Prediction of Ordered Random Effects in a Simple Small Area Model

Yaakov Malinovsky* and Yosef Rinott*,**
* The Hebrew University of Jerusalem and ${ }^{* *}$ LUISS, Rome

Supplementary Material

In this Supplement we provide some of the simulations and technical proofs. Equations in this Supplement are indicated by S, e.g., (S3.1), and similarly, lemmas that appear only in the Supplement are numbered with S, e.g., Lemma $S 3.1$. Equations, lemmas, and Theorems without S, refer to the article itself. Most of the notation is defined in the article, and this Supplement cannot be read independently.

S1. Simulations for Conjecture 1

Conjecture 1. The optimal γ in the sense of Theorem 4, γ°, satisfies

$$
\lim _{m \rightarrow \infty} \gamma^{o}=\sqrt{\gamma^{*}}
$$

We justify Conjecture 1 by simulations. First we consider the case that both the area random effect u_{i} and the sampling error e_{i} have a normal distribution, and take $m=5,10,20,100$, and then repeat the simulation with e_{i} having a translated exponential distribution. The red lines in Figure 1S are the lower and upper bounds of (3.6) to the optimal γ of Theorem 4 and the blue line is the optimal γ, both as functions of γ^{*}. The simulations were done as follows: we set $\sigma_{u}^{2}=1$. Different values of σ_{e}^{2} define the different values of γ^{*}. Setting without loss of generality $\mu=0$, we generated $y_{i}=0+u_{i}+e_{i}, i=1, \ldots, m$. For each value of γ^{*} we ran 1,000 simulations. By suitably averaging over these simulations, we then approximated $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}$for each $\gamma \in[0,1]$ using an exhaustive search with step-size of 0.001 and found γ^{o}, the value of γ that minimizes $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}$.

Figure 1S: γ^{o} (the optimal γ) as a function of γ^{*} (blue line) and the range of optimal γ from Theorem 4 as a function of γ^{*} (red lines) when:

1. Both the area random effect u_{i} and the sampling error e_{i} are normal (left four graphs).
2. The area random effects u_{i} are normal, but the sampling errors e_{i} are from a location exponential distribution (an exponential distribution translated by a constant) (right four graphs).

S2. Simulations for Conjecture 2, and comparison of predictors

S2.1. Known variances

For normal F and G, Conjecture 2 says that the predictor $\widehat{\theta}_{(i)}^{[3]}$ is better than $\widehat{\boldsymbol{\theta}}_{(i)}^{[2]}(\gamma)$ for all values of γ (including the optimal) in the sense that $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[3]}, \boldsymbol{\theta}_{()}\right)\right\} \leq$ $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}$. Recall that $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{o}\right), \boldsymbol{\theta}_{()}\right)\right\} \leq E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}$for all γ. The simulations below support Conjecture 2. Figure 2S shows a sample of simulation results for $m=30$ and 100 . We compare the expected loss in predicting $\boldsymbol{\theta}_{()}$by $\hat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{o}\right)$ to that of $\widehat{\boldsymbol{\theta}}_{()}^{[3]}$. While doing these simulations, we also compared the expected loss in predicting $\theta_{(m)}$ by $\widehat{\theta}_{(m)}^{[2]}\left(\gamma^{o}\right)$ to that of $\widehat{\theta}_{(m)}^{[3]}$.

The simulations show that the expected losses of the predictors $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{o}\right)$ and $\widehat{\boldsymbol{\theta}}_{()}^{[3]}$ are rather close, while the predictor $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{*}\right)$ is far worse. This suggests that the linear predictor $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{o}\right)$ can be used without much loss. It is important to note that given γ^{o}, this estimator is easy to calculate. For large m one may take $\gamma^{o}=\sqrt{\gamma^{*}}$, whereas for small m, the approximation of Section 3.2 can be used.

The simulation was done as follows: we set $\sigma_{u}^{2}=1$. Different values of σ_{e}^{2} define the different values of γ^{*}. Setting $\mu=0$, we generated $y_{i}=0+u_{i}+e_{i}$, $i=1, \ldots, m$. For each value of γ^{*} we ran 1,000 simulations and approximated $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}$for each γ in the range (3.6). Using an exhaustive search with step-size of 0.001 we found γ^{o}, the minimizer of $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}$. We approximated $\widehat{\theta}_{(i)}^{[3]}$ in the following way: when both F and G are normal, $\theta_{i} \mid y_{i} \sim$ $N\left(\gamma^{*} y_{i}+\left(1-\gamma^{*}\right) \mu, \gamma^{*} \sigma_{e}^{2}\right)$. Hence, for each $y_{i}, i=1, \ldots, m$, we generated 1,000 random variables from $N\left(\gamma^{*} y_{i}+\left(1-\gamma^{*}\right) \bar{y}, \gamma^{*} \sigma_{e}^{2}\right)$, sorted them, and approximated $\widehat{\theta}_{(i)}^{[3]}$. We approximated $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[3]}, \boldsymbol{\theta}_{()}\right)\right\}$in the same way as we approximated $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{*}\right), \boldsymbol{\theta}_{()}\right)\right\}$.

Figure 2S:

- Comparison of $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}, \boldsymbol{\theta}_{()}\right)\right\}$as a function of γ^{*}, for the predictors $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{*}\right)$, $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{o}\right), \widehat{\boldsymbol{\theta}}_{()}^{[3]}$ (red, black, green lines), where F and G are normal and $m=100$ (upper left), $m=30$ (upper right)
- Comparison of the MSE of $\widehat{\theta}_{(m)}^{[2]}\left(\gamma^{*}\right), \widehat{\theta}_{(m)}^{[2]}\left(\gamma^{o}\right), \widehat{\theta}_{(m)}^{[3]}$ (red, black, green lines) for predicting $\theta_{(m)}$, as a function of γ^{*}, where F and G are normal and $m=100$ (bottom left), $m=30$ (bottom right)

S2.2. Unknown variances

Figure $3 S$ compares the risks when only σ_{u}^{2} is unknown and its estimator (4.1) is plugged-in. Otherwise, the simulations are similar to those of the previous section. The case that both variances, σ_{u}^{2} and σ_{e}^{2} are unknown is considered in Section 4 in the article.

Figure 3S:

- Comparison of $E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}, \boldsymbol{\theta}_{()}\right)\right\}$as a function of γ^{*}, for the predictors $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\gamma^{*}\right)$, $\widehat{\boldsymbol{\theta}}_{()}^{[2]}\left(\sqrt{\gamma^{*}}\right), \widehat{\boldsymbol{\theta}}_{()}^{[3]}($ red, black, green lines), where F and G are normal and $m=100$ (upper left), $m=30$ (upper right)
- Comparison of the MSE of $\widehat{\theta}_{(m)}^{[2]}\left(\gamma^{*}\right), \widehat{\theta}_{(m)}^{[2]}\left(\sqrt{\gamma^{*}}\right), \widehat{\theta}_{(m)}^{[3]}$ (red, black, green lines) for predicting $\theta_{(m)}$, as a function of γ^{*}, where F and G are normal and $m=100$ (bottom left), $m=30$ (bottom right)

S3. Proof of Theorem 5

For the proof of Theorem 5 we need some further lemmas. In the sequel, \mathbb{I} denotes an indicator function, and φ and Φ denote the standard normal density and cdf.
Lemma S3.1. $\operatorname{Set} \psi(a):=\int_{0}^{\infty} t^{2} \Phi(a t) \varphi(t) d t, \quad \varrho_{1}(a)=\frac{1}{4}+\left(\frac{1}{4 \pi}+\frac{1}{8}\right) \mathbb{I}(a \geq 1)$, and $\varrho_{2}(a)=\frac{1}{4} \mathbb{I}(a=0)+\left(\frac{3}{8}+\frac{a}{4 \pi}\right) \mathbb{I}\left(0<a<\frac{\pi}{2}\right)+\frac{1}{2} \mathbb{I}\left(a \geq \frac{\pi}{2}\right)$. Then

$$
\varrho_{1}(a) \leq \psi(a) \leq \varrho_{2}(a) \text { for all } a \geq 0, \text { with equalities for } a=0, a=1
$$

Proof of Lemma S3.1. Note that $\psi(a)=\int_{0}^{\infty} t^{2} \Phi(a t) \varphi(t) d t$ is increasing in a, and thus for $0 \leq a<\infty$, we have $1 / 4=\psi(0) \leq \psi(a) \leq \psi(\infty)=1 / 2$. A simple calculation shows that $\psi(1)=\frac{1}{4}+\left(\frac{1}{4 \pi}+\frac{1}{8}\right)$, and the lower bound follows.

The upper bound follows readily once we show that for $a>0, \psi(a) \leq$ $\left(\frac{3}{8}+\frac{a}{4 \pi}\right)$. We use the latter inequality only for $0<a \leq \frac{\pi}{2}$ since for $a \geq \pi / 2,1 / 2$ is a better upper bound. (In fact $1 / 2$ is a good bound since for $a>1$, that $\psi(a)>\psi(1)=\frac{1}{4}+\left(\frac{1}{4 \pi}+\frac{1}{8}\right) \approx 0.4546$.)

To show $\psi(a) \leq\left(\frac{3}{8}+\frac{a}{4 \pi}\right)$ for $a>0$ we compute Taylor's expansion around $a=1$,

$$
\Phi(a t)=\Phi(t)+t \varphi(t)(a-1)-\frac{a^{*} t^{3}}{2} \varphi\left(a^{*} t\right)(a-1)^{2}
$$

with a^{*} between 1 and a. It follows that

$$
\Phi(a t) \leq \Phi(t)+t \varphi(t)(a-1), \quad \text { for } \quad t \geq 0 \quad \text { and } \quad a \geq 0
$$

Therefore,

$$
\begin{aligned}
& \psi(a)=\int_{0}^{\infty} t^{2} \Phi(a t) \varphi(t) d t \leq \int_{0}^{\infty} t^{2} \Phi(t) \varphi(t) d t+(a-1) \int_{0}^{\infty} t^{3} \varphi^{2}(t) d t \\
& =\left(\frac{1}{4 \pi}+\frac{3}{8}\right)+\frac{a-1}{4 \pi}=\left(\frac{3}{8}+\frac{a}{4 \pi}\right) \quad \text { for } \quad \text { all } \quad a \geq 0
\end{aligned}
$$

Lemma S3.2. Let $Z \sim N(0,1)$. Then $2 \varrho_{1}(a)-\frac{1}{2} \leq E(|Z| Z \Phi(a Z)) \leq$ $2 \varrho_{2}(a)-\frac{1}{2}$. Equalities hold when $a=0$ or $a=1$.

Proof of Lemma S3.2.

$$
\begin{align*}
E(|Z| \Phi(a Z) Z) & =\int_{-\infty}^{\infty}|t| t \Phi(a t) \varphi(t) d t=\int_{0}^{\infty} t^{2} \Phi(a t) \varphi(t) d t-\int_{-\infty}^{0} t^{2} \Phi(a t) \varphi(t) d t \\
& =2 \int_{0}^{\infty} t^{2} \Phi(a t) \varphi(t) d t-\frac{1}{2}=2 \psi(a)-\frac{1}{2} \tag{S3.1}
\end{align*}
$$

The result now follows from Lemma S3.1.

Lemma S3.3. For Model (1.1) with F and G normal, $m=2$, and $\mu=0$,

$$
E\left(\theta_{(2)} y_{(2)}\right) \leq 2 \sigma_{u}^{2} \varrho_{2}(a)+\frac{\sigma_{e}^{2}}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}
$$

and

$$
E\left(\theta_{(2)} y_{(2)}\right) \geq 2 \sigma_{u}^{2} \varrho_{1}(a)+\frac{\sigma_{e}^{2}}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}
$$

where $a=\sqrt{\frac{\gamma^{*}}{1-\gamma^{*}}}$.
Proof of Lemma S3.3. Kella (1986) (see also David and Nagaraja (2003))
shows that

$$
\begin{equation*}
E_{\mu}\left(\theta_{(i)} \mid \mathbf{y}\right)=\Phi(\triangle) \mu_{1}+\Phi(-\triangle) \mu_{2}+(-1)^{i} \sigma \sqrt{2} \varphi(\triangle) \tag{S3.2}
\end{equation*}
$$

where $\triangle=\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}, \quad \sigma^{2}=\gamma^{*} \sigma_{e}^{2}, \quad \mu_{i}=\gamma^{*} y_{i}, \quad i=1,2$. Therefore,

$$
\begin{align*}
& E\left(\theta_{(2)} y_{(2)}\right)=E\left(y_{(2)} E\left(\theta_{(2)} \mid \mathbf{y}\right)\right)=E\left(y_{(2)}\left(\Phi(\triangle) \mu_{1}+\Phi(-\triangle) \mu_{2}+\sigma \sqrt{2} \varphi(\triangle)\right)\right) \\
& =\gamma^{*} E\left(y_{(2)} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)+\gamma^{*} E\left(y_{(2)} y_{2}\right)+\sigma \sqrt{2} E\left(y_{(2)} \varphi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\right) \tag{S3.3}
\end{align*}
$$

We now calculate the latter three terms. For the first we use the relation $y_{(2)}=$ $\frac{y_{1}+y_{2}}{2}+\frac{\left|y_{1}-y_{2}\right|}{2}$. We have
$E\left(y_{(2)} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)=E\left(\frac{y_{1}+y_{2}}{2} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)$
$+E\left(\frac{\left|y_{1}-y_{2}\right|}{2} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)=E \frac{y_{1}+y_{2}}{2} E\left(\Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)$
$+E\left(\frac{\left|y_{1}-y_{2}\right|}{2} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)=E\left(\frac{\left|y_{1}-y_{2}\right|}{2} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)$.

The penultimate equality follows from the fact that for iid normal variables y_{i}, $y_{1}-y_{2}$ and $y_{1}+y_{2}$ are independent, and the last equality holds because for $\mu=0$ we have $E\left(y_{i}\right)=0$. The substitution $Z=\frac{y_{1}-y_{2}}{\left[2\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)\right]^{1 / 2}}$ and standard calculations show that the last term above equals

$$
\frac{\sigma_{u}^{2}}{\gamma^{*}} E\left(|Z| \Phi\left(\sqrt{\frac{\gamma^{*}}{1-\gamma^{*}}} Z\right) Z\right)
$$

where Z is a standard normal random variable.

Let $a=\sqrt{\frac{\gamma^{*}}{1-\gamma^{*}}}$. Using (S3.1) we obtain

$$
E\left(y_{(2)} \Phi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}\right)\left(y_{1}-y_{2}\right)\right)=\frac{\sigma_{u}^{2}}{\gamma^{*}} E(|Z| \Phi(a Z) Z)=\frac{\sigma_{u}^{2}}{\gamma^{*}}(2 \psi(a)-1 / 2)
$$

To calculate the second term of (S3.3) we use a result from Siegel (1993), see also Rinott and Samuel-Cahn (1994). It yields the second equality below, while the others are straightforward:
$E\left(y_{(2)} y_{2}\right)=\operatorname{Cov}\left(y_{2}, y_{(2)}\right)=\operatorname{Cov}\left(y_{2}, y_{2}\right) P\left(y_{2}=y_{(2)}\right)+\operatorname{Cov}\left(y_{2}, y_{1}\right) P\left(y_{2}=y_{(1)}\right)=\frac{\sigma_{u}^{2}}{2 \gamma^{*}}$.
The third part of (S3.3) is computed like the second part above to give

$$
E\left(y_{(2)} \varphi\left(\gamma^{*} \frac{y_{1}-y_{2}}{\sqrt{2}}\right)\right)=\sqrt{\frac{\sigma_{u}^{2}}{2 \gamma^{*}}} E(|Z| \varphi(a Z))
$$

The latter expectation becomes

$$
\int_{-\infty}^{\infty}|t| \varphi(a t) \varphi(t) d t=2 \int_{0}^{\infty} t \varphi(a t) \varphi(t) d t=\frac{1-\gamma^{*}}{\pi}
$$

Combining these results, we get

$$
\begin{equation*}
E\left(\theta_{(2)} y_{(2)}\right)=2 \sigma_{u}^{2} \psi(a)+\frac{\sigma_{e}^{2}}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)} \tag{S3.4}
\end{equation*}
$$

From (S3.4) and Lemma S3.1, Lemma S3.3 follows readily.

Proof of Theorem 5. It is easy to see that we can assume $\mu=0$ without loss of generality. We use the calculations of Theorem 3. Lemma S3.3 is used instead of Lemma 1 for a better upper bound of $E\left(\theta_{(1)} y_{(1)}+\theta_{(2)} y_{(2)}\right)$ for the normal case and $m=2$.

Below we use the notation of Lemma 1. By symmetry $E\left(\theta_{(1)} y_{(1)}\right)=E\left(\theta_{(2)} y_{(2)}\right)$. Therefore, by Lemma S3.3 with $a=\sqrt{\frac{\gamma^{*}}{1-\gamma^{*}}}$, we have $E\left(\theta_{(1)} y_{(1)}+\theta_{(2)} y_{(2)}\right) \leq$ $4 \sigma_{u}^{2} \varrho_{2}(a)+2 \frac{\sigma_{e}^{2}}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}$. By (A.2) and the above inequality we obtain

$$
\begin{aligned}
& E \sum_{i=1}^{2}\left(y_{(i)}-\theta_{(i)}\right)\left(y_{(i)}-\bar{y}\right)=2\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)-\sigma_{e}^{2}-E \sum_{i=1}^{2} \theta_{(i)} y_{(i)} \\
& \geq 2\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)-\sigma_{e}^{2}-4 \sigma_{u}^{2} \varrho_{2}(a)-2 \frac{\sigma_{e}^{2}}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)} \\
& =2 \sigma_{u}^{2}-4 \sigma_{u}^{2} \varrho_{2}(a)+\sigma_{e}^{2}\left(1-\frac{2}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}\right):=\kappa\left(\gamma^{*}\right)
\end{aligned}
$$

Recall from the proof of Theorem 3 the notation

$$
D(\gamma):=E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\}-E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[1]}, \boldsymbol{\theta}_{()}\right)\right\}
$$

In order to prove part 1 of Theorem 5, we have to show that its conditions imply $D(\gamma) \leq 0$.

By (A.3) for $m=2$,

$$
\begin{aligned}
& D(\gamma)=(1-\gamma)^{2}\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)-2(1-\gamma) E \sum_{i=1}^{2}\left(y_{(i)}-\theta_{(i)}\right)\left(y_{(i)}-\bar{y}\right) \\
& \leq(1-\gamma)^{2}\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)-2(1-\gamma) \kappa\left(\gamma^{*}\right)=(1-\gamma)\left[(1-\gamma)\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)-2 \kappa\left(\gamma^{*}\right)\right]
\end{aligned}
$$

We assume $0 \leq \gamma \leq 1$ and therefore $D(\gamma) \leq 0$ provided $\gamma \geq 1-2 \frac{\kappa\left(\gamma^{*}\right)}{\sigma_{u}^{2}+\sigma_{e}^{2}}=: \omega\left(\gamma^{*}\right)$.
For $\gamma^{*}=0(a=0), \omega\left(\gamma^{*}\right)=-1$ and clearly $D(\gamma) \leq 0$ for all γ.
Next we show that in the range $0<\gamma^{*}<\frac{\pi^{2}}{\pi^{2}+4} \approx 0.71\left(0<a<\frac{\pi}{2}\right)$ the function $\omega\left(\gamma^{*}\right)$ has a single zero at $c \approx 0.4119$, and $\omega\left(\gamma^{*}\right)<0$ for $\gamma^{*}<c$. This implies that $\gamma>\omega\left(\gamma^{*}\right)$ and therefore $D(\gamma)<0$.

In this range of $\gamma^{*}, \omega\left(\gamma^{*}\right)=1+4 \gamma^{*}\left(\frac{a}{2 \pi}-\frac{1}{4}\right)-2\left(1-\gamma^{*}\right)\left(1-\frac{2}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}\right)$. Substituting $\gamma^{*}=\frac{a^{2}}{1+a^{2}}$ we get $\omega\left(\gamma^{*}\right)=1+\frac{1}{1+a^{2}}\left(\frac{2}{\pi} a^{3}-a^{2}-2+\frac{4}{\pi} \frac{a}{1+a^{2}}\right)$. The function $\omega\left(\gamma^{*}\right)$ has the same zeros as the function $P(a):=\frac{\pi}{2}\left(1+a^{2}\right)^{2} \omega\left(\gamma^{*}\right)$ and straightforward calculations show that $P(a)=a^{5}+a^{3}-\frac{\pi}{2} a^{2}+2 a-\frac{\pi}{2}$, and that this function is increasing in a and therefore in γ^{*}. By numerical calculation we obtain that it vanishes at $c \approx 0.4119$.

The second part of Theorem 5 is proved by showing that $\gamma^{*} \geq \omega\left(\gamma^{*}\right)$ and therefore $1 \geq \gamma \geq \gamma^{*}$ implies $\gamma \geq \omega\left(\gamma^{*}\right)$.

In the range $0<\gamma^{*}<\frac{\pi^{2}}{\pi^{2}+4} \approx 0.71\left(0<a<\frac{\pi}{2}\right), \omega\left(\gamma^{*}\right)=1+4 \gamma^{*}\left(\frac{a}{2 \pi}-\frac{1}{4}\right)-$ $2\left(1-\gamma^{*}\right)\left(1-\frac{2}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}\right) \leq 1-2\left(1-\gamma^{*}\right) \frac{\pi-1}{\pi}$. Therefore, $\omega\left(\gamma^{*}\right)-\gamma^{*} \leq$ $\frac{2-\pi}{\pi}\left(1-\gamma^{*}\right)<0$.

In the range $\gamma^{*} \geq \frac{\pi^{2}}{\pi^{2}+4}, \omega\left(\gamma^{*}\right)=1-2\left(1-\gamma^{*}\right)\left(1-\frac{2}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}\right) \leq$ $1-2\left(1-\gamma^{*}\right) \frac{\pi-1}{\pi}$. Therefore, $\omega\left(\gamma^{*}\right)-\gamma^{*} \leq \frac{2-\pi}{\pi}\left(1-\gamma^{*}\right)<0$.

For the proof the last part we use the same calculation as in Theorem 4 with $\mathrm{m}=2$ to obtain
$\partial E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\} / \partial \gamma=0 \quad$ if and only if $\quad \gamma=1-\frac{E \sum_{i=1}^{2}\left(y_{(i)}-\theta_{(i)}\right)\left(y_{(i)}-\bar{y}\right)}{\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)}$.
By (A.2) we have

$$
E \sum_{i=1}^{2}\left(y_{(i)}-\theta_{(i)}\right)\left(y_{(i)}-\bar{y}\right)=2\left(\sigma_{u}^{2}+\sigma_{e}^{2}\right)-\sigma_{e}^{2}-E \sum_{i=1}^{2} \theta_{(i)} y_{(i)}
$$

By (S3.4) we have $E \sum_{i=1}^{2} \theta_{(i)} y_{(i)}=4 \sigma_{u}^{2} \psi(a)+2 \frac{\sigma_{e}^{2}}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}$. Hence,

$$
E \sum_{i=1}^{2}\left(y_{(i)}-\theta_{(i)}\right)\left(y_{(i)}-\bar{y}\right)=2 \sigma_{u}^{2}(1-2 \psi(a))+\sigma_{e}^{2}\left(1-\frac{2}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}\right)
$$

Finally, using the convexity of $E\left\{L\left(\widehat{\theta}^{[2]}(\gamma), \theta\right)\right\}$, the optimal γ is

$$
\gamma^{o}=\gamma^{*}(4 \psi(a)-1)+\left(1-\gamma^{*}\right) \frac{2}{\pi} \sqrt{\gamma^{*}\left(1-\gamma^{*}\right)}
$$

S4. Proof of Theorem 6

Note that $\widehat{\theta}_{(i)}^{[2]}(\gamma)=(1-\gamma) \bar{y}+\gamma g_{i}(y)$, and from $(\mathrm{S} 3.2) \widehat{\theta}_{(i)}^{[3]}=E_{\widehat{\mu}}\left(\theta_{(i)} \mid y\right)=$ $\left(1-\gamma^{*}\right) \bar{y}+\gamma^{*} f_{i}(y)$, where $f_{i}(y)$ and $g_{i}(y)$ are functions of $y=\left(y_{1}, y_{2}\right)$ defined for $i=1,2$ by

$$
\begin{aligned}
& f_{i} \equiv f_{i}(y)=(-1)^{i}\left(\Phi(\triangle)\left(y_{1}-y_{2}\right)+\frac{\sigma}{\gamma^{*}} \sqrt{2} \varphi(\triangle)\right)+y_{i}, \quad g_{i} \equiv g_{i}(y)=y_{(i)} \\
& \triangle=\gamma^{*} \frac{y_{1}-y_{2}}{\sigma \sqrt{2}}, \quad \sigma^{2}=\gamma^{*} \sigma_{e}^{2}
\end{aligned}
$$

We have

$$
\begin{aligned}
& E\left(\left(\widehat{\theta}_{(i)}^{[3]}-\theta_{(i)}\right)^{2} \mid y\right)=\operatorname{Var}\left(\theta_{(i)} \mid y\right)+\left(E\left(\left(\theta_{(i)}-\widehat{\theta}_{(i)}^{[3]}\right) \mid y\right)\right)^{2} \\
& =\operatorname{Var}\left(\theta_{(i)} \mid y\right)+\left(\left(1-\gamma^{*}\right)(\mu-\bar{y})\right)^{2}=\operatorname{Var}\left(\theta_{(i)} \mid y\right)+\left(\left(1-\gamma^{*}\right) \bar{y}\right)^{2}
\end{aligned}
$$

where the last equality holds because for $\mathrm{m}=2$ we can assume that $\mu=0$ without loss of generality. In the same way,

$$
\begin{aligned}
& E\left(\left(\widehat{\theta}_{(i)}^{[2]}(\gamma)-\theta_{(i)}\right)^{2} \mid y\right)=\operatorname{Var}\left(\theta_{(i)} \mid y\right)+\left(E\left(\left(\theta_{(i)}-\widehat{\theta}_{(i)}^{[2]}(\gamma)\right) \mid y\right)\right)^{2} \\
& =\operatorname{Var}\left(\theta_{(i)} \mid y\right)+\left(\left(1-\gamma^{*}\right) \mu+\gamma^{*} f_{i}-(1-\gamma) \bar{y}-\gamma g_{i}\right)^{2}=\operatorname{Var}\left(\theta_{(i)} \mid y\right)+\left(\gamma^{*} f_{i}-(1-\gamma) \bar{y}-\gamma g_{i}\right)^{2} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& d(\gamma):=E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[3]}, \boldsymbol{\theta}_{()}\right)\right\}-E\left\{L\left(\widehat{\boldsymbol{\theta}}_{()}^{[2]}(\gamma), \boldsymbol{\theta}_{()}\right)\right\} \\
& =\sum_{i=1}^{2} E\left\{E\left(\left(\widehat{\theta}_{(i)}^{[3]}-\theta_{(i)}\right)^{2} \mid y\right)\right\}-\sum_{i=1}^{2} E\left\{E\left(\left(\widehat{\theta}_{(i)}^{[2]}(\gamma)-\theta_{(i)}\right)^{2} \mid y\right)\right\} \\
& =2 E\left(\left(1-\gamma^{*}\right) \bar{y}\right)^{2}-E\left(\gamma^{*} f_{1}-\gamma g_{1}-(1-\gamma) \bar{y}\right)^{2}-E\left(\gamma^{*} f_{2}-\gamma g_{2}-(1-\gamma) \bar{y}\right)^{2} \\
& =2\left(\left(1-\gamma^{*}\right)^{2}-(1-\gamma)^{2}\right) E\left(\bar{y}^{2}\right)-E\left(\gamma^{*} f_{1}-\gamma g_{1}\right)^{2}-E\left(\gamma^{*} f_{2}-\gamma g_{2}\right)^{2} \\
& +2(1-\gamma) E\left[\left(\left(\gamma^{*}\left(f_{1}+f_{2}\right)-\gamma\left(g_{1}+g_{2}\right)\right)(\bar{y})\right] .\right.
\end{aligned}
$$

From the definitions of f_{i} and g_{i} it follows that $f_{1}+f_{2}-g_{1}-g_{2} \equiv 0$, and the last term vanishes. It is now easy to see that $d\left(\gamma^{*}\right) \leq 0$.

