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Throughout the paper, b(k)(x) of a function b(x) denotes its kth derivative. To estab-

lished the asymptotic results given in Theorems 3.1. and 3.2., we need the following regularity

conditions:

(C1) The covariate vectors Z and X have bounded support. The design matrices formed by

the column vectors of Z and X are of full rank.

(C2) The true value θ0 belongs to the interior of a known compact set B in Rp+q, and λ0(x)

is positive and thrice-continuously differentiable.

(C3) The censoring time C has a positive and twice-continuously differentiable density function.

(C4) With probability one, there exists a positive constant ζ0 such that P (Ce−β′0Z ≥ eε ≥
τ |Z, X) > ζ0 for all possible values of Z and X, where τ is a finite positive number.

(C5) The kernel function K(·) is thrice-continuously differentiable, and K(r)(·), r = 0, 1, 2, 3,

have bounded variations in R. In addition, the first (m − 1) moments of K(m)(·) are 0

for some m > 3.

The conditions (C1), (C2), (C3) and (C5) are similar to those used by Zeng and Lin (2007)

for establishing the asymptotic results of the nonparametric maximum likelihood estimates

under the usual accelerated failure time model. Condition (C4) is needed for the identifiability

of the accelerated failure time model mixture cure model on the interval [0, τ ].

Proof of Theorem 3.1. Let (β̂n, γ̂n, λ̂n(·)) denote the estimates of (β0, γ0, λ0(·)) obtained

from the proposed EM algorithm. We have

Λ̂n(x) =

∫ log x

−∞

n−1 ∑n
j=1 δjKh{Rj(β̂n)− s}

n−1
∑n

j=1 ŵn,j

∫ Rj(β̂n)−s

−∞ Kh(u)du
ds, x > 0.

where Λ̂n(x) =
∫ x

0
λ̂n(u)du, Ŝn(x) = exp{−Λ̂n(x)} and

ŵn,i = δi + (1− δi)
π(γ̂′nXi)Ŝn{eRi(β̂n)}

1− π(γ̂′nXi) + π(γ̂′nXi)Ŝn{eRi(β̂n)} , i = 1, · · · , n.
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In addition, define

wi0 = δi + (1− δi)
π(γ′0Xi)S0{eRi(β0)}

1− π(γ′0Xi) + π(γ′0Xi)S0{eRi(β0)} , i = 1, · · · , n,

Λ̃n(x) =

∫ log x

−∞

n−1 ∑n
j=1 δjKh{Rj(β0)− s}

n−1
∑n

j=1 wj0

∫ Rj(β0)−s

−∞ Kh(u)du
ds, x > 0.

As discussed by Zeng and Lin (2007), following lemma 2.4 of Schuster (1969) and theorem 2.4.3

of van der Vaart and Wellner (1996), we can show that

sup
θ∈B,s

∣∣∣∣∣
1

n

n∑
j=1

δjKh{Rj(β)− s} − dP (δ = 1, R(β) ≤ s)

ds

∣∣∣∣∣ → 0, a.s. (S.1)

Note that

dP (δ = 1, R(β0) ≤ s)

ds
=

dP (R∗(β0) ≤ s)

ds
EZ, X{π(γ′0X)P (C(β0) ≥ s|Z, X)}

where R∗(β) = log(T ∗) − β′Z, C(β) = log(C) − β′Z and the expectation EZ, X is taken with

respect to the random variables Z and X. Moreover, we have

1

n

n∑
j=1

wj0

∫ Rj(β0)−s

−∞
Kh(u)du =

1

n

n∑
j=1

δj

∫ Rj(β0)−s

−∞
Kh(u)du

+
1

n

n∑
j=1

(1− δj)
π(γ′0Xj)S0{eRj(β0)}

1− π(γ′0Xj) + π(γ′0Xj)S0{eRj(β0)}
∫ Rj(β0)−s

−∞
Kh(u)du.

Using the similar techniques, we can show that the first term on the right-hand side of the above

equality converges uniformly in s to

EZ, X

[
π(γ′0X)P (C(β0) ≥ s|Z, X){P (R∗(β0) ≥ s)− P (R∗(β0) ≥ C(β0))}

]

and the second term converges uniformly in s to

EZ, X

[
π(γ′0X)S0{eC(β0)}P (C(β0) ≥ s|Z, X)

]

which is due to a fact that E(1− δ|C, Z, X) = 1− π(γ′0X) + π(γ′0X)S0{eC(β0)}.
Thus, n−1 ∑n

j=1 wj0

∫ Rj(β0)−s

−∞ Kh(u)du converges uniformly in s to

P (R∗(β0) ≥ s)EZ, X [π(γ′0X)P (C(β0) ≥ s|Z, X)]

since S0{eC(β0)} = P (R∗(β0) ≥ C(β0)). It follows that

sup
s

∣∣∣∣∣
n−1 ∑n

j=1 δjKh{Rj(β0)− s}
n−1

∑n
j=1 wj0

∫ Rj(β0)−s

−∞ Kh(u)du
− dP (ε ≤ s)/ds

P (ε ≥ s)

∣∣∣∣∣ → 0, a.s. (S.2)

and Λ̃n(x) → Λ0(x), a.s. as n →∞. In addition, the pointwise convergence can be strengthened

to the uniform convergence by applying the same monotonicity argument used in the proof of
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the Glivenko-Cantelli Theorem [Page 96 of Shorack and Wellner (1986)], i.e. supx∈[0,τ ] |Λ̃n(x) →
Λ0(x)| → 0, a.s..

Next we show that (Λ̂n, θ̂n) converges to (Λ0, θ0). Since every bounded sequence in Rp+q

has a convergent subsequence, there exists a θ∗ such that θ̂mk → θ∗. By Helly’s theorem [Ash

(1972)], there exists a function Λ∗ and a subsequence {Λ̂nk} of {Λ̂mk} such that Λ̂nk (x) → Λ∗(x)

for all x ∈ [0, τ ] at which Λ∗ is continuous. Therefore, (Λ̂nk , θ̂nk ) must converge to (Λ∗, θ∗).

Recall that

λ̂nk (x) =
(nx)−1 ∑n

j=1 δjKh{Rj(β̂nk )− log x}
n−1

∑n
j=1 ŵnk,j

∫ Rj(β̂nk
)−log x

−∞ Kh(u)du
.

Let k →∞ in the above equality. Using the similar techniques for proving (S.1) and (S.2), we

can show that

λ∗(x) =
E{dN(x, β∗)}

Y (x, β∗)g(x, θ∗, Λ∗)dx
,

where N(x, β) = δI(eR(β) ≤ x), Y (x, β) = I(eR(β) ≥ x) and

g(x, θ, Λ) =
π(γ′X)S(x)

1− π(γ′X) + π(γ′X)S(x)
.

Thus, for any x ∈ [0, τ ],

E{dN(x, β∗)− Y (x, β∗)g(x, θ∗, Λ∗)λ∗(x)dx} = 0. (S.3)

Also note that

0 ≤ n−1
k lonk

(Λ̂nk , θ̂nk )− n−1
k lonk

(Λ̃nk , θ0)

=
1

nk

nk∑
i=1

∫ τ

0

log{χ̂nk,i(x)}{dNi(x, β̂nk )− Yi(x, β̂nk )gi(x, Λ̂nk , θ̂nk )λ̂nk (x)dx}

+
1

nk

nk∑
i=1

∫ τ

0

log{χ̃nk,i(x)}{dNi(x, β0)− Yi(x, β0)gi(x, Λ̃nk , θ0)λ̃nk (x)dx}

+
1

nk

nk∑
i=1

∫ τ

0

[log{χnk,i(x)} − {χnk,i(x)− 1}]Yi(x, β0)gi(x, Λ̃nk , θ0)λ̃nk (x)dx,

where χ̂nk,i(x) = e
−β̂′nk

Zigi(x, Λ̂nk , θ̂nk )λ̂nk (x), χ̃nk,i(x) = e−β′0Zigi(x, Λ̃nk , θ0)λ̃nk (x) and

χnk,i(x) = χ̂nk,i(x)/χ̃nk,i(x). Based on (S.3) and the fact that

M(x) ≡ N(x, β0)−
∫ x

0

Y (u, β0)g(u, Λ0, θ0)λ0(u)du

is a mean-zero martingale process, and applying the Glivenko-Cantelli Theorem, we have that

the first two terms on the right-hand side of the above inequality converge to zero. The third

term is less or equal to zero since for x > 0, log(x)− (x− 1) ≤ 0, which converges to

E
(∫ τ

0

[
log

{e−(β∗)′Zg(x, Λ∗, θ∗)λ∗(x)

e−β′0Zg(x, Λ0, θ0)λ0(x)

}
−

{e−(β∗)′Zg(x, Λ∗, θ∗)λ∗(x)

e−β′0Zg(x, Λ0, θ0)λ0(x)
− 1

}]

× Y (x, β0)g(x, Λ0, θ0)λ0(x)dx
)
.
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Note that the above limit is the negative Kullback-Leibler information, E[lo(Λ∗, θ∗)]−E[lo(Λ0, θ0)],

where

lo(θ, Λ) =

∫ τ

0

log{e−β′Zg(x, Λ, θ)λ(x)}dN(x, β)−
∫ τ

0

Y (x, β)g(x, Λ, θ)λ(x)dx.

Thus, the Kullback-Leibler information must equal zero. Then, with probability one, we have
∫ τ

0

log{e−(β∗)′Zg(x, Λ∗, θ∗)λ∗(x)}dN(x, β∗)−
∫ τ

0

Y (x, β∗)g(x, Λ∗, θ∗)λ∗(x)dx

=

∫ τ

0

log{e−β′0Zg(x, Λ0, θ0)λ0(x)}dN(x, β0)−
∫ τ

0

Y (x, β0)g(x, Λ0, θ0)λ0(x)dx.

This implies that Λ∗ = Λ0 and θ∗ = θ0 with probability one. Therefore, (Λ̂nk , θ̂nk ) must

converge to (Λ0, θ0). By Helly’s theorem, we know that (Λ̂n, θ̂n) must converge to (Λ0, θ0).

Furthermore, the point-wise convergence can be strengthened to the uniform convergence by

applying the Glivenko-Cantelli Theorem [Shorack and Wellner (1996)]. ]

Proof of Theorem 3.2. Following Theorem 3.3.1. of van der Vaart and Wellner (1996),

we first derive the score operators based on some submodels. To be specific, set Λd(x) =∫ x

0
{1+dh1(u)}dΛ̂n(u) and θd = dh2 + θ̂n, where h1(u) is a function on [0, τ ] and h2 is a (p+ q)-

dimensional vector. Furthermore, write h2 = (h′21, h
′
22)

′, where h21 is the p-dimensional and

h22 is the q-dimensional vectors corresponding to Z and X, respectively. Let Un(Λ̂n, θ̂n)(h1, h2)

denote the derivative of n−1lon(θd, Λd) with respect to d and evaluated at d = 0. We have

Un(Λ̂n, θ̂n)(h1, h2) = Un1(Λ̂n, θ̂n)(h1) + Un2(Λ̂n, θ̂n)(h2), where

Un1(Λ̂n, θ̂n)(h1) =
1

n

n∑
i=1

∫ τ

0

[
h1(x)− {1− gi(x, Λ̂n, θ̂n)}

∫ x

0

h1(u)dΛ̂n(u)

]

×
{

dNi(x, β̂n)− Yi(x, β̂n)gi(x, Λ̂n, θ̂n)dΛ̂n(x)
}

,

Un2(Λ̂n, θ̂n)(h2) =
1

n

n∑
i=1

∫ τ

0

h′2Wi(x, Λ̂n, θ̂n){dNi(x, β̂n)− Yi(x, β̂n)gi(x, Λ̂n, θ̂n)dΛ̂n(x)},

and Wi(x, Λ, θ) = [−Z′iwi(x, Λ, θ), X ′
i{1− gi(x, Λ, θ)}]′ with

wi(x, Λ, θ) = x
λ(1)(x)

λ(x)
+ 1− xλ(x){1− gi(x, Λ, θ)}.

Note that Un(Λ̂n, θ̂n)(h1, h2) = 0 for all (h1, h2) since (Λ̂n, θ̂n) maximizes lon.

Let BV [0, τ ] denote the space of bounded variation functions defined on [0, τ ]. We assume

that the class of h = (h1, h2) belongs to the space H = BV [0, τ ]
⊗

Rp+q. For h ∈ H, we

define the norm on H to be ||h||H = ||h1||v + ||h2||1, where ||h1||v is the absolute value of h1(0)

plus the total variation of h1 on the interval [0, τ ] and ||h2||1 is the L1-norm of h2. Define

Hm = {h ∈ H : ||h||H ≤ m}. If m = ∞, then the inequality is strict. In addition, define

〈Λ, θ〉(h) =
∫ τ

0
h1(t)dΛ(t) + h′2θ. The 〈Λ, θ〉 indexes the space functionals

Ψ =

{
〈Λ, θ〉 : sup

h∈Hm

|〈Λ, θ〉| < ∞
}

.
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Now Ψ ⊂ l∞(Hm), where l∞(Hm) is the space of bounded real-valued functions on Hm under

the supremum norm ||U || = suph∈Hm
|U(h)|. The score function Un is a random map from Ψ

to l∞(Hm) for all finite m. Convergence in probability (denoted by P∗) and weak convergence

will be in terms of outer measure.

Define U(Λ, θ)(h) = E{Un(Λ, θ)(h)}. Accordingly, write U(Λ, θ)(h) = U1(Λ, θ)(h1) +

U2(Λ, θ)(h2). In addition, define

U∗1 (Λ, θ)(h1) =

∫ τ

0

[
h1(x)− {1− g(x, Λ, θ)}

∫ x

0

h1(u)dΛ(u)

]

×{dN(x, β)− Y (x, β)g(x, Λ, θ)dΛ(x)} ,

U∗2 (Λ, θ) =

∫ τ

0

W (x, Λ, θ){dN(x, β)− Y (x, β)g(x, Λ, θ)dΛ(x)}.

Conditions (C1)-(C3) imply that the class {U∗1 (Λ0, θ0)(h1) : h1 ∈ BV [0, τ ], ||h1||v ≤ m} can be

written as the summation of bounded Donsker classes, and thus it is also a Donsker class [van der

Vaart and Wellner (1996)]. Moreover, the class {h′2U∗2 (Λ0, θ0)(h2) : h2 ∈ Rp+q, ||h2||1 ≤ m} can

also be shown to be Donsker since U∗2 (Λ0, θ0) is a bounded function. Thus, n1/2{Un(Λ0, θ0)(h)−
U(Λ0, θ0)(h)} converges weakly to a tight Gaussian process G∗(h) on l∞(Hm).

Next, we derive the information operator I(Λ, θ)(h). To do this, we write U(Λ, θ) linearly

in Λ− Λ0 and θ − θ0. Define Υ = (Λ, θ) and Υ0 = (Λ0, θ0). After some calculations, we have

U1(Υ)(h1) = −(θ − θ0)
′E

(∫ τ

0

W (t, Υ0)[h1(x)− {1− g(x, Υ0)}
∫ x

0

h1(u)dΛ0(u)]

×Y (x, β0)g(x, Υ0)dΛ0(t)
)

−E
(∫ τ

0

[h1(x)− {1− g(x, Υ0)}
∫ x

0

h1(u)dΛ0(u)]

×Y (x, β0)g(x, Υ0)d{Λ(x)− Λ0(x)}
)

+ E
(∫ τ

0

[h1(x)− {1− g(x, Υ0)}
∫ x

0

h1(u)dΛ0(u)]

×{Λ(x)− Λ0(x)}Y (x, β0)g(x, Υ0){1− g(x, Υ0)}dΛ0(x)
)

+ error1(Υ)(h),

U2(Υ)(h) = −(θ − θ0)
′E

{∫ τ

0

W (x, Υ0)W
′(x, Υ0)h2dΛ0(x)

}

−E
[∫ τ

0

h′2W (x, Υ0)Y (x, β0)g(x, Υ0)d{Λ(x)− Λ0(x)}
]

+ E
[∫ τ

0

h′2W (x, Υ0){Λ(x)− Λ0(x)}

×Y (x, β0)g(x, Υ0){1− g(x, Υ0)}dΛ0(x)
]

+ error2(Υ)(h).

In addition, since the functions involved in U1 and U2 are all bounded, it is easy to show that,

as ||θ − θ0||1 → 0 and ||Λ− Λ0|| ≡ supx∈[0,τ ] |Λ(x)− Λ0(x)| → 0,

suph∈Hm
|errori(Υ)(h)|

||θ − θ0||1 + ||Λ− Λ0|| → 0, i = 1, 2. (S.4)
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Thus, the information operator is given by

I(Υ)(h) =

∫ τ

0

σ1(h)(x)dΛ(x) + θ′σ2(h), (S.5)

where

σ1(h)(x) = E{V (x, Υ0)(h)Y (x, β0)g(x, Υ0)}
−E[

∫ τ

x

V (s, Υ0)(h)Y (s, β0)g(s, Υ0){1− g(s, Υ0)}dΛ0(s)],

σ2(h) = E[

∫ τ

0

W (x, Υ0)V (x, Υ0)(h)Y (x, β0)g(x, Υ0)dΛ0(x)],

and

V (x, Υ) = h1(x)− {1− g(t, Υ)}
∫ x

0

h1(u)dΛ(u) + h′2W (t, Υ).

In addition, based on (S.4), the uniform consistency of Υ̂ ≡ (Λ̂, θ̂), and the fact U(Υ0) = 0,

we have ||U(Υ̂)(h) − U(Υ0)(h) + I(Υ̂ − Υ0)(h)|| is oP∗(||θ̂ − θ0||1 + ||Λ̂ − Λ0||). By the kernel

approximation and the zero-moments condition of K(·) as discussed in Zeng and Lin (2007),

the above result can be further strengthened as ||√n{U(Υ̂)(h)−U(Υ0)(h) + I(Υ̂−Υ0)(h)}|| =
oP∗(1 +

√
n||Υ̂−Υ0||), where ||Υ̂−Υ0|| = ||θ̂ − θ0||1 + ||Λ̂− Λ0||.

In the third step, we show that I(Υ)(h) is continuously invertible. Following Murphy,

Rossini and Van der Vaart (1997) and Scharfsten, Tsiatis and Gilbert (1998), it suffices to show

that σ(h) = (σ1(h), σ2(h)) is invertible almost everywhere (dΛ0). To do this, we first show that

σ(h) is one-to-one almost everywhere (dΛ0), i.e.
∫ τ

0

σ1(h)(x)h1(x)dΛ0(x) + h′2σ2(h) = 0 (S.6)

implies that h2 = 0 and h1(x) = 0 almost everywhere (dΛ0). Plug σ1(h)(x) and σ2(h) into

(S.6), we have

0 = E
(∫ τ

0

h1(x)
[
V (x, Υ0)Y (x, β0)g(x, Υ0)

−
∫ τ

x

V (s, Υ0)Y (x, β0)g(s, Υ0){1− g(s, Υ0)}dΛ0(s)
]
dΛ0(x)

)

+ h′2E
∫ τ

0

{
W (x, Υ0)V (x, Υ0)Y (x, β0)g(x, Υ0)dΛ0(x)

}

= E
[∫ τ

0

{h1(x) + h′2W (x, Υ0)}V (x, Υ0)Y (x, β0)g(x, Υ0)dΛ0(x)
]

− E
[∫ τ

0

∫ x

0

h1(u)dΛ0(u)V (x, Υ0)Y (x, β0)g(x, Υ0){1− g(x, Υ0)}dΛ0(x)
]

= E

[∫ τ

0

V ⊗2(x, Υ)Y (x, β0)g(x, Υ0)dΛ0(x)

]
.

where a⊗2 = aa′ for a real vector a. Since Y (x, β0)g(x, Υ0) > 0 a.e. on [0, τ ], it implies

V (x, Υ0) = 0 a.e. (dΛ0). Therefore, with probability one (dΛ0),

h1(x) + {1− g(x, Υ0)}
[
h′22X −

∫ x

0

{h′21Z + h1(u)}dΛ0(u)

]
= −h′21Z.
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From this, h21 must be zero. It further implies that

h1(x)

1− g(x, Υ0)
−

∫ x

0

h1(u)dΛ0(u) = −h′22X

a.e. (dΛ0). Similarly, h22 must be zero. With h2 = (h′21, h
′
22)

′ = 0, we have h1(x) − {1 −
g(x, Υ0)}

∫ x

0
h1(u)dΛ0(u) = 0 a.e. (dΛ0). This is a Volterra integral equation of the first kind.

It is easy to show that the solution, h1(·), to this equation must be zero a.e. (dΛ0).

Then, we want to show that σ(h) has a continuous inverse. To show that σ is invertible,

since σ(h) is one-to-one, we only need to show that it can be written as the difference of a

bounded linear operator with a bounded inverse and a compact linear operator [see Corollary

3.8 and Theorem 3.4 of Kress (1989)]. This can be done following the similar techniques used in

the proof of Theorem 3 of Lu (2008) and it is omitted here. Since σ(h) is invertible, its inverse

will be continuous [see page 149, Luenberger (1969)]. Thus, I(Υ)(h) is continuously invertible

on its range.

In the fourth step, we establish the asymptotic distributions of Υ̂. To do this, we need

to show that ||√n{(Un − U)(Υ̂n) − (Un − U)(Υ0)}|| = oP∗(1 +
√

n||Υ̂n − Υ0||). Based on

Lemma 1 of van der Vaart (1995), it suffices to show that F ≡ {U∗(Υ)(h) − U∗(Υ0)(h) : h ∈
Hm, ||Υ − Υ0|| < ε} is Donsker for some ε > 0 and suph∈Hm

E[{U∗(Υ)(h) − U∗(Υ0)(h)}2]
converges to 0 as Υ converges to Υ0, where U∗(Υ)(h) = U∗1 (Υ)(h1) + h′2U

∗
2 (Υ). To prove

this, we write F as the summation of two Donsker classes with uniformly bounded envelopes.

Then based on the result that classes of Lipschitz transformations of Donsker classes with

integrable envelope functions are Donsker [see Theorem 2.10.6 of van der Vaart and Wellner

(1996)], F is Donsker. In addition, by the Dominant Convergence Theorem, it can be shown

that suph∈Hm
E[{U∗(Υ)(h)− U∗(Υ0)(h)}2] converges to 0 as Υ converges to Υ0. The detailed

proofs are similar to those in Murphy, Rossini and Van der Vaart (1997, Theorem 2.2) and in

Lu (2008, Theorem 3) and are omitted here. Then, based on Theorem 3.3.1. of van der Vaart

and Wellner (1996) and the facts that Un(Υ̂n) = U(Υ0) = 0, we have

−I(
√

n(Υ̂n −Υ0))(h) =
√

n{U(Υ̂n)− U(Υ0)}+ oP∗(1)

=
√

n{Un(Υ̂n)− Un(Υ0)}+ oP∗(1)

= −√n{Un(Υ0)− U(Υ0)}+ oP∗(1)

Hence,
√

n(Υ̂n − Υ0) converges weakly to a tight Gaussian process G = I−1G∗. In addition,

the variance of G is given by

Var{G(h)} =

∫ τ

0

h1(t)σ
−1
(1)(h)(t)dΛ0(t) + h′2σ

−1
(2)(h), (S.7)

where σ−1(h) = (σ−1
(1) , σ

−1
(2))(h) is the inverse of σ(h).

Finally, we show that the variance of
√

n(θ̂n − θ0) achieve the semiparametric efficiency

bound [Bickel, Klaassen, Ritov, Y. and Wellner, J. A. (1993)]. We first calculate the efficiency

bound by constructing the efficient score function using the projection method. To be specific,
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the efficient score Ueff for θ can be defined as Ueff = Uθ−Π[Uθ|Θ], where Π[·|·] is the projection

operator and Θ is the tangent set given by

Θ = {κ : κ =

∫ τ

0

[a(x)− {1− g(x, Υ0)}
∫ x

0

a(u)dΛ0(u)]dM(x), where

a(x) is any (p + q)− dimensional function of x, E[||κ||2] < ∞}.

By some simple algebra, we can show that the vector a(t) corresponding to the efficient score

satisfies

a(t)−
∫ τ

0

Ψ(t, s)a(s)dΛ0(s) = ρ(t), t ∈ [0, τ ], (S.8)

where for 0 ≤ t, s ≤ τ , s ∨ t ≡ max(s, t),

Ψ(t, s) =
E[g(s ∨ t, Υ0){1− g(s ∨ t, Υ0)}Y (s ∨ t, β0)]

E{Y (t, β0)g(t, Υ0)} −
∫ τ

s∨t
E[g(u, Υ0){1− g(u, Υ0)}2Y (u, β0)]dΛ0(u)

E{Y (t, β0)g(t, Υ0)} ,

ρ(t) =
E{W (t, Υ0)Y (t, β0)g(t, Υ0)}

E{Y (t, β0)g(t, Υ0)} −
∫ τ

t
E[W (s, Υ0)g(s, Υ0){1− g(s, Υ0)}Y (s, Υ0)]dΛ0(s)

E{Y (t, β0)g(t, Υ0)} .

Note that (S.8) is a Fredholm integral equation of the second kind and it has a unique solution

if supt∈[0,τ ]

∫ τ

0
|Ψ(t, s)|dΛ0(s) < ∞ [Kress (1989)], which is true under our assumed conditions.

Let aeff (t) denote the solution to (S.8). Then the efficient score for θ is

Ueff =

∫ τ

0

[W (t, Υ0)− aeff (t) + {1− g(t, Υ0)}
∫ t

0

aeff (s)dΛ0(s)]dM(t).

Therefore, the semiparametric variance bound, Φ, is {E(SeffS′eff )}−1. Furthermore, we can

show that

Φ−1 = E
(∫ τ

0

W (t, Υ0)[W (t, Υ0)− aeff (t) + {1− g(t, Υ0)}
∫ t

0

aeff (s)dΛ0(s)]
′

× Y (t, β0)g(t, Υ0)dΛ0(t)
)
,

Next, we show that the variance of
√

n(θ̂n − θ0) achieve the semiparametric efficiency

bound Φ. By the Cramer-Wold device (see Serfling (1980)), it suffices to demonstrate that the

asymptotic variance of c′
√

n(θ̂n − θ0) is equal to c′Φc, where c is any vector in Rp+q. To do

this, we need to find an h = (h1, h2) such that σ1(h)(t) = 0 for all t and σ2(h) = c. Consider

the solution, h2 = Φc and h1(t) = −a′eff (t)A−1(BΦ− I)c, where

B = E

{∫ τ

0

W⊗2(t, Υ0)Y (t, β0)g(t, Υ0)dΛ0(t)

}
,
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A = E

(∫ τ

0

W (t, Υ0)[aeff (t)− {1− g(t, Υ0)}

×
∫ t

0

aeff (s)dΛ0(s)]
′Y (t, β0)g(t, Υ0)dΛ0(t)

)
.

Note that with the h defined above

σ2(h) = E

(∫ τ

0

W (t, Υ0)
[
−a′eff (t)A−1(BΦ− I)c + {1− g(t, Υ0)}

×
∫ t

0

a′eff (s)A−1(BΦ− I)cdΛ0(s) + W ′(t, Υ0)Φc
]

×Y (t, β0)g(t, Υ0)dΛ0(t)

)

= −AA−1(BΦ− I)c + BΦc = c

σ1(h)(t) = E
(
[−aeff (t) + {1− g(t, Υ0)}

∫ t

0

aeff (s)dΛ0(s)]

×Y (t, β0)g(t, Υ0)
)
A−1(BΦ− I)c

+ E{W (t, Υ0)Y (t, β0)g(t, Υ0)}Φc

− E
(∫ τ

t

[−aeff (s) + {1− g(s, Υ0)}
∫ s

0

aeff (u)dΛ0(u)]

×Y (s, β0)g(s, Υ0){1− g(s, Υ0)}dΛ0(s)
)
A−1(BΦ− I)c

− E
[∫ τ

t

W (s, Υ0)Y (s, β0)g(s, Υ0){1− g(s, Υ0)}dΛ0(s)
]
Φc

= 0,

since A−1(BΦ− I) = Φ and aeff (t) is the solution to (S.8). Therefore, we have proved that the

asymptotic variance of
√

n(θ̂n − θ0) achieve the semiparametric efficiency bound. ]


