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Abstract: We propose a flexible class of nonstationary stochastic models for mul-

tivariate spatial data. The method is based on convolutions of spatially varying

covariance kernels and produces mathematically valid covariance structures. This

method generalizes the convolution approach suggested by Majumdar and Gelfand

(2007) to extend multivariate spatial covariance functions to the nonstationary case.

A Bayesian method for estimation of the parameters in the covariance model based

on a Gibbs sampler is proposed, then applied to simulated data. Model comparison

is performed with the coregionalization model of Wackernagel (2003) that uses a

stationary bivariate model. Based on posterior prediction results, the performance

of our model appears to be considerably better.
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1. Introduction

Spatial modeling with flexible classes of covariance functions has become a
central topic of spatial statistics in recent years. One of the traditional approaches
to modeling spatial stochastic processes is to consider parametric families of sta-
tionary processes, or processes that can be described through parametric classes
of semi-variograms (Cressie (1993)). However, in spite of its simplicity, com-
putational tractability, and interpretability, the stationarity assumption is often
violated in practice, particularly when the data come from large, heterogeneous,
regions. In various fields of applications, like soil science, environmental science,
etc., it is often more reasonable to view the data as realizations of processes that
only in a small neighborhood of a location behave like stationary processes. Also,
it is often necessary to model two or more processes simultaneously and account
for the possible correlation among various coordinate processes. For example,
Majumdar and Gelfand (2007) consider an atmospheric pollution data consist-
ing of 3 pollutants : CO, NO and NO2, whose concentrations in the atmosphere
are correlated. A key question studied in this paper is modeling this correlation
among the various coordinates while allowing for nonstationarity in space for the
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multivariate process. We propose a flexible semiparametric model for multivari-
ate nonstationary spatial processes. After reviewing the existing literature on
nonstationary spatial modeling.

A considerable amount of work over the last decade or so has focussed
on modeling locally stationary processes (Fuentes (2002), Fuentes, Chen, Davis
and Lackmann (2005), Gelfand, Schmidt, Banerjee and Sirmans (2004), Higdon
(1997), Paciorek and Schervish (2006) and Nychka, Wikle, and Royle (2002)).
Dahlhaus (1996, 1997) gives a more formal treatment of locally stationary pro-
cesses in the time series context in terms of evolutionary spectra of time series.
This research on the modeling of nonstationary processes might be thought of as
the semi-parametric modeling of covariance functions. Higdon (2002) and Hig-
don, Swall, and Kern (1999) model the process as a convolution of a stationary
process with a kernel of varying bandwidth. Thus, the observed process Y (s)
is of the form Y (s) =

∫
Ks(x)Z(x)dx, where Z(x) is a stationary process, and

the kernel Ks depends on the location s. Fuentes (2002) and Fuentes and Smith
(2001) consider a convolution model in which the kernel has a fixed bandwidth,
while the process has a spatially varying parameter. Thus,

Y (s) =
∫

D
K(s − x)Zθ(x)(s)dx, (1.1)

where {Zθ(x)(·) : x ∈ D} is a collection of independent stationary processes
with covariance function parameterized by the function θ(·). Nychka, Wikle, and
Royle (2002) consider a multiresolution analysis-based approach to model the
spatial inhomogeneity that utilizes the smoothness of the process and its effect
on the covariances of the basis coefficients, when the process is represented in a
suitable wavelet-type basis.

One of the central themes of the various modeling schemes described above
is that a process may be represented in the spectral domain locally as a super-
position of Fourier frequencies with suitable (possibly spatially varying) weight
functions. Recent work of Pintore and Holmes (2006) provides a solid mathe-
matical foundation to this approach. Paciorek and Schervish (2006) derive an
explicit representation for the covariance function for Higdon’s model when the
kernel is multivariate Gaussian and use it to define a nonstationary version of
the Matérn covariance function by utilizing the Gaussian scale mixture repre-
sentation of positive definite functions. Also, there are works on a different type
of nonstationary modeling through spatial deformations (see e.g., Sampson and
Guttorp (1992)), but they do not concern us here.

The modeling approaches mentioned so far focus primarily on one-dimensional
processes. In this paper, our main focus is on modeling nonstationary, multi-
dimensional spatial processes. Existing approaches to modeling the multivariate
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processes include the work by Gelfand, Schmidt, Banerjee and Sirmans (2004)
that utilizes the idea of coregionalization to model the covariance of Y(s) (taking
values in RN ) as

Cov (Y(s),Y(s′)) =
N∑

j=1

ρj(s − s′)Tj ,

where ρj(·) are stationary covariance functions, and Tj are positive semidefinite
matrices of rank 1. Christensen and Amemiya (2002) consider a different class
of multivariate processes that depend on a latent shifted-factor model structure.

Our work can be viewed as a generalization of the convolution model for cor-
related Gaussian processes proposed by Majumdar and Gelfand (2007). We ex-
tend their model to nonstationary settings. A key motivation is the assertion that
when spatial inhomogeneity in the process is well-understood in terms of depen-
dence on geographical locations, it makes sense to use that information directly
in the specification of the covariance kernel. For example, soil concentrations
of Nitrogen, Carbon, and other nutrients and/or pollutants, that are spatially
distributed, are relatively homogenous across similar land-use types (e.g., agri-
cultural, urban, desert, transportation - and so on), but are non-homogeneous
across spatial locations with different land-use types. Usually the land-use types
and their boundaries are clearly known (typically from satellite imagery). This
is then an instance when nonstationary models are clearly advantageous com-
pared to stationary models. Another example concerns land-values and different
economic indicators in a spatial area. Usually land-values are higher around
(possibly multiple) business centers, and such information may be incorporated
in the model as the known centers of the kernels at (3.1). It is also important for
modeling multidimensional processes that the degree of correlations among the
coordinate processes across different spatial scales is allowed to vary. Keeping
these goals in mind, we present a class of models that behave locally like sta-
tionary processes, but are globally nonstationary. The main contributions of this
paper are: (i) specification of the multivariate spatial cross-covariance function
in terms of Fourier transforms of spatially varying spectra; (ii) incorporation of
correlations among coordinate processes that vary with both frequency and loca-
tion; (iii) derivation of precise mathematical conditions under which the process
is nonsingular; and (iv) the provision for including local information about the
process (e.g., smoothness, scale of variability, gradient of spatial correlation along
a given direction) directly into the covariance model. The last goal is achieved by
expressing the spatially varying coordinate spectra fj(s, ω) (as in (2.6)) as a sum
of kernel-weighted stationary spectra, where the kernels have known shapes and
different (possibly pre-specified) centers, bandwidths and orientations. We also
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present a Bayesian estimation procedure based on Gibbs sampling for estimat-
ing a specific parametric covariance function and study its performance through
simulation studies.

The paper is organized as follows. We specify the model and discuss its
properties in Section 2. In Section 3, we propose a special parametric subclass
that is computationally easier to deal with. Also, we discuss various aspects
of the model, such as parameter identifiability and the relation to some existing
models, by focussing attention on a special bivariate model. In Section 4, we give
an outline of a simulation study that illustrates the characteristics of the various
processes generated by our model in the two-dimensional setting. In Section
5, we present a Bayesian estimation procedure and conduct a simulation study
to demonstrate its effectiveness. In Section 6, we discuss some related research
directions. Some technical details and a detailed outline of the Gibbs sampling
procedure for posterior inference are given in the supplementary material.

2. Construction of Covariances Through Convolution

We consider a real-valued point-referenced univariate spatial process, Y (s),
associated with locations s ∈ Rd. In this section, we construct a Gaussian spatial
process model for an arbitrary finite set of locations in a region D ⊂ Rd by
generalizing the construction of Majumdar and Gelfand (2007), and then extend
it to whole of Rd.

2.1. Nonstationary covariance structure on a finite set in Rd

In this subsection, we construct a class of nonstationary multivariate stochas-
tic processes on a finite set of points in Rd. Assume that the points {sl : l =
1, . . . , k} in Rd are given. Let {Cjl : j = 1, . . . , N ; l = 1, . . . , k} be a set of sta-
tionary covariance kernels on Rd with corresponding spectral density functions
{fjl : j = 1, . . . , N ; l = 1, . . . , k} defined by

fjl(ω) =
1

(2π)d

∫
Rd

e−iωT sCjl(s)ds, ω ∈ Rd.

Consider the Nk × Nk matrix C, whose (j, j′)th entry in the (l, l′)th block,
for 1 ≤ j, j′ ≤ N and 1 ≤ l, l′ ≤ k, is denoted by cjl,j′l′ , and is expressed as

cjl,j′l′ ≡ C?
jj′(sl, sl′) =

∫
Rd

eiωT (sl−sl′ )fjl(ω)fj′l′(ω)ρjj′(ω)ρ0
ll′(ω)dω, (2.1)

where ρjj′(·) are complex-valued functions satisfying ρjj′(ω) = ρj′j(ω), and
((ρ0

ll′(ω)))k
l,l′=1 is a non-negative definite matrix for every ω ∈ Rd. Thus, C? :=

((C?
jj′))

N
j,j′=1 is function from Rd × Rd to RN×N . We require that max{maxj,j′

|ρjj′(ω)|, maxl,l′ |ρ0
ll′(ω)|} ≤ 1 for all ω ∈ Rd.
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We show that under appropriate conditions, the Nk × Nk matrix C =
((cjl,j′l′)) is a non-negative definite matrix. The (l, l′)th block (of size N ×N) of
the matrix C, for 1 ≤ l, l′ ≤ k, is

Cll′ =

 C?
11(sl, sl′) . . . C?

1N (sl, sl′)
...

. . .
...

C?
N1(sl, sl′) . . . C?

NN (sl, sl′)

 . (2.2)

For all ω ∈ Rd, define All′(ω), for 1 ≤ l, l′ ≤ k, as

All′(ω) = eiωT (sl−sl′ )ρ0
ll′(ω)

 (f1l(ω))2ρ11(ω) . . . f1l(ω)fNl(ω)ρ1N (ω)
...

. . .
...

fNl(ω)f1l(ω)ρN1(ω) . . . (fNl(ω))2ρNN (ω)

 ,

(2.3)
where the fjl(ω)’s are as defined above. Let e(ω) be the k × k matrix with
(l, l′)th entry eiωT (sl−sl′ ), 1 ≤ l, l′ ≤ k, R(ω) = ((ρjj′(ω)))N

jj′=1, and R0(ω) =
((ρ0

ll′(ω)))k
ll′=1. Let

F(ω) = diag(f11(ω), . . . , fN1(ω), . . . , f1k(ω), . . . , fNk(ω)),

and define A(ω) to be the Nk × Nk matrix with (l, l′)th block All′(ω), for 1 ≤
l, l′ ≤ k. Then A(ω) = F(ω)[(e(ω) ¯ R0(ω)) ⊗ R(ω)]F(ω), where ¯ denotes
Schur (or Hadamard) product, i.e., coordinate-wise product of two matrices of
same dimension, and ⊗ denotes the Kronecker product.

Note that, for an arbitrary a ∈ Ck, a∗(e(ω) ¯ R0(ω))a = b∗R0(ω)b, where
bl = ale

−iωT sl , l = 1, . . . , k. Therefore, if R0(ω) is positive definite, then so is the
k × k matrix e(ω) ¯ R0(ω). Since F(ω) is diagonal with non-negative diagonal
entries, from (2.3), wherever F(ω) is p.d., A(ω) is p.d. (n.n.d.) if both R(ω) and
R0(ω) are p.d. (at least one n.n.d. but not p.d.). From (2.1),

C =
∫

Rd

A(ω)dω, (2.4)

where the integral is taken over every element of the matrix A(ω). By the Cauchy-
Schwarz inequality and the fact that max{|ρjj′(ω)|, |ρ0

ll′(ω)|} ≤ 1, a sufficient con-
dition for the integral in (2.4) to be finite is that max1≤j≤N max1≤l≤k

∫
(fjl(ω))2

dω < ∞.

Lemma 1. Sufficient conditions for C to be positive definite are that (i) the
Nk × Nk matrix A(ω) is non-negative definite on Rd, and positive definite on
a set of positive Lebesgue measure in Rd; and (ii)

∫
Rd(fjl(ω))2dω < ∞ for all

j = 1, . . . , N and l = 1, . . . , k.
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Lemma 2. Suppose there exists B ⊂ Rd with positive Lebesgue measure such
that, for all ω ∈ B, we have fjl(ω) > 0 for each j = 1, . . . , N , l = 1, . . . , k, and
that both R(ω) and R0(ω) := ((ρ0

ll′(ω)))k
ll′=1 are positive definite matrices. Then

A(ω) is a positive definite matrix on B.

As an immediate consequence of Lemmas 1 and 2 we have the following.

Theorem 1. Suppose that Cjl, 1 ≤ j ≤ N , 1 ≤ l ≤ k, are positive definite
functions, and R(ω) = ((ρjj′(ω)))N

j,j′=1, and R0(ω) := ((ρ0
ll′(ω)))k

ll′=1 are non-
negative definite matrices for all ω ∈ Rd. If there exists a set B ⊂ Rd with nonzero
Lebesgue measure such that, for all ω ∈ B, we have fjl(ω) > 0,

∫
Rd(fjl(ω))2dω <

∞ for each j and l, and both R(ω) and R0(ω) are positive definite on B, then
the matrix C at (2.1) is a valid cross-covariance structure of an N -dimensional
stochastic process on D = {s1, . . . , sk}.

In the above construction, since the Cjl’s, ρjj′ ’s, and ρ0
ll′ are arbitrary, a

rich framework for modeling spatial processes is achieved if we can generalize
this from any arbitrary finite set {sl; l = 1, . . . , k} to an arbitrary spatial region
D ∈ Rd. This does hold in the stationary case (i.e., when fjl(ω) = f̃j(ω) for all
l = 1, . . . , k, for all j, and ρ0

ll′(ω) ≡ 1) if the matrix R(ω) = ((ρjj′(ω)))N
j,j′=1 is

non-negative definite for all ω ∈ Rd.

Corollary 1. Suppose C1, . . . , CN are valid covariance functions on Rd with
spectral densities f̃1, . . . , f̃N , respectively, and the functions ρjj′ are such that
R(ω) := ((ρjj′(ω)))N

jj′=1 is non-negative definite a.e. ω ∈ Rd. Then there is a
mean-zero Gaussian stationary stochastic process Y(s) = (Y1(s), . . . , YN (s)) on
Rd such that

Cov (Yj(s), Yj′(t)) = C?
jj′(s − t) :=

∫
Rd

eωT (s−t)f̃j(ω)f̃j′(ω)ρjj′(ω)dω. (2.5)

2.2. Construction of nonstationary covariances on Rd

We now generalize the construction of the nonstationary N × N covariance
function C? from the set {s1, . . . , sk} to the entire space Rd. Since a Gaussian pro-
cess is determined entirely by its mean and covariance, given points s1, . . . , sk ∈
Rd, we can find a zero mean Gaussian random vector (Yjl : 1 ≤ j ≤ N, 1 ≤ l ≤ k)
with covariance matrix given by C?. Moreover, this vector can be viewed as the
realization of an N -dimensional random process Y(s) = (Y1(s), . . . , YN (s)) at
the points s1, . . . , sk, if we define Yjl = Yj(sl). The next theorem states that an
extension of the process Y(s) to arbitrary domains in Rd is possible.



GENERALIZED CONVOLUTION MODEL FOR SPATIAL PROCESSES 681

Theorem 2. Let {fj(s, ω)}N
j=1, be non-negative functions on Rd ×Rd, such that

sups∈Rd

∫
Rd(fj(s, ω))2dω < ∞. Let ρ0(s, s′, ω) be a valid correlation function on

Rd × Rd for a.e. ω ∈ Rd. Also, let R(ω) = ((ρjj′(ω)))N
jj′=1 be non-negative

definite for every ω ∈ Rd. If there exist a set B ∈ Rd with positive Lebesgue
measure so that for every ω ∈ B, the function fj(·, ω) > 0, the matrix R(ω) is
positive definite, and the correlation function ρ0(·, ·, ω) is positive definite, then
there exists an N -dimensional Gaussian spatial process Y(s) on Rd with N ×N -
dimensional covariance kernel C?(s, s′) whose entries are given by,

C?
jj′(s, s

′)=
∫

Rd

eiωT (s−s′)fj(s, ω)fj′(s′, ω)ρ0(s, s′, ω)ρjj′(ω)dω, s, s′ ∈ Rd. (2.6)

The function fj(s, ω) can be interpreted as a location-dependent spectral
density of a locally stationary stochastic process. If fj(s, ω) = fj(ω) for all
j = 1, . . . , N , and ρ0(s, s′, ω) = 1, then C? as in Theorem 2 becomes a covariance
function of an N -dimensional stationary process on Rd.

2.3. Sufficient conditions for positive definiteness

In this subsection, we present a sufficient condition on the Fourier transforms
of the cross-correlation functions, namely {ρjj′}j 6=j′ , that guarantee the positive-
definiteness of the covariance function in the convolution model presented in
Section 2.2 when the number of variables N is at most 4.

Theorem 3. When N ≤ 4, sufficient conditions for positive definiteness of
R(ω) are the following.
(i) 1 > |ρjj′ |2 for all 1 ≤ j < j′ ≤ N .

(ii) 1 > |ρjl|2 + |ρlm|2 + |ρmj |2 − 2Re(ρjlρlmρmj), for all 1 ≤ j < l < m ≤ N .

(iii) If 1 ≤ j 6= l 6= m 6= n ≤ N , then

1 − |ρlm|2 − |ρmn|2 − |ρnl|2 + 2Re(ρlmρmnρnl)

> |ρjl|2 + |ρjm|2 + |ρjn|2 − (|ρjl|2|ρmn|2 + |ρjm|2|ρln|2 + |ρjn|2|ρlm|2)
+2Re(ρjlρlmρmj) + 2Re(ρjmρmnρnj) + 2Re(ρjnρnlρlj)

−2Re(ρjlρlnρnmρmj) − 2Re(ρjmρmlρlnρnj) − 2Re(ρjnρnmρmlρlj).

Equality in place of any of the inequalities implies singularity of the matrix R(ω).

2.4. A general model

A general formulation for the nonstationary covariance kernels comes from
introducing some structure to the correlation function ρ0(s, t, ω). One proposal
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is to consider

ρ0(s, t, ω) =
∞∑
l=1

ρ̃l(s, t)ψl(ω), (2.7)

where ρ̃l are correlation functions on Rd × Rd, and the non-negative ψl are such
that

∑∞
l=1 ψl(ω) ≤ 1 a.e.

Recall that by the spectral representation theory of stationary stochastic
processes (Yaglom (1962) and Schabenberger and Gotway (2005)), there exists
an N -dimensional stochastic process Z(ω) with independent coordinates defined
on Rd, such that the one-dimensional stationary process Xj(s) with covariance
function given by Cjj(s − t) =

∫
Rd eiωT (s−t)(fj(ω))2dω, with

∫
(fj(ω))2dω < ∞,

can be represented as Xj(s) =
∫

Rd eiωT sfj(ω)dZj(ω). Pintore and Holmes (2006)
consider processes of the form

X̃j(s) =
∫

Rd

eiωT sfj(s, ω)dZj(ω),

where fj(s, ω) are of the form hj(s)f̃j(ω; θ(s)), where f̃j(·; θ) is the spectral den-
sity function of a stationary stochastic process with parameter θ, and hj(·) is a
non-negative function, for each j = 1, . . . , N . These processes have covariance
functions Cjj′(s, t) = δj−j′

∫
Rd eiωT (s−t)fj(s, ω)fj′(t, ω)dω, where δ0 = 1 and

δk = 0 if k 6= 0. Our proposal can therefore be viewed as extending their method
to the multidimensional case while introducing spatially varying cross-correlation
functions.

The setting described by (2.7) can be realized by describing the process Y(s)
as

Y(s) =
∞∑
l=1

ξl(s)
∫

Rd

eiωT sF(s, ω) · R1/2(ω)
√

ψl(ω)dZ(ω), (2.8)

where R1/2(ω) is a non-negative square-root of the matrix R(ω), and F(s, ω) is a
diagonal matrix with jth diagonal element fj(s, ω). Here {ξl(s)}∞l=1 are uncorre-
lated (in the Gaussian case, independent) stochastic processes, independent of the
process Z(ω), with Cov (ξl(s), ξl(t)) = ρ̃l(s, t). Observe that we have the formal
expansion U(s, ω) =

∑∞
l=1 ξl(s)

√
ψl(ω), defining a mean zero, L2 stochastic pro-

cess on Rd ×Rd with covariance function ρU (s, t, ω, ω′) = Cov (U(s, ω), U(t, ω′)).
Also then, ρ0(s, t, ω) = ρU (s, t, ω, ω). Then we can formally define

Y(s) =
∫

Rd

eiωT sU(s, ω)F(s, ω) · R1/2(ω)dZ(ω), (2.9)

where the processes U(s, ω) are Z(ω) are assumed to be independent and defined
on the same probability space. Note that (2.9) is a formal integral representation,
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and we are assuming that all the measurability conditions needed on the processes
to define the stochastic integral are satisfied. The most manageable case from a
practical point of view though, in our opinion, is when ρ̃l(s, t) = ρ̃(s − t; θl) for
some parametric correlation function ρ̃(·; θ).

3. Specification of the Nonstationary Covariance Model

In this section we give a detailed description of a model that has a natural
appeal from the perspective of modeling spatially inhomogeneous multivariate
processes, and which renders the problem of estimating the nonstationary co-
variance kernel computationally quite tractable.

We assume that ρ0(s, s′, ω) = ρ1(s−s′)ρ2(ω) = ρ1(s−s′). Here ρ2(ω) ≡ 1 for
simplicity, and more generally one can assume some parametric form for ρ2(ω).
We assume a parametric form for the functions ρ1(s − s′) and R(ω). Then we
model

fj(s, ω) =
L∑

l=1

|Σl|−1/2Kl(Σ
−1/2
l (s − tl))fj(ω; θjl), (3.1)

where {tl : l = 1, . . . , L} is a sequence of points in R; for each l, Kl(·) is a non-
negative kernel with

∫
Kl(x)dx = 1; {Σl : l = 1, . . . , L} is a sequence of d × d

positive definite matrices; and for every fixed θjl ∈ Θj , fj(·; θjl) is a spectral
density function belonging to a parametric family parameterized by θjl. Also,
we assume that ρjj′(ω) = ρ0(ω; νjj′ , κ), for parameters {νjj′}N

j,j′=1 and κ; and
ρ1(s − t) ≡ ρ1(s − t; τ) for some parameter τ . Under this setting, C?(s, t), the
covariance kernel of Y(t), is determined through

C?
jj′(s, t) = ρ1(s − t)

L∑
l,l′=1

|Σl|−1/2Kl(Σ
−1/2
l (s − tl))|Σl′ |−1/2Kl′(Σ

−1/2
l′ (t − tl′))

·
∫

Rd

eiωT (s−t)fj(ω; θjl)fj′(ω; θj′l′)ρjj′(ω)dω, 1 ≤ j, j′ ≤ N. (3.2)

Thus, defining Gjj′(s; θjl, θj′l′ , νjj′ , κ) =
∫

Rd eiωT sfj(ω; θjl)fj′(ω; θj′l′)ρ0(ω; νjj′ , κ)
dω,

C?
jj′(s, t) = ρ1(s − t; τ)

L∑
l,l′=1

|Σl|−1/2Kl(Σ
−1/2
l (s − tl))|Σl′ |−1/2Kl′(Σ

−1/2
l′ (t − tl′))

· Gjj′(s − t; θjl, θj′l′ , νjj′ , κ). (3.3)

Typically, the sequence {tl}L
l=1 may be assumed given.
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3.1. Specification of the parametric spectral density and correlation

We now give a complete description of a model that maintains a balance be-
tween flexibility, and computational cost and interpretability. We choose ρ1(·; τ)
to be an arbitrary parametric stationary correlation function on Rd with pa-
rameter τ . We assume that fj(ω; θjl) is of the form cjlγ(ω; θ̃jl) for some scale
parameter cjl > 0 (note that we express θjl = (cjl, θ̃jl)), and a parametric class
of spectral densities γ(·; θ̃) that is closed under product. The latter means that
given any m ≥ 1, there exists a function γ̃(·; ·) and functions cγ(· · · ), dγ(· · · ) of
m variables such that, given parameters θ̃1, . . . , θ̃m,

m∏
i=1

γ(·; θ̃i) = dγ(θ̃1, · · · , θ̃m)γ̃(·; cγ(θ̃1, · · · , θ̃m)).

In particular, γ(·; θ̃1) = dγ(θ̃1)γ̃(·; cγ(θ̃1)). For example, the spectral densities of
the Matérn family (under some restrictions on the parameters), and the Gaussian
family satisfy this property.

For j 6= j′, we express ρ0(ω; νjj′ , κ) as νjj′α(ω; κ), where α(ω; κ) ≡ α(ω) is a
real-valued function satisfying −1/(N − 1) ≤ α(ω) ≤ 1. We choose {νjj′}1≤j 6=j′≤N

in such a way that the N × N matrix N = ((νjj′))1≤j,j′≤N , with νjj ≡ 1 for all
j, is positive definite (in fact, a correlation matrix). Since the N × N matrix
A(ω) with diagonal elements 1 and off-diagonal elements α(ω) is clearly positive
definite (under the restriction α(ω) ∈ (−1/(N − 1), 1]), the matrix R(ω) thus
specified is positive semidefinite for all ω, since the latter is just N¯A(ω). Tak-
ing α(ω) = 1 for all ω corresponds to the situation where the different coordinate
processes have the same correlation structure at all frequencies. To add flexibility
to the model without making it computationally too cumbersome, we propose
the use of

α(ω) =
γ(ω; α1)
γ(0; α1)

− β
γ(ω; α2)
γ(0; α2)

, (3.4)

where β ∈ [0, 1/(N − 1)) and α1, α2 are free parameters, and γ belongs to
the same family of spectral densities as the one used in specifying fj ’s. Thus
κ = (α1, α2, β).

An obvious advantage of this restriction is that one has a closed form ex-
pression for Gjj′(s; θjl, θj′l′ , νjj′ , κ) in terms of the inverse Fourier transform of
the function γ̃ : for 1 ≤ j 6= j′ ≤ N ,

Gjj′(s; θjl, θj′l′ , νjj′ , κ) = cjlcj′l′νjj′ ·

[
dγ(θ̃jl, θ̃j′l′ , α1)

γ(0; α1)
(F−1γ̃)(s; cγ(θ̃jl, θ̃j′l′ , α1))

−
βdγ(θ̃jl, θ̃j′l′ , α2)

γ(0;α2)
(F−1γ̃)(s; cγ(θ̃jl, θ̃j′l′ , α2))

]
, (3.5)
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where F−1γ̃ denotes the inverse Fourier transform of γ̃, i.e., the covariance func-
tion whose spectral density is γ̃. Also, for j = j′,

Gjj′(s; θjl, θj′l′ , νjj′ , κ) = cjlcjl′dγ(θ̃jl, θ̃jl′)(F−1γ̃)(s; cγ(θ̃jl, θ̃jl′)). (3.6)

3.2. A bivariate process

In many practical problems we are interested in studying the joint behavior
of two processes at a time, e.g., soil salinity and soil moisture content, temper-
ature and pressure fields, etc. In the bivariate case, the general formulation for
our model simplifies considerably. As stated in Theorem 3, in order that (2.6)
be a valid covariance kernel, it is sufficient that |ρ12(ω)|2 ≤ 1. Also, the con-
dition Im(ρ12(ω)) 6= 0 for ω ∈ B for some B with positive Lebesgue measure,
is necessary to ensure that Cov (Y1(s), Y2(s′)) 6= Cov (Y2(s), Y1(s′)) (asymmetric
cross-covariance). Our model bridges the two extremes: ρ12(ω) ≡ 0 yields zero
cross-correlation across all spatial locations, and ρ12(ω) ≡ 1 specifies the singular
cross-convolution model outlined in Majumdar and Gelfand (2007).

For the purpose of illustrating some of the main features of our model, we
focus on a bivariate non-stationary Gaussian process with the parametric co-
variance model presented in Section 3.1. We assume γ(·; θ̃) to be a Gaussian

spectral density with scale parameter θ̃, so that γ(ω; θ̃) = (1/2)(πθ̃)
−1/2

e−ω2/4eθ.
Hence, the parameters describing the product of m such densities with parame-
ters θ̃1, . . . , θ̃m are

cγ(θ̃1, · · · , θ̃m) =
1∑m

i=1 1/θ̃i

and dγ(θ̃1, · · · , θ̃m) =
1

2mπm/2

1∏m
i=1 θ̃

1/2
i

with γ̃(ω; θ̃) = e−ω2/4eθ. Moreover, in this case, we have (F−1γ)(s; θ̃) = e−
eθ‖s‖2

.
Thus, the expression for Gjj′(s; θjl, θj′l′ , νjj′ , κ) can be simplified by noting that
γ(0; θ̃) = dγ(θ̃) = (πθ̃)−1/2/2, and (F−1γ̃)(s; θ̃) = 2(πθ̃)1/2e−

eθ‖s‖2

. Next, since
the Cholesky decomposition of a positive definite matrix can be chosen to be
lower triangular, we write

Σl
− 1

2 =
(

σ11l 0
σ21l σ22l

)
. (3.7)

Using (3.5) and (3.6) we obtain a simplified form of the covariance function
C?

jj′(s, t). For ease of expressions, we consider the case when θ̃jl = θ̃l for j = 1, 2.
Then,

C?
jj′(s, t) = e−τ(s−t) 1

2π

L∑
l,l′=1

σ11lσ22lσ11l′σ22l′ exp(−1
2
‖ Σ−1/2

l (s − tl) ‖2

−1
2
‖ Σ−1/2

l′ (t − tl′) ‖2) · cjlcj′l′νjj′Γjj′(s − t; θ̃l, θ̃l′ , κ), (3.8)
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where κ = (α1, α2, β), Σ−1/2
l has the form (3.7), and the Γjj′(s; θ̃l, θ̃l′ , κ) are given

in the supplementary material.

3.3. Comparison with other nonstationary models

Here we compare our model with other well-known models for nonstationary
spatial covariances. For brevity, we focus on the univariate process specified by
(1.1). Assuming that the set D is finite, say D = {x1, . . . , xM}, the covariance
kernel for the process Y (·) is

CY (s, t) =
M∑

m=1

K(s − xm)K(t − xm)Cθ(xm)(s − t), (3.9)

where Cθ(·) is the stationary covariance kernel of the process Zθ(·). The expres-
sion for CY bears a similarity with the expression (3.3) when j = j′. Indeed, in
the latter case, C?

jj′ reduces to

C?
jj(s, t) =

L∑
l,l′=1

K̃l(s − tl)K̃l′(t − tl′)ρ̃1(s − t; τ)Gjj(s − t; θjl, θjl′) (3.10)

for appropriate kernels K̃l(·). Observe that if the kernels {K̃l}L
l=1 and the centers

{tl}L
l=1 are such that, for all l 6= l′, K̃l(· − tl)K̃l(· − tl′) = 0, and if U(s, ω) ≡ 1

(so that ρ̃1(·) ≡ 1), then (3.10) can be expressed in the form (3.9).
Adopting a different viewpoint, we consider the representation of the process

Y (·) described by (1.1), and the process Yj(·) with covariance kernel described
by (3.10) in the spectral domain. The former is

Y (s) =
∫

Rd

eiωT s
M∑

m=1

K(s − xm)f̃(ω; θ(xm))dZ̃m(ω), (3.11)

where Z̃m(·), m = 1, . . . ,M , are i.i.d. zero mean Brownian processes, and f̃(·; θ)
is the spectral density function of Cθ(·). Whereas, from (2.9) and (3.1), Yj(·) can
be written

Yj(s) =
∫

Rd

eiωT sU(s, ω)
L∑

l=1

K̃l(s − tl)fj(ω; θjl)dZj(ω), (3.12)

where Zj(·) is the jth coordinate of Z(·). The two processes thus differ mainly
by the fact that (3.11) is a representation of Y (·) in terms of weighted sum of
independent spectral processes {Z̃m(·)} and Yj(·) is represented in terms of one
spectral process Zj(·).
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Table 1. Parameter specification of the 8 different models.

σ11l= 1 θjl = (cjl, θ̃jl) α2 = 0.2
Model σ21l σ22l cjl θ̃jl α1

(1) 3.0 3 2
√

j/l
√

1/l 0.1
(2) 8.0 3 2

√
j/l

√
1/l 0.1

(3) 3.0 3 10jl
√

1/l 0.1
(4) 8.0 3 10jl

√
1/l 0.1

(5) 3.0 5 2
√

j/l
√

1/l 0.1
(6) 8.0 5 2

√
j/l

√
1/l 0.1

(7) 3.0 3 2
√

j/l
√

1/l 0.4
(8) 8.0 3 2

√
j/l j + l 0.1

These comparisons also indicate that, as long as the kernels {K̃l}L
l=1 and the

centers {tl}L
l=1 are such that for all l 6= l′ the products K̃l(· − tl)K̃l(· − tl′) have

comparatively small values, the parameters in the model are identifiable. They
can be identified essentially from the data on different spatial locations. Indeed
this is the case if the centers {tl}L

l=1 are well-separated, and the scale parameters
Σl for the kernel K̃l are comparatively small in magnitude. In practice, we expect
to have reasonable apriori information about the possible spatial inhomogeneity,
so that the specification of fairly accurate prior for the kernel centers {tl}L

l=1 is
possible.

4. Simulation Results

To understand the dependency of the model on various parameters, we per-
formed a small simulation study for the bivariate (N = 2) case, in which we
specified L = 4; σ11l = 1, for all l = 1, . . . , 4; β = 0.5, ν12 = ν21 = 0.5,
α2 = 0.2, τ = 0.5. We generated 100 realizations (on the unit square [0, 1]×[0, 1])
of a bivariate spatial process with centers of the four kernels t1 = (0.1, 0.7),
t2 = (0.6, 0.1), t3 = (0.9, 0.6), t4 = (0.6, 0.9). Changing the values of σ21l, σ22l,
cjl, θ̃jl and α1, we generated data from eight different models as given in Table
1. If we generalize this to N(≥ 2) processes and L kernels, then the number of
parameters is [N(N + 1)/2 + 3N ]L + N(N − 1)/2 + 4. Note that the first term
within bracket N(N + 1)/2 corresponds to Σl; the second term within brackets
corresponds to {cjl}N

j=1, {θ̃jl}N
j=1 and tl; and the term N(N − 1)/2 corresponds

to {νjj′}1≤j<j′≤N .
Qualitative features of the nonstationarity are illustrated through the con-

tour plot of V ar(Y (s)) against s (Figure 1). A sample realization of each process
is plotted in Figure 4 (in the supplementary material). From the figures, we
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Figure 1. Var(Y1(s)) vs. s under the 8 different models.
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clearly note distinct pattern variations among the variance profiles as well as
sample realizations of the eight processes. All parameters seem to have consid-
erable effects on the processes, and with the flexibility of these local and global
parameters we can generate a wide class of non-stationary multivariate spatial
models.

5. Bayesian Modeling and Inference

We give an outline of a Bayesian approach to estimating the parameters
of the general N -dimensional model specified in Section 3.1. We assume an
exponential correlation structure (Stein (1999)) for ρ1(·, τ), and a Gaussian spec-
tral density for γ(·; θ), where τ > 0 is a global decay parameter. We assign a
Gamma(aτ , bτ ) prior for τ , with aτ , bτ > 0. We take cjl

i.i.d.
∼ Gamma(acjl

, bcjl
),

and θ̃jl
i.i.d.
∼ Gamma(a

eθjl
, b

eθjl
). We specify i.i.d. InvWishart(Ψ, 2) priors for Σl,

with mean matrix Ψ. In order to specify a prior for the parameters {νjj′}, we
consider an N × N positive definite matrix ν?, and put N := ((νjj′))N

j,j′=1 =

diag(ν?)−1/2ν?diag(ν?)−1/2. We take ν? ∼ InvWishart(ν̃, d), where ν̃ is an
N ×N positive definite correlation matrix (to avoid over-parametrization) whose
structure represents our prior belief about the strength and directionality of as-
sociation of the different coordinate processes. In a geophysical context this
may mean knowledge about the states of the physical process. Note that this
ensures the positive-definiteness of the matrix N, and additionally sets the diag-
onals νjj to 1, as required. When N = 2, there is only one unknown parameter
in N and we specify the prior ν12 ∼ Unif(−1, 1) which guarantees that N is
p.d. Since the permissible range of β is [0, 1/(N − 1)], we assume the prior
of β to be β ∼ Unif(0, 1/(N − 1)). We assume independent Gamma priors
Gamma(aαk

, bαk
), k = 1, 2, for the positive parameters α1, α2, respectively.

5.1. Results in a special bivariate case

We discuss some simulation results for the special case of the bivariate model
specified in Section 3.2. We fixed σ11l = σ11, σ22l = σ22, σ21l = σ21, cjl = c, and
θ̃jl = θ for all l = 1, . . . , L; and α1 = α2 = α. Since β and ν12 are not identifiable
together, we set β = 0 in the model. Further, we chose σ11 = σ22 = 1, τ = 0.1,
c = 2, θ = 0.1, α = 0.1, σ21 = 1, and ν21 = 0.8. We generated bivariate Gaussian
data with mean 0. For estimation, we treated β, σ11, σ22 and τ as known, and
the other five parameters as unknown and estimated them from the data using
the Gibbs sampling procedure.

From equations (3.8), (S1.1) and (S1.2), c2 is a scale parameter, we used
an InvGamma(2, 1) prior for c2. For the (positive) parameter α, we assumed
a Gamma(0.01, 10) prior. For θ, we assumed a Gamma(0.1, 10) prior. Since
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Table 2. Posterior mean, standard deviation, median and 95% credible in-
tervals of parameters

Parameter value Posterior values n = 15 n = 25 n = 50

Mean, s.d. 2.13, 0.43 1.96, 0.45 2.08, 0.49
c = 2 Median 2.07 1.91 2.08

95% credible interval (1.32, 3.12) (1.21, 2.89) (1.12, 3.05)
Mean, s.d. 0.54, 0.28 0.59, 0.27 0.69, 0.21

ν21 = 0.8 Median 0.54 0.65 0.72
95% credible interval (0.03, 0.98) (0.10, 0.98) (0.22, 0.98)
Mean, s.d. 0.93, 0.40 0.85, 0.37 1.27,0.36

σ21 = 1 Median 0.96 0.87 1.27
95% credible interval (0.03, 1.66) (0.06, 1.54) (0.50, 1.92)
Mean, s.d. 0.10, 0.10 0.12, 0.10 0.12, 0.10

α = 0.1 Median 0.07 0.09 0.09
95% credible interval (0.003, 0.37) (0.005, 0.30) (0.007, 0.35)
Mean, s.d. 0.30, 0.25 0.27, 0.33 0.13, 0.11

θ = 0.1 Median 0.24 0.15 0.10
95% credible interval: (0.02, 0.97) (0.02, 1.18) (0.01, 0.42)

ν21 is restricted to the interval (−1, 1), and is a measure of global association
between processes, we assumed a positive association through a Uniform(0, 1)
prior. Finally, we chose a N(0, 10) prior for σ21.

The posterior distribution of c2 is an Inverse Gamma. The posterior distribu-
tions of the rest of the parameters do not have closed forms. Hence we employed
Gibbs sampling within a Metropolis Hastings algorithm to obtain posterior sam-
ples of the parameters. Burn-in was obtained with 2, 000 iterations, and we
thinned the samples by 20 iterations to obtain 1, 000 uncorrelated samples from
the joint posterior distribution of (c, θ, α, σ21, ν21) given the data. Sensitivity
analysis of the priors was carried out by varying the means and variances. The
priors prove to be fairly robust with respect to the posterior inference results. For
data simulated using n = 15, 25 and 50 locations, we present the results of the
posterior inference in Table 2. This table displays the posterior mean, standard
deviation (s.d.), median, and 95% credible intervals for each of the five param-
eters treated as random in the model. Table 2 shows that, for each n, the 95%
credible intervals contained the actual values of the parameters. The lengths of
the intervals for ν21 and α were relatively large.

In order to gain further insight into the performance as sample size increases,
we carried out a separate simulation study: we simulated 100 independent sam-
ples of sizes n = 15, 25 and 50, respectively, from the bivariate model for the
specified values of the parameters, and ran the MCMC each time on each of
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these samples. Boxplots of the mean and median of the posterior squared errors
(SE) of the covariance terms at three different spatial locations for the three
sample sizes are displayed in Figure 2. The reported values are generically of
the form Mean/Median (SE(Cov (Yk(si), Yk′(si′)))/{Cov (Yk(si), Yk′(si′))}2), i.e,
they represent the mean and the median of the standardized forms of the poste-
rior SE From Figure 2, we observe that the means and medians of the posterior
standardized SE were rather small, and these values decreased with larger sample
sizes, as was to be expected.

Further, to compare the prediction performance of our model with that of
a known bivariate stationary spatial model, we used the coregionalization model
(stationary) of Wackernagel (2003) as implemented by the spBayes package (Fin-
ley, Banerjee and Carlin (2007)) in R, and compared predictive distributions of
terms such as (θpred−θ)2, where θ is the variance or covariance of the data gener-
ated using the true model (i.e, the generalized convolution model) at specific loca-
tions, and θpred are the posterior predictive sample estimates of θ. We compared
the two fitted models for n = 25 and n = 50, using medians of (θpred − θ)2/θ2 for
standardizing the results. The spBayes package uses priors with large variances
(infinite variance for scale or variance parameters) for all but one of the param-
eters used in the model, and that is also the case in our model. One parameter,
namely the decay parameter, was assigned a mean of 0.18 and variance of 0.54
in the model implemented by spbayes. The generalized convolution model, on
the other hand, assigned a prior to the parameter α with mean 0.1 and variance
1. No hyper-prior was used in either model. Figure 3 clearly shows the stark
contrast in performance of the stationary coregionalization versus nonstationary
generalized convolution model. For our model, the median of posterior predic-
tive squared errors was close to 0 for all values, whereas many of the values of
this performance measure corresponding to the stationary model were extremely
large. This seems to indicate that for cases where nonstationarity prevails in the
underlying multivariate spatial processes, our model may be a better choice than
the regular coregionalization model of Wackernagel (2003), as implemented by
the spBayes package.

6. Discussion

As a remark on an alternative method for fitting models of this type using
a frequentist approach, we note that, for one dimensional time series, several
aspects of estimating locally stationary processes have been explored (Dahlhaus
(1996, 1997)), Dahlhaus and Neumann (2001). One approach due to Dahlhaus
(1997) is to consider tapered local periodogram estimates of the evolutionary spec-
trum of the time series, then to minimize an asymptotic Kullback-Leibler diver-
gence functional with respect to the parameters. Fuentes (2007) gives a formu-
lation similar to that of Dahlhaus (1996, 1997) involving an approximation of
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Figure 2. Mean and median posterior standard deviations of “standardized”
values of variance and covariance values for n = 15, 25 and 50 (based on 100
simulations using the gen. conv. model)

the asymptotic likelihood, and discusses its implications for the estimation of
the spectral density of the process in the case of data observed on an incom-
plete lattice in Rd. The properties of estimators based on this type of likelihood
approximation for correlated, multi-dimensional processes are currently under
investigation.
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Figure 3. Median posterior predictive “standardized” squared error with
sample size n = 25 and n = 50 for V ar(Y1(s1)) (upper panel) and
Cov (Y1(s1), Y2(s1)) (bottom panel) comparing the spbayes and the gen.
conv. model
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