

a = 1,

Φ(at) = Φ(t) + tϕ(t)(a− 1)− a∗t3

2
ϕ(a∗t)(a− 1)2,

with a∗ between 1 and a. It follows that

Φ(at) ≤ Φ(t) + tϕ(t)(a− 1), for t ≥ 0 and a ≥ 0.

Therefore,

ψ(a) =
∫ ∞

0
t2Φ(at) ϕ(t)dt ≤

∫ ∞

0
t2Φ(t) ϕ(t)dt + (a− 1)

∫ ∞

0
t3ϕ2(t)dt

=
(

1
4π

+
3
8

)
+

a− 1
4π

=
(

3
8

+
a

4π

)
for all a ≥ 0.
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Lemma S3.2. Let Z ∼ N(0, 1). Then 2%1(a) − 1
2 ≤ E (|Z|ZΦ(aZ)) ≤

2%2(a)− 1
2 . Equalities hold when a = 0 or a = 1.

Proof of Lemma S3.2.

E (|Z|Φ (aZ) Z) =
∫ ∞

−∞
|t|tΦ(at)ϕ(t)dt =

∫ ∞

0
t2Φ(at) ϕ(t)dt−

∫ 0

−∞
t2Φ (at) ϕ(t)dt

= 2
∫ ∞

0
t2Φ(at) ϕ(t)dt− 1

2
= 2ψ(a)− 1

2
. (S3.1)

The result now follows from Lemma S3.1.

Lemma S3.3. For Model (1.1) with F and G normal, m = 2, and µ = 0,

E
(
θ(2)y(2)

) ≤ 2σ2
u%2(a) +

σ2
e

π

√
γ∗(1− γ∗)

and

E
(
θ(2)y(2)

) ≥ 2σ2
u%1(a) +

σ2
e

π

√
γ∗(1− γ∗),

where a =
√

γ∗
1−γ∗ .

Proof of Lemma S3.3. Kella (1986) (see also David and Nagaraja (2003))

shows that

Eµ

(
θ(i)|y

)
= Φ(4)µ1 + Φ(−4) µ2 + (−1)iσ

√
2ϕ (4) , (S3.2)

where 4 = γ∗ y1−y2

σ
√

2
, σ2 = γ∗σ2

e , µi = γ∗yi, i = 1, 2. Therefore,

E(θ(2)y(2)) = E(y(2)E(θ(2)|y)) = E
(
y(2)

(
Φ (4) µ1 + Φ(−4) µ2 + σ

√
2ϕ (4)

))

= γ∗E
(

y(2)Φ
(

γ∗
y1 − y2

σ
√

2

)
(y1 − y2)

)
+ γ∗E

(
y(2)y2

)
+ σ

√
2E

(
y(2)ϕ

(
γ∗

y1 − y2

σ
√

2

))
.

(S3.3)

We now calculate the latter three terms. For the first we use the relation y(2) =
y1+y2

2 + |y1−y2|
2 . We have

E

(
y(2)Φ

(
γ∗

y1 − y2

σ
√

2

)
(y1 − y2)

)
= E

(
y1 + y2

2
Φ

(
γ∗

y1 − y2

σ
√

2

)
(y1 − y2)

)

+ E

( |y1 − y2|
2

Φ
(

γ∗
y1 − y2

σ
√

2

)
(y1 − y2)

)
= E

y1 + y2

2
E

(
Φ

(
γ∗

y1 − y2

σ
√

2

)
(y1 − y2)

)

+ E

( |y1 − y2|
2

Φ
(

γ∗
y1 − y2

σ
√

2

)
(y1 − y2)

)
= E

( |y1 − y2|
2

Φ
(

γ∗
y1 − y2

σ
√

2

)
(y1 − y2)

)
.
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The penultimate equality follows from the fact that for iid normal variables yi,

y1−y2 and y1 +y2 are independent, and the last equality holds because for µ = 0

we have E(yi) = 0. The substitution Z = y1−y2

[2(σ2
u+σ2

e)]1/2 and standard calculations

show that the last term above equals

σ2
u

γ∗
E

(
|Z|Φ

(√
γ∗

1− γ∗
Z

)
Z

)
,

where Z is a standard normal random variable.

Let a =
√

γ∗
1−γ∗ . Using (S3.1) we obtain

E

(
y(2)Φ

(
γ∗

y1 − y2

σ
√

2

)
(y1 − y2)

)
=

σ2
u

γ∗
E (|Z|Φ(a Z) Z) =

σ2
u

γ∗
(2ψ(a)− 1/2).

To calculate the second term of (S3.3) we use a result from Siegel (1993), see

also Rinott and Samuel-Cahn (1994). It yields the second equality below, while

the others are straightforward:

E
(
y(2)y2

)
= Cov(y2, y(2)) = Cov(y2, y2)P (y2 = y(2))+Cov(y2, y1)P (y2 = y(1)) =

σ2
u

2γ∗
.

The third part of (S3.3) is computed like the second part above to give

E

(
y(2)ϕ

(
γ∗

y1 − y2√
2

))
=

√
σ2

u

2γ∗
E (|Z|ϕ (aZ)) .

The latter expectation becomes
∫ ∞

−∞
|t|ϕ (a t) ϕ(t)dt = 2

∫ ∞

0
t ϕ (a t) ϕ(t)dt =

1− γ∗

π
.

Combining these results, we get

E
(
θ(2)y(2)

)
= 2σ2

uψ(a) +
σ2

e

π

√
γ∗(1− γ∗). (S3.4)

From (S3.4) and Lemma S3.1, Lemma S3.3 follows readily.

Proof of Theorem 5. It is easy to see that we can assume µ = 0 without

loss of generality. We use the calculations of Theorem 3. Lemma S3.3 is used

instead of Lemma 1 for a better upper bound of E
(
θ(1)y(1) + θ(2)y(2)

)
for the

normal case and m = 2.
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Below we use the notation of Lemma 1. By symmetry E(θ(1)y(1)) = E(θ(2)y(2)).

Therefore, by Lemma S3.3 with a =
√

γ∗
1−γ∗ , we have E(θ(1)y(1) + θ(2)y(2)) ≤

4σ2
u%2(a) + 2σ2

e
π

√
γ∗(1− γ∗). By (A.2) and the above inequality we obtain

E
2∑

i=1

(
y(i) − θ(i))(y(i) − y

)
= 2(σ2

u + σ2
e)− σ2

e −E
2∑

i=1

θ(i)y(i)

≥ 2(σ2
u + σ2

e)− σ2
e − 4σ2

u%2(a)− 2
σ2

e

π

√
γ∗(1− γ∗)

= 2σ2
u − 4σ2

u%2(a) + σ2
e

(
1− 2

π

√
γ∗(1− γ∗)

)
:= κ(γ∗).

Recall from the proof of Theorem 3 the notation

D(γ) := E{L(θ̂ [2]
( ) (γ), θ( ))} − E{L(θ̂ [1]

( ) , θ( ))}.

In order to prove part 1 of Theorem 5, we have to show that its conditions imply

D(γ) ≤ 0.

By (A.3) for m = 2,

D(γ) = (1− γ)2(σ2
u + σ2

e)− 2(1− γ)E
2∑

i=1

(y(i) − θ(i))(y(i) − y)

≤ (1− γ)2(σ2
u + σ2

e)− 2(1− γ)κ(γ∗) = (1− γ)[(1− γ)(σ2
u + σ2

e)− 2κ(γ∗)].

We assume 0 ≤ γ ≤ 1 and therefore D(γ) ≤ 0 provided γ ≥ 1−2 κ(γ∗)
σ2

u+σ2
e

=: ω(γ∗).
For γ∗ = 0 (a = 0), ω(γ∗) = −1 and clearly D(γ) ≤ 0 for all γ.

Next we show that in the range 0 < γ∗ <
π2

π2 + 4
≈ 0.71

(
0 < a <

π

2

)
the

function ω(γ∗) has a single zero at c ≈ 0.4119, and ω(γ∗) < 0 for γ∗ < c. This

implies that γ > ω(γ∗) and therefore D(γ) < 0.

In this range of γ∗, ω(γ∗) = 1+4γ∗
(

a
2π − 1

4

)−2(1−γ∗)
(
1− 2

π

√
γ∗(1− γ∗)

)
.

Substituting γ∗ =
a2

1 + a2
we get ω(γ∗) = 1+ 1

1+a2

(
2
πa3 − a2 − 2 + 4

π
a

1+a2

)
. The

function ω(γ∗) has the same zeros as the function P (a) := π
2 (1 + a2)2ω(γ∗) and

straightforward calculations show that P (a) = a5 + a3 − π
2 a2 + 2a− π

2 , and that

this function is increasing in a and therefore in γ∗. By numerical calculation we

obtain that it vanishes at c ≈ 0.4119.

The second part of Theorem 5 is proved by showing that γ∗ ≥ ω(γ∗) and

therefore 1 ≥ γ ≥ γ∗ implies γ ≥ ω(γ∗).
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In the range 0 < γ∗ <
π2

π2 + 4
≈ 0.71

(
0 < a <

π

2

)
, ω(γ∗) = 1+4γ∗

(
a
2π − 1

4

)−
2(1 − γ∗)

(
1− 2

π

√
γ∗(1− γ∗)

)
≤ 1 − 2(1 − γ∗)π−1

π . Therefore, ω(γ∗) − γ∗ ≤
2−π

π (1− γ∗) < 0.

In the range γ∗ ≥ π2

π2 + 4
, ω(γ∗) = 1 − 2(1 − γ∗)

(
1− 2

π

√
γ∗(1− γ∗)

)
≤

1− 2(1− γ∗)π−1
π . Therefore, ω(γ∗)− γ∗ ≤ 2−π

π (1− γ∗) < 0.

For the proof the last part we use the same calculation as in Theorem 4 with

m=2 to obtain

∂E{L(θ̂ [2]
( ) (γ),θ( ))}/∂γ = 0 if and only if γ = 1− E

∑2
i=1

(
y(i) − θ(i))(y(i) − y

)

(σ2
u + σ2

e)
.

By (A.2) we have

E
2∑

i=1

(
y(i) − θ(i))(y(i) − y

)
= 2(σ2

u + σ2
e)− σ2

e − E
2∑

i=1

θ(i)y(i).

By (S3.4) we have E
∑2

i=1 θ(i)y(i) = 4σ2
uψ(a) + 2σ2

e
π

√
γ∗(1− γ∗). Hence,

E
2∑

i=1

(
y(i) − θ(i))(y(i) − y

)
= 2σ2

u (1− 2ψ(a)) + σ2
e

(
1− 2

π

√
γ∗(1− γ∗)

)
.

Finally, using the convexity of E{L(θ̂ [2](γ), θ)}, the optimal γ is

γo = γ∗ (4ψ(a)− 1) + (1− γ∗)
2
π

√
γ∗(1− γ∗).

S4. Proof of Theorem 6

Note that θ̂
[2]

(i) (γ) = (1 − γ)y + γgi(y), and from (S3.2) θ̂
[3]

(i) = Eµ̂

(
θ(i)|y

)
=

(1 − γ∗)y + γ∗fi(y), where fi(y) and gi(y) are functions of y = (y1, y2) defined

for i = 1, 2 by

fi ≡ fi(y) = (−1)i

(
Φ(4) (y1 − y2) +

σ

γ∗
√

2ϕ (4)
)

+ yi, gi ≡ gi(y) = y(i),

4 = γ∗
y1 − y2

σ
√

2
, σ2 = γ∗σ2

e .

We have

E
(
(θ̂ [3]

(i) − θ(i))
2|y

)
= V ar

(
θ(i)|y

)
+

(
E

(
(θ(i) − θ̂

[3]
(i) )|y

))2

= V ar
(
θ(i)|y

)
+ ((1− γ∗) (µ− y))2 = V ar

(
θ(i)|y

)
+ ((1− γ∗)y)2 ,
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where the last equality holds because for m=2 we can assume that µ = 0 without

loss of generality. In the same way,

E
(
(θ̂ [2]

(i) (γ)− θ(i))
2|y

)
= V ar

(
θ(i)|y

)
+

(
E

(
(θ(i) − θ̂

[2]
(i) (γ))|y

))2

= V ar
(
θ(i)|y

)
+ ((1− γ∗)µ + γ∗fi − (1− γ)y − γgi)

2 = V ar
(
θ(i)|y

)
+ (γ∗fi − (1− γ)y − γgi)

2 .

Therefore,

d(γ) := E{L(θ̂ [3]
( ) ,θ( ))} − E{L(θ̂ [2]

( ) (γ), θ( ))}

=
2∑

i=1

E
{

E
(
(θ̂ [3]

(i) − θ(i))
2|y

)}
−

2∑

i=1

E
{

E
(
(θ̂ [2]

(i) (γ)− θ(i))
2|y

)}

= 2E ((1− γ∗)y)2 − E (γ∗f1 − γg1 − (1− γ)y)2 − E (γ∗f2 − γg2 − (1− γ)y)2

= 2
(
(1− γ∗)2 − (1− γ)2

)
E

(
y 2

)− E (γ∗f1 − γg1)
2 − E (γ∗f2 − γg2)

2

+ 2(1− γ)E
[
((γ∗(f1 + f2)− γ(g1 + g2)) (y)

]
.

From the definitions of fi and gi it follows that f1 + f2 − g1 − g2 ≡ 0, and the

last term vanishes. It is now easy to see that d(γ∗) ≤ 0.


