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Abstract: Nonresponse is very common in survey sampling. Nonignorable nonre-
sponse, a response mechanism in which the response probability of a survey variable
Y depends directly on the value of Y regardless of whether Y is observed or not,
is the most difficult type of nonresponse to handle. The population mean estima-
tors ignoring the nonrespondents typically have heavy biases. This paper studies
an empirical likelihood-based estimation method, with samples under nonignor-
able nonresponse, when an observed auxiliary categorical variable Z is available.
The likelihood is semiparametric: we assume a parametric model on the response
mechanism and the conditional probability of Z given Y, and a nonparametric
model on the distribution of Y. When the number of Z categories is not small,
a pseudo empirical likelihood method is applied to reduce the computational in-
tensity. Asymptotic distributions of the proposed population mean estimators are
derived. For variance estimation, we consider a bootstrap procedure and its con-
sistency is established. Some simulation results are provided to assess the finite

sample performance of the proposed estimators.
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1. Introduction

Nonresponse is a common phenomenon in sample surveys. Let Y be a vari-
able of interest having nonrespondents and Z be a covariate with no nonresponse.
If the propensity P(6 = 1|Y, Z), where ¢ is the response indicator for Y, depends
not only on Z and observed Y, but also on unobserved Y, then the nonresponse
mechanism is nonignorable. Nonignorable nonresponse creates a great challenge
in the estimation of the mean of Y based on incomplete survey data. Ignoring
the dependence of nonresponse probability on unobserved Y typically leads to

heavy bias.
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Greenlees, Reece, and Zieschang (1982) studied maximum likelihood estima-
tors for survey data with nonignorable nonresponse, based on a parametric model
on the propensity P(6 = 1Y, Z) and a parametric (normal) model on L(Y|Z),
the distribution of Y conditional on Z. However, parametric models (especially
normal models) on L(Y|Z) for survey data are often not valid. In fact, Greenlees,
Reece, and Zieschang (1982) admitted that the normality assumption on L(Y'|Z)
was not valid for the data in their example, even though their method was better
than the method of ignoring the fact that nonresponse was nonignorable.

On the other hand, it is impossible to develop a pure nonparametric method
that produces a consistent estimator of the mean of Y in the presence of nonignor-
able nonresponse. Thus, some semiparametric methods assuming a parametric
model on one of P(6 = 1|Y, Z) and L(Y|Z) have been proposed in the literature.
Tang, Little, and Rachunathan (2003) developed a likelihood method by assumn-
ing a parametric model on L(Y|Z); they assumed that P(6 = 1|Y,Z) = P(6 =
1Y) but otherwise is nonparametric. Qin, Leung, and Shao (2002) proposed an
empirical likelihood method by assuming a parametric model on P(§ = 1|Y, Z)
and a nonparametric model on L(Y|Z); the resulting estimator of the mean of Y’
is similar to the estimator obtained by weighting each respondent by the inverse
of an estimated propensity P(J = 1]Y, Z) (Robins, Rotnitzky, and Zhao (1994)).
For survey data, finding a suitable parametric model for P(6 = 1|Y, Z) is much
easier than finding an appropriate parametric model for L(Y|Z). However, the
estimation of P(6 = 1]Y, Z) is still difficult under a parametric assumption on
P(0 = 1|Y, Z) because of the presence of unobserved Y values.

In many survey problems the covariate Z is categorical, e.g., age group, sex,
race, education level, type of industry etc., while the main variable Y is continu-
ous. If there is an appropriate parametric model on the conditional distribution
L(Z|Y) given Y (e.g., the logistic model), then we can improve the approach in
Qin, Leung, and Shao (2002). The purpose of this paper is to study an empirical
likelihood approach under parametric models on P(§ = 1|Y, Z) and L(Z]Y) with
a discrete Z, and under a nonparametric model on the distribution of Y. Our
approach works for a stratified sampling design with a superpopulation within
each stratum, which is commonly used in practice. Furthermore, we study a

pseudo empirical likelihood to reduce the amount of computation when the num-
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ber of Z categories is not small. Although losing some efficiency, the estimators
based on the pseudo empirical likelihood are still consistent and asymptotically
normal. Note that the same technique has been applied to the case of ignorable
nonresponse (Fang, Hong, and Shao (2009)).

This paper is organized as follows. Section 2 presents details on the sampling
design and model, and gives results for estimation without imputation. In ad-
dition to the derivation of empirical likelihood estimators, their consistency and
asymptotic normality are established. Section 3 discusses the pseudo empirical
likelihood estimators. Section 4 considers variance estimation by bootstrapping.
In Section 5, we consider two imputation methods related to the results in Sec-
tions 2 and 3. Section 6 examines by simulation the finite sample performance
of the proposed estimators, under some response patterns and models. The Ap-

pendix contains proofs or sketched proofs.

2. Empirical Likelihood Approach

We consider the following sampling design commonly used in such business
surveys as the Current Employment Survey conducted by the U.S. Bureau of
Labor Statistics (Wolter, Shao, and Huff (1998)), the Transportation Annual
Survey conducted by the U.S. Census Bureau (Census Bureau (1987)), and the
Financial Farm Survey conducted by Statistics Canada (Rancourt (1999)). The
finite population P is stratified into H (a fixed positive integer) strata and sam-
ples are taken independently across the strata. Within each stratum, a large
number of units are either independently sampled with replacement according
to a probability sampling plan, or selected as a simple random sample without
replacement with a negligible sampling fraction. According to the sampling plan,

survey weights {w;} are constructed so that for any set of values {z;},

Es (Z wifﬂi) = @,
1€S i€P
where S is the sample and Eg is the expectation with respect to sampling.
Let Y be the variable of interest in the survey and Z be a categorical covariate
taking values in {z1,...,2,}. We assume that values of (Y, Z) are iid from a
superpopulation within each stratum, and are independent across strata. To

present the main idea, we first consider the special case of one stratum so that
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the subscript for stratum is omitted.
Under the superpopulation model (within each stratum), ¥ has an unknown

nonparametric distribution F', and we assume a parametric probability function

P(Z = 2Y =y) = f(y,2 D), (1.1)

where 3 is an unknown parameter vector and f is a known function. For each
sampled unit, the Z value is always observed, but the Y value may be a nonre-
spondent. We assume that the probability that an individual responds on Y can

depend on both Y and Z according to
oY, Z,v)=P(6 =1V, Z), (1.2)

where ¢ is the response indicator for Y, ¢ is a known function, and ~ is an
unknown parameter vector.

Without loss of generality, we assume that the first r sampled units are
respondents and the rest of n — r sampled units are nonrespondents. Thus, the

observed data set is
{Yi,Z;),i=1,..,r}U{Z,i=r+1,..,n}.

Let p; = dF(Y;) be the point mass that F' places on Y;. For observed Y;, the
likelihood is

For a nonrespondent Y;, the likelihood is

/ 1 Py, Zi ) (4, Zer H)AF ().

Together with the survey weights (see, e.g., Chen and Qin (1993)), we obtain the

following log-likelihood for the entire sample

> wilog(¢(Yi, Zi. 1) (Y, Zi, B)pi)
=1

+ zn: w; log (/[1 - d)(y,Zi,v)]f(y,Zi,ﬁ)dF(y)> :

i=r+1



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE b)

where w; = w;/N and N is the finite population size. The use of w;, instead of

w;, does not change the maximization of the log-likelihood over the parameters.

Since Z takes values 21, ..., zg, this log-likelihood can be written as
r S
> " wilog(p(Yi, Zi,y) f(Yi, Zi, B)pi) + 3 ajlog(j), (1.3)
i=1 j=1

where a; = Z?:TH wilyz,—,.1, Ia is the indicator function of the event A, and

7= P =0,7 = 2) = / 1 @y, 2. (9, 25, B)AF ().

Note that 7; is a function of y, 8, and F. Maximizing (1.3) over v, 8, and F is

equivalent to maximizing (1.3) over vy, 8, p;’s, and m;’s subject to
T r
Di 207 ZP’L: ]-7 Uy :Zpl[]-7¢(leazja7)]f(ytnzjaﬁ)a 7 = ]-a"'as' (14)
i=1 i=1
By introducing Lagrange multipliers, we can derive that

w;

TR A M Yz ) (Y2 B) )

i , i=1,..,7, (1.5)

where N, = > k1 wi and A;’s are Lagrange multipliers satisfying

=0, j=1,.,s. (16)

XT: i} wi[(l*d)(YéaZjv'Y))f(YiaZj’B) 77rj]
i=1 Nr + Z;‘;l )‘][(1 o ¢>(}Q,z],7))f(Y“z],ﬁ) o WJ]

Treating p; in (1.5) as a function of 3, v, # = (711, ..., ws), and A = (A1, ..., Ag),
and substituting p; into (1.3), the profile log-likelihood with Lagrange multipliers
is

S

1B,7.mA) = > wilog($(Ys, Zi,7)f(Yi, Zi, ) + Y _ a;log(m;)
i=1

=1

+2T:w¢ log ( - p o ) ;
i=1 NT‘+Zj:1 )‘][(17¢(leazja’y))f(yvl7zj716) 771—]']

Differentiating I(3,y, 7, \) with respect to m, A, 8, and ~y, and setting the partial
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derivatives to 0, we have

r

y 5y
Ly . Wity —0, j=1,...5, (17)
T N+ 22520 M= é(Yi, 2.) f(Yis 25, B) — )]

T

3 wi(1 = ¢(Yi, 2,7)) f(Yi, 2, B) — mj]
o N+ 205 (0= 6(Yi 25, )) f (Yis 25, B) — )

=0, j=1,..s (L8

P B Ny + 30 Ml = oY, 2. )) (Vi 23, B) — ]|
(1.9)
zr: {wi@log o(Yi, Zi, ) n wj 2;21 Aj08(Yi, zj, ) [0V f (Yi, 25, B) }:
— Iy N+ Y5 X0 = ¢V, 25,7)) f (Y, 25, B) — mj]
(1.10)
From (1.5), (1.7), and the fact that )., p; = 1, we have
A= —aj/m;, j=1,..s. (1.11)

Let (3,4, 7,A) be a solution to equations (1.8)-(1.11). The maximum empirical
likelihood estimator (MELE) of (8,7) is (3,4), and the MELE of F is the em-
pirical distribution £ putting mass p; at Y;, ¢ = 1, ..., 7, where p; is given by (1.5)
with (3,7, 7, \) replaced by (B,ﬁ, T, 5\) If the parameter of interest is the finite
population mean Y = Y, . Y;/N, its MELE is

T
Y:me. (1.12)
i=1

If the parameter of interest is the cell mean Yj, the finite population mean of Y
given Z = z;, the MELE is

Y sz Yzazjaﬁy/zpz Y;azjaﬁ (1'13)

Let 0 = (8,7,7), 0 = (8,9,%), and » = A/N, + J/(1 = Y3, #;), where
J is the s-vector of ones. The following result shows that (é,ﬁ) converges to
(60,0), where 8y = (Bo,70,m0) is the true value of (8,v,7). Also, Y and Y;

are consistent for Y and Yj, respectively. Furthermore, (0,0), Y, and ?} are
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asymptotically normal. The proof is given in the Appendix.

THEOREM 1. Assume the following.

(i) The sample from the finite population is selected with replacement according
to a probability sampling plan or selected as a simple random sample without re-
placement. The values of (Y, Z) in the population is iid from a superpopulation
according to (1.1)-(1.2) with a nonparametric Y -marginal F'.

(1) Asn — oo, N = oo, n/N — 0, max;<ny w; = O(1/n), andnzi]il wi/N — d
for some constant d.

(iii) f(y,z,B) and P(y,z,7v) are twice continuously differentiable in [ and =y

81 biadb] 61 biadb] b 82 b
for any y and z, and | 228HG20 2 ) 2ok dz) 2 P 2B 2 ) 0z 2

0 aﬂ 8 ) d 76 8 ) 0 ? 8 3
|| 21:2.5) fyZJ HS | 26%3.7) ¢yZ]7 ||3 I fyZJ )” f(yzkﬁ] ||2 I ¢yZJ ’Y)” ¢(%’Zyk’7] ”2’

1711 are bounded by some integrable functions in a neigh-

a-fl ’ﬂ 6 b
and”[ yE)[Zi] )][ ¢(Zla;?k7
borhood of By and vo, j,k=1,....s
(iv) For any nonzero vector ¢ € RP1Y, the value of c” (

dlog (y, zj,v0)/ 0

depends on j, where p and q are the dimensions of B and 7.
(v) 6y is a unique root of E[g(Y,6) ] =0 and E[g(Y,00)9(Y,0p)7|0 = 1] is
positive definite, where g = (g1, ...,9s)” and

(1 - ZZ:l Wk) [(1 B d)(yazj?’)/))f(yazj’ﬂ) — ﬂ—j] )

9i(y,0) = (1.14)
’ Z]ngl ¢(y7zk77)f(yuzk7/8)
(vi) ¢(y,z,y) has a positive lower bound.
Then, there exists a sequence {é,ﬁ,n =1,2,...} such that as n — oo,
P(0 is a solution to (1.8)-(1.10)) — 1, (1.15)
v—0
NI —q N(0,%), (1.16)
0 — 6

where the probability P and —4 (convergence in distribution) are with respect

to the sampling and the superpopulation and Y is a positive definite matriz.

yz],ﬂ ||2 and ” 3¢y2J,’Y ”2

Furthermore, if functions ||y are bounded by some
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integrable functions in a neighborhood of By and ~yy for each j, then
Va(Y —Y) =g N(0,0%) and Va(Y; — Yj) =a N(0,02), j=1,...,5, (1.17)

where o and 032- are some constants.

In condition (v), F[g(Y,0)|d = 1] = 0 has a unique root 6y is equivalent
to m;j = [[1 — ¢(y, 2j,7)]f(y, zj, 8)dF (y) is uniquely defined by (8,7), i.e., a
condition of identifiability of the 7 by (53,7).

We now consider the stratified sample described in the beginning of this
section. If (3,7) in conditions (1.1) and (1.2) has different values in different
strata, then we can solve (1.7)-(1.10) within each stratum to obtain an estimator
of (8,7) for each stratum. If (/3,) is common for all strata, then constraint (1.4)
is within each stratum, the sums in (1.7)-(1.8) are over each stratum, and the
sums in (1.9)-(1.10) are over all strata. In any case, the marginal distribution
of Y for stratum h is the empirical distribution putting mass p; at Y; with ¢ in
stratum h; the estimator of Y is the weighted average of estimators given by
(1.12) over all strata with the weights W, = N, /N, where N}, is the population
size for stratum h and N =}, Nj; the estimator of Y; is the ratio of the averages
of the numerators and denominators in (1.13) with the weights W},. Theorem 1
still holds if all conditions are given within each stratum and nj/n coverges to a

positive constant, where ny, is the sample size in stratum h and n = ), ny,.

3. Pseudo Empirical Likelihood

When s (the number of Z categories) is not small, numerical solutions to
(1.8)-(1.11) may be computationally intensive. Hence, we apply the idea of
pseudo likelihood (Gong and Samaniego (1981)). That is, we substitute each
mj in (1.8)-(1.11) by a consistent estimator 7;. Note that consistent estimators

) .
of 7;’s are easy to construct. For example, we may estimate 7; by

n mn
7ty = Zwil{éizoyzi:%}/zwi. (1.18)
=1 i=1

Let 7 = (7,5 = 1,...,s), 5\]- = —a;/7j, and A = (5\1,...,5\5). Maximizing
the pseudo empirical likelihood (3, ~, 7, 5\) over (f,7) results in the maximum
(8,7

pseudo empirical likelihood estimator (MPELE) ). Note that the MPELE
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is different from MELE since 7 is not 7. However, we can directly establish the
consistency and asymptotic normality of the MPELE.

Let p; be the estimator of p; obtained by using (1.5) with 3, v, 7;, and
Aj replaced by B, v, m;, and S\j, respectively. Because the MPELE is used,
> 1 pi # 1, although Y7, p; =, 1. The MPELE of Y is

r r
Y =35/ Y (1.19)
i=1 i=1
and the MPELE of YJ is
Vi = 5l (V2 B)Yi | D7 6if (Vi 2, ). (1.20)
=1 i=1

Estimators under stratified sampling can be obtained as described in the end of
Section 2, with the sums in (1.18) within each stratum.
The following result shows that the MPELE is consistent and asymptotically

normal.

THEOREM 2. Assume the conditions in Theorem 1. There exists a sequence

{B,’Ny,n =1,2,...} such that, as n — oo,

P (M :0) S andﬁ( b= b ) SaN(0,5,),  (121)

(B57) Y= %

oY
)

where ¥, is a positive definite matriz. Furthermore,

Va(Y —Y) =4 N(0,02) and /n(Yj —Y;) —a N(0,02%), j=1,...,s, (1.22)

where a2 and o2, are some constants.

P PJ

4. Variance Estimation by Bootstrapping
It is a common practice in sample surveys to report a variance estimate for
each estimate of the parameter of interest. We focus on the most commonly used
estimators, the mean estimators f/, Y in (1.12) and (1.19), and the cell mean
estimators }%, }:/] in (1.13) and (1.20). Because the formulation of these estima-
tors is complicated, it is difficult to derive an analytic form of their asymptotic

variances, o2, 072 in (1.17), and 02, 02

s 0y in (1.22) . Thus, we apply the bootstrap
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method that consists of the following steps. In the following, 7j denotes any of A,
4, % 0,Y,Y;, B, 5, % Y, and Y},

1. Within stratum h, draw a simple random sample of size nj; with replacement
from the set of sampled units (respondents or nonrespondents). Carry out
this procedure independently across strata. For each unit in the bootstrap
sample, the bootstrap data are the Z and Y values (if the Y is missing, the

bootstrap datum is treated as missing) and their survey weights.

2. Compute n*, which is the same as 1) but with the original data replaced by

the bootstrap data generated in Step 1.
3. Repeat the previous steps independently B times and obtain 7*!, ..., 7*B.

Estimate the variance of /) by the sample variance of 7*!, ..., )*P.

The following result establishes the asymptotic validity of the bootstrap.

THEOREM 3. Assume the conditions in Theorem 1.
(i) Let (1.8°)-(1.11%) be the bootstrap analog of (1.8)-(1.11). Then there exists a

sequence {é*,ﬁ*,n =1,2,---} such that, as n — oo,
P, (0" is a solution to (1.8*)-(1.10%)) —p 1, (1.23)
NG ( g* _g ) g N(0,%), (1.24)

where X is given in (1.16), P, denotes the bootstrap probability conditional on
the data, and ¥}, —4- ¥ means Py (9}, € B) — P(9 € B) —, 0 for any Borel set

B. Furthermore,

Va(Y* —Y) =g N(0,0%) and /n(Y] —Yj) ¢ N(0,02),  (1.25)

where o? and o? are defined in (1.17).

J
(ii) Let 7 = (77, ..., @3 ), with 7} being the bootstrap analog of 7; in (1.18). Then
there exists a sequence {f*,7*,n =1,2,---} such that, as n — oo,

P, (81*(5*’ T AY) :0> 1 andﬁ( 5: —? ) —a+ N(0,%,), (1.26)
T
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where ¥, is given in (1.21). Further,

Va(Y* =Y) =4 N(0,02) and Va(Y] —Yj) =a N(0,0%),  (1.27)

2 2 -
where o and o, are defined in (1.22).

5. Imputation

Imputation is often carried out for practical reasons (Kalton and Kasprzyk
(1986)). After imputation, estimates of parameters are computed by treating
imputed values as observed data and using the standard formulas for the case
of no nonresponse. In this section we consider imputation for the estimation
of the population mean Y and the population cell mean }7] Let V; = Y; if Y,
is a respondent and Y; be an imputed value if Y; is a nonrespondent. After

imputation, the population mean Y and cell mean YJ are estimated by

n
~ 3w, (1.28)
=1

n n
Y = ZiniI{Zi:Zj}/ZwiI{ZFZj}, (1.29)
i =1

respectively. Under stratified sampling, (1.28)-(1.29) should be modifed as de-
scribed at the end of Section 2.

The naive mean imputation method imputes each nonrespondent with 7 =
z;j by the cell sample mean ), “’iY;I{Z,-:zj}/ > iz Wil{z,—.;). The naive ran-
dom imputation method imputes each nonrespondent with Z = z; by a random
sample with replacement from respondents with Z = z;, where each Y; with
Zi = zj has probability wilz, .1/ > i_jwil{z.;) to be selected, i = 1,...,r
The population mean estimators based on the naive imputation methods are in-
consistent since they do not consider the difference between the respondents and
the nonrespondents.

Using the MELE estimators developed in Section 2, we consider the following

two imputation procedures.

1. Empirical Likelihood Mean Imputation. For each nonrespondent with Z =

zj, the imputed Y value is

Z:lel[ 7¢(leazja )] (Ythzjaﬁz .
er':lpi[l_(ﬁ(yluzjv )]f(YuZya/B)
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2. Empirical Likelihood Random Imputation. Each nonrespondent with Z =
zj is imputed by a random sample with replacement from all respondents,

where the probability of each Y; to be selected is

Bl = 0% 2N iz B)
Zleﬁl[]- - d)(Y'“Z],’A)’)]f(Y;,ZJ,,B)

For stratified sampling, imputation should be carried out within each stratum.

Similarly, using the MPELE estimators developed in Section 3, we can de-
velop Pseudo Empirical Likelihood Mean Imputation and Random Imputation.
They are similar to the Empirical Likelihood Mean Imputation and Random Im-
putation that we described above. We just need to replace B, 4, and p; by B, v,
and p;, respectively.

The following result shows that the estimators of Y and Y; based on these
four imputation procedures are consistent and asymptotically normal.
THEOREM 4: Under the conditions of Theorem 1, for empirical likelihood mean
imputation, empirical likelihood random imputation, pseudo empirical likelihood

mean imputation, or pseudo empirical likelihood random imputation,
Va(Yr —Y) =4 N(0,0), and Va(Yjr ;) =g N(0,0%), j=1,...5,

where 0’% and 0]2-1 are some constants.

The asymptotic variances a% and 0]2-[ do not have simple analytic forms.
Variance estimation can be carried out using the bootstrap procedure described
in Section 4. It should be emphasized that, to address the variability caused by
imputation, nonrespondents in each bootstrap data set must be imputed using
the bootstrap data and the same imputation method as that used to impute the

original data set, as suggested by Shao and Sitter (1996).

6. Simulation Results

In this section, we report on simulation of the finite-sample properties of the
MELE, MPELE, the empirical likelihood imputation, and the pseudo empirical
likelihood imputation. We created a finite population similar to the Current Es-
tablishment Survey conducted by the U.S. Bureau of Labor Statistics. We chose
four different industries as four strata with sizes N7 = 3370, Ny = 2910, N3 =
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5430, and N4 = 4110. The variable Y is the total pay for each establishment
and values of Y in stratum h were generated from a superpopulation Fj. The
form of Fj was chosen to be the gamma distribution and F; = I'(43,0.20),
Fy, =1(42,0.19), F5 = I'(38,0.20), and Fy = I'(50,0.17), where I'(a,b) denotes
the gamma distribution with shape parameter ¢ and scale parameter b. The
parameters in Fj’s were chosen to match the mean and variance of a data set
from the Current Establishment Survey.

The covariate Z € {1,2,3,4,5} was generated by the logistic model

ejp{ﬁj i) S PP
L+ > g exp{Bx + Bsy}
1
L+ 35 exp{B + Bsy}
where B, k = 1,2,3,4,5, are unknown parameters whose values in the simulation
are 0.25, 0.5, 0.75, 1, and —0.1, respectively.

The sampling plan was stratified simple random sampling. In each stratum,

P(Z =jlY =y) =

P(Z=5]Y =y) =

the sampling fraction was 0.05. For each sampled unit, the Y respondent was

generated according to the response probability function

exp{—10 — j + vy}

( Y=v2=]) 1+exp{—10 — j + vy}

with a parameter v = 1.8 or 2, or

PE=1|Y =y, 7 — j) — U0+ T+ )
. 1+exp{10+j + yy}

with v = —1.4. The following table lists the response rate for each Z and the
mean response rate E[P(0 = 1]Z)].

~ 1.8 2 -14
( ) 0.888 0.951 0.457
( ) 0.803 0.910 0.621
P(6=1|Z=3) 0697 0.842 0.751
( )
( )

0.560 0.749 0.856
0.469 0.675 0.908
E[P(6 =1/Z)] 0.651 0.804 0.756
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For each of the three y, Table 1-3 respectively reports the relative bias (RB)
and variance (VAR) of the MELE estimators in (1.12) and (1.13), the MPELE
estimators in (1.19) and (1.20), the naive estimators that simply ignore nonre-
spondents, and the imputation estimators in (1.28) and (1.29) based on empirical,
pseudo empirical, or naive mean imputation and random imputation. We also
report their bootstrap variance estimators (Vboot) based on the bootstrap repli-
cation size B = 200, the coverage probabilities (CP) and the lengths (LEN) of

the bootstrap confidence intervals of the form
point estimate + 1.96vV Vboot

that approximately have nominal coverage probability 95%.

Table 4 reports the mean and the variance (VAR) of the parameter estimates.
Table 5 reports the ratios of the mean squared errors. Each MPELE is compared
with its counterpart; that is, Y in (1.19) is compared with Y in (1.12), }:/J in
(1.20) is compared with Y; in (1.13), and ¥; in (1.28) (or Yj; in (1.29)) with
pseudo empirical likelihood mean (or random) imputation is compared with f’z
in (1.28) (or ffﬂ in (1.29)) with empirical likelihood mean (or random) imputation
described in Section 5.

The computation was done using MATLAB in a UNIX at the Department of
Statistics, University of Wisconsin-Madison. For each v and a single simulation,
it took about 12 seconds to compute the MELE, MPELE, and imputed estimates
for Y and Y}, I = 1,...,5. Because of the bootstrap, however, each simulation
with a given v took about 40 minutes. For each 7, we ran the simulation 250
times.

The simulation results can be summarized as follows.

1. In all cases, the proposed population mean and population cell mean esti-
mators based on empirical likelihood or pseudo empirical likelihood (with
imputation or not) performed well in terms of the relative bias (less than
1%) and variance, while the naive methods had heavy relative biases up to

10.31%.

2. The bootstrap variance estimate for our proposed estimators worked well in
most cases in terms of its bias and the coverage probability of the bootstrap

confidence interval. For the naive estimators, the coverage probability of
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the confidence interval was very low.

3. Although the MPELE estimators required less computational intensities,
they were less efficient in terms of larger MSE compared with the MELE
estimators. Most of the MSE ratios were greater than 1 (Table 5). For the
estimators without imputation, the ratios were all greater than 5, and some
of them were even greater than 20. The lengths of confidence intervals of
the MPELE estimators were all greater than those of the MELE estimators,

especially for the estimators without imputation.

4. Although the variances of the § and  parameter estimates were a little bit
large, the estimation of the population mean and population cell means,

which is our major interest, was still good.
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Appendix

The proofs in this appendix are for the special case of one stratum. The proof for the case
of H > 1 is similar.
LEMMA 1: Let ¥(z,0) be a function satisfying E(¢(z,6)) = 0. Assume that E [1)(x,60)¢" (x, 60)]
is positive definite, OY(x,0)/06 is continuous in a neighborhood of o, ||0¢(x,0)/00| and
[ (x,0)||> are bounded by some integrable functions in the neighborhood. Under the condi-
tions (i)-(ii) of Theorem 1, with probability 1, there exists a v such that Y 7, % =0.
Furthermore, let 1(8,v) = — S0, wilog{l +v7¢(z,0)}, then in an Op(n~/?) neighborhood of
Bo, v =v(0) is a function of 6, and 1(0,v(0)) attains its mazimum value at some interior point
of the ball ||€ — 90” < n- /3.
Proor. Consider the problem of maximizing » " , w;logp; under the constraints p; > 0,
Yrpi=1,and 3"  pitp(x:i,0) = 0. Since E(¢(x,6)) = 0, it follows from the arguments of
Owen (1990) that, as n — oo, 0 is contained in the convex hull of {¢)(zi,0),i = 1,...,n} with
probability 1. For a given 6, when 0 is inside of the convex hull, a unique maximum exists,

which can be found via Lagrange multipliers as follows. Let

H=> wilogpi+ A1 =Y pi) = > wiv" > pir(ws,6)
i=1 i=1 k=1 i=1
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where A and v are Lagrange multipliers. Taking derivatives with respect to p;, we have

OH w;
= — - wrv” Y(zi, 0) = 0.
o " Z

Then

which leads to

pi= 1+u7w(x,,9)/zwl

wzw($119) _
ZHM) @ 8)

with v satisfying

This proves the first conclusion for Lemma 1.

Note that it is necessary that 0 < p; < 1, which implies that v and 0 must satisfy 1 +
vp(xi,0) > wif Y, w; for each i. For fixed 6, let Dg = {v : 1 4+ v ¢(z4,0) > wi/ >, wi};
Dy is convex and closed, and it is bounded when 0 is inside the convex hull of the ¥(x;,8)’s.
Notice that

a - 1/)(1‘1, 1/) %19)1/) (xh )
6U{Zw1+u71j) (zi,8 }_ Z I+ vm(a, )2
is negative definite. By the inverse function theorem v = v(6) is a differentiable function. Let
;i = ¥i(x;,0). Since

N o il
0_;w11+ur¢i_zwl(wl 1+UT1/)Z-V)’

i=1

we have
- - Yigy] 1]
with|| = |lv wi Z withi i,
D R S
where ¢ = maxi<i<, ||[¢)i]| = o(n'/?), a.s., by lemma 3 of Owen (1990) and the condition
E|Yp(z:,0)||° < co. When |6 — 6o|| = n~ /%, H >io withi ‘ = Op(n %) and Y7, withiyy] =
Op(1). Then

Il s
S | | E——
T3 Tl ~ %7

and v = v(#) = Op(n~*/*). Furthermore, similar to the proof of Owen (1990), we have

= [Zn:’wﬂ/),’(/):] - [Zn:wﬂ/)z] + Op(1171/3)7 ||9 — 90” = n71/3.
i=1 i=1
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It follows from the arguments of Qin and Lawless (1994) that
1(0,v(0)) < 1(60,v(0o)) in probability,

if |  — 6o ||= n" /. Then I(f,v(6)) attains its local maximum value at some interior point of
the ball [|§ — fo]| < n™'/%.

PROOF OF THEOREM 1. Let v; = X\j/N, + (1 — Z;Zlm)’l, v=(v,..,vs)" and g(Yi, ) be
defined by (1.14). Then

S [BEEE 1] [ - (Vi 2, 0)f (Vi 25, 8) — ]
i 0V, 25, M) f(Yi, 25, )
S (A= 6(Yi 2, ) f(Yi, 2, B) — m;j]
i 0(Yi 25, M) f(Yi, 25, )

+Z;:1(1 = 25 )N [ = o(Yi, 25, )) f(Yi, 25, B) — )]

Dkt Wk 2;21 o (Yi, zj,7) f(Yi, 2, B)
2o [f(Yi, 2, B) — mj]

> 0(Ya, 25,7 f(Yi, 25, B)

+(1 =25 ) 2 X [ = o(Y5, 25, ) (Y, 25, B) — )]
Sk Wi 25—y (Yio 2, 7) f(Yi, 25, B)

1- 2;21 j

i 0V 25, M) F(Yi, 25, B)

+(1 =25 m) 2 A [(1 = 8(Yi, 2,7)) f(Yi, 25, B) — mj]
Pohm Wi 2oy (Yis 25,7 F(Yi, 25, B)

(=32 m ) we + 325 A [(1— 6(Yi, 2,7)) f(Yi, 25, B) — mi]}

D ko1 Wk Z;:l d(Yi, 2, V) f(Yi, 2, B)

1+v7g(Y;,0) = 1+

= 1+

Then the function I(3,~,m, A) can be written as

l(67 ’71 Tr7 A)

r s r wi(l—zs_lﬁj)
= wilog(ifi) + ) ajlog(m;) + > wilog — B
; ; ! ! ; (L4+v7g(Yi,0)) >k we D25 ¢ij fis

= - Z wilog{l+v7g(Yi,0)} + Zwi log(¢ifi) — Z w; log (Z ¢ijfij)

i=1 =1

+ Za]- log(m;) + Zw,— log(1 — Zw]-) + Z:wI log #,
j=1 i=1 j=1 i=1 Zk:l W

where ¢i = ¢(Yi, Zi,7), fi = f(Yi, Zi,B), ¢ij = ¢(Yi,2;,7), and fij = f(Yi,2;,8). Therefore
1(B,v,m, ) is equal to
W8, v) =1(0,v) +12(0) + Is(0)
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plus a term that does not depend on the parameters, where

hB.v) = = wilog{l+ g(¥:.6)},
b) = 3 wilor (904 Zu (V1. 2:.8))

—Zwllog (qu (Y2, (Y2, 6) )

I3(0) = Za;-logm%—Zw,—log (1—Z7rj> .
j=1 i=1 j=1
Notice that
Xr: wigj )/119 Z wi[(]-7¢(Yyi7zj77))f(yvi7zja/8)77rj] iwk.
1+vm (K79 Zk 1wk+2;:1 )‘j [(1_¢(E7zj7’7))f(n7zjuﬁ)_ﬂj] h—1

Then constraint (1.6) becomes

- wlg()/he) _
; T g )~ 0. (1.30)

Since E[g(Y;,6)|6 = 1] = 0, it follows from (1.30) and Lemma 1 that in an O,(n~*/%) neighbor-

hood, we can determine uniquely a differentiable implicit function
v=v(®) =0p(n" ") if |66 < Op(n”""7),
and
11(6,v(0)) < l1(6o,v(Ao)) in probability, (1.31)

if 6 is in the set B, = {6:]| 6 — 6o ||=n"7}.
For 12(8,v) = 12(6), denote E. as the conditional expectation of (Y, Z) given § = 1, which

is
_ By, 2,70) f (Y, 2, Bo)
B- Y [ s B ).
Then
Aa(Bo,v0) iw_af(yi,zi,ﬁo /0B Z 33y 6(Vi, 25, 70) L)
6,8 =1 ! f()/uzz,,BO Z] 1(}5()/1,2],’70)](()/1,2],,80)
s ] 9f(y,z;.80)
o, P =1E W28 by gyg 2= 9.2, 70) 55

f(y7 Z, /60) 2;21 ¢(y7 Zj770)f(y7 Zj,,BO)

621 *’ * * * .
=y 0, T3 5, U, where (87,77) is

By similar calculation, we can show that 6l2(§2’7°)
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between (3,v) and (8o,70), and U is defined as
— ( Un  Un ) | (1.52)
Uls Usa
_ b <0f]> (%, b1 98 50 Ly
Un /<§:h ) " a0 )"

B of; 0¢; X, bl B2
U _/<;@%w > 6.5 F ),

- (EE () B

where ¢; = ¢(y,25,7) and f; = f(y, 25, Bo). For any nonzero vector ¢ = (c1, c2), by Cauchy’s

inequality,
2
TOf T 0¢
ot Loy (Bt omri
cTUC— d —+ - dF(y) >0
( “ ) > of
If the equation holds, then c] 610gf(yﬂz’ Bo) 4 o7 9los ¢((9y7z1 70) — =c(y) for j=1,--- s, a.s., which

contradicts condition (iv). Hence the equation does not hold and U is positive definite. By

central limit theorem and delta method, we can show that ﬁ% is asymptotical normal.

When 0 € By, we have (8,7) = (Bo,70) + rf%uT, [|w]<1,

lz(ﬂ,"}/) - lz(ﬁoa’YO)
— 7% TBZQ(BO’F)/O) 1 7% T62l2(18*’7*)
= M TGy Tt T e

_ -2 1 0(Bo,y0) 1 -
= n (n u 2(3,7) ¥ Uu+op(1))

Denote Apirn is the smallest eigenvalue of U. Since U is positive definite, Ay, > 0. Then

12(0) — 12(Ao)

% 78l2(,807'70) mzn _ T 8l2 BO,'YO) mzn %
Pl nfu” =550~ I ful) = P(lu"Vn 26y 1< 7g luln®
> Pl VA < 2t
- 1

where the last convergence holds since \/ﬁ% is asymptotical normal and ””" né — oco.

Since su"Uu — k"jl"" || wl||> k"jl"" || w ||> 0 and the last equation holds if and only if || w [|=0,

we have
12(6) < 12(Ao) in probability if § € B, (1.33)

and the equation holds if and only if || u ||=0.
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For l3(7T) = l3(€),

8l3(7‘(‘0) a; 1
= =L _ Wi——————
or; Tjo Zz_; 1=320 o
- I{Z; =z 1
I e
i=r+1 mj0 i=1 1- Z] 1750
-, E((l 5z zj})fE 5 !
50 1—- EJ—1 50
_ P(=0,Z=2z) P(6=1)
Tjo 1 Z;ZlP(J—O,Z—zJ)
= 1-1
= 0
By similar calculation we can show that
2 *
M -, —diag L’ 7L ,+JJT
om? T10 Ts0 1- Ej:l 750

21

where 7* is between 7w and mo and J is a column vector of 1 with length s. By central limit

theorem and delta method, we can show that \/ﬁ% is asymptotically normal. If we denote

|| 7 — 7o ||= nfév, then by similar arguments for l2(#), we can show that
I13(0) < 13(o) in probability if § € B,
and the equation holds if and only if || v ||=0.
Therefore, by (1.31), (1.33)and (1.34), we show that, in the set By,

1(0,v(0)) < 1(6o,v(0o)) in probability.

(1.34)

Because [(0, v(0)) is continuous and differentiable, it must attain local maximum at some point

6 inside the ball with surface B, and § and © = v(f) satisfy

Qin(6,9) =0, Q2n(6,9) =0,
where
o)
an(€7 V) - Zwl 1+ U;g()fu 6) ’

i=1

. QgYu8)/08)7 0l(e)  Ola(6)
QQn(G,U)—ZU}Z T+ 07 g(V. 0) v 50 50

i=1

(1.35)

Notice that (1.35) is equivalent to that (6, ) is the solution to (1.8)-(1.11). This proves (1.15).
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The consistency of (8, #) follows from the fact that B, shrinks to 8y as n — oc.
Expanding an(é, D), an(é, U) at (6p,0), we have

. 9Q1.(60,0) 9Q1(00,0) .
0= Qun(0,9) = Quulho,0) + 222000 5 g, 200, 4o, (),
- 9Q32n(60,0) 0Q2n(00,0) .
0= Qun(0,9) = Quu(60,0) + 222000 5 g, 000, ) 4o,
where A, = ||6 — 6o|| + ||?. Then
. v _ S;l 7Q1n(9010) +OP(AW) 7 (136)
60— 6o ~Q2n(00,0) + 0p(Ar)
where
9Qi1n 9Q1n S S
S, = ovr 29 =, 5 = S I 1.37
( —65,3" —6%292" ) ? ( STy Saa ( )
Su = —(1=) mo)E(gg"]s = 1),
j=1
S ag T
S = (1= mo)E s =1)
j=1
S0 = dlag {U, V} s
1 1 1
Vo= diag{ —, -, —t+——o—JJ,
lag{'fflo 7T50}+ 1—Zj7'rjo

mjo is the true value of 7, U is defined in (1.32), and J is a column vector of 1 with length s.

By central limit theorem,

an(907 0) _ —T1 0
A2 ) an w2 )) s

where
T11 = dSll, T22 = diag {dU7 dV},

and d is defined in condition (ii). Then by (1.36), (1.37) and (1.38), we conclude that (1.16)
holds with © = S~'TS.
Let k(6,v) = >_!_, piYi. Then by Taylor expansion,

2 ok(6*,v")
ov

ok (6", v*)

(7= 0)+ ——2 (6 — 6p), (1.39)

where (0*,0*) is between (f,) and (6o,0). By the convergence of (,7), we can show that
(M, %;’”*)) is consistent for a constant vector ¢. Then by (1.36), (1.37), (1.38) and

ov
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(1.39), we have
V(Y —¥) = V/a(Y — EY) + 0,(1)
=n (k(eo,o) — 87! (Ql"(9°’°)> - EY) + 0p(1) (1.40)

Q2r.(60,0)

= /nt (Zwi¢(xi,9o)> + op(1), (1.41)

where z; = (0;,Yi, Zi),

8:Yi(l — 3, mjo)
>, i fis
5 <610g¢i Z]‘ %fﬁ) (1751')1{21':2]‘} B 0;

2
50 =32, mjo

oy 2o bijfii

Olog fi Z]‘ bij 6afzaj
oB itk )’

}’
=1, ,s

s

¢(Ii,60) == { 751'761‘.9()/1‘190)761‘ (

fi = f(Yi, Zi, Bo), ¢i = ¢(Yi, Zi,v0), fij = f(Yi,25,B0), ¢ij = ¢(Yi,2j,70), and function t is
defined as

t(<1n7’17£7§7917"' ,Qs) = % 761—571 {K’7 7577§17011"' 7795}7— - BY

with k being s-dimensional, £ being p-dimensional, ¢ being g-dimensional, and (, 1, 01, , 0s
being real numbers. Denote ¢ = .7 | wi¢(zi,0y) and E¢ = E(¢). By central limit theorem
and §-method,

Vi [t(§) — t(E¢)] —a N(0,0%), (1.42)

where
o” = [t'(B9)] [dE¢d™ — EGEGT] [f'(E¢)] .
Then by (1.41) and (1.42), we have

vn (f/ T t(E¢)) 4 N(0,07). (1.43)
On the other hand, Y- Y —p 0 by (1.40) and the fact that k(6o,0) —, EY. Then it follows

(1.43) that ¢(E¢) = 0 and \/n(Y — Y) —4 N(0,02). The proof of \/n(Y; — Y;) —q N(0,03) is
similar. This shows (1.17) and completes the proof of Theorem 1.

PROOF OF THEOREM 2. Notice that I(8,7,#%,A) = l2(6). By the proof of Theorem 1, (1.21)
holds with ¥, = dU*. (1.22) can be shown similarly to the proof of (1.17).

ProOOF OF THEOREM 3. The proof is similar to the proof of Theorems 1 and 2, but we replace

the functions and the parameters with their bootstrap analog. First of all, in Lemma 1, if we
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denote {z1,---,x,} as a bootstrap sample, since

E (% Zg(’“’ 90)) = E(g(z,600)) =0,

E (g(z",60))

we know that when || — 6| = O,(n~'/3), as n — oo, 0 is contained in the convex hull of

{g(z;,0),i = 1,--- ,n} with probability 1. The bootstrap analog of Lemma 1 follows. Then,

similar to the proof of Theorem 1, we can show (1.23) and (6%, 0") satisfies
Qi (67,07) =0, Q3.(67,0") =0,
where @7, and @3, are the bootstrap analog of @1, and @Q2,. Then
N Yy AF
li* —5*71 Qin(a )+OP( ) , (144)
— 6 —Q3,(0,7) + 0p(A7)

where A% = [|6* — 8| + ||o* — »| and

Q>

S}

Q1. (0.0)  9Q%,(8,7)
* ovT o6
Su=\ o5 6. 005, 0.0 |- (1.45)
avT o6

By Lemma 1 of Fang, Hong, and Shao (2008), S;, —, S, where S is given in (1.37), and

Qin(6,7) — Qun(6,
f( Q3 (0, 9) — Q20 (6,

>

) ) - N(0,T), (1.46)

>

where T is given in (1.38). Notice that Q1,(f,7) = 0 and Q2 (6, 7) = 0. Then by (1.44), (1.45)
and (1.46), we show (1.24). The proofs of (1.25), (1.26) and (1.27) are similar.

ProOF oF THEOREM 4. The proofs for the mean imputation estimators are similar to that
of Theorem 1. Conditional on the sample, the mean of the random imputation estimators
are equal to the mean imputation estimators. Then the results for the random imputation
estimators follow from those for the mean imputation estimators and Lemma 1 of Schenker and

Welsh (1988).



Table 1: For v = 1.8: Relative Bias (RB) in % and Variance (VAR) of the Estimators, Bootstrap Variance Estimates (Vboot), Coverage Probability (CP) in %, and

Length (LEN) of 95% Confidence Interval

Method Naive MELE MPELE
RB VAR  Vboot CP LEN RB VAR Vboot CcpP LEN RB VAR Vboot CpP LEN

Without

Imputation Y 5.92 .0026 .0025 0 .19 .23 .0042 .0041 91.5 .24 .16 .0446 .0522 96.5 .84
Yy 1.95 .0175 .0160 74.0 .49 .26 .0043 .0044 93.5 .25 .19 .0362 .0414 96.5 .75
Yo 3.45 .0112 .0127 30.0 .44 .26 .0043 .0044 92.8 .25 a7 .0362 .0414 96.9 .75
Y3 5.75 .0106 .0107 0 .40 .24 .0043 .0044 91.8 .25 .18 .0362 .0414 96.5 .75
Ys 8.63 .0105 .0097 0 .38 .23 .0043 .0044 90.8 .25 .20 .0362 .0414 96.9 .75
Ys 10.59 .0151 .0141 0 .46 .16 .0146 .0150 94.1 47 41 .1208 .1333 94.2 1.37

Mean

Imputation Y 6.74  .0026 .0025 0 .19 .15 .0031 .0034 91.2 .22 .15 .0055 .0059 95.8 .29
Yy 2.30 .0173 .0157 66.4 .48 .10 .0151 .0165 96.2 .50 .22 .0173 .0162 95.8 .50
Yo 3.62 .0137 .0126 26.8 .43 .10 .0138 .0127 94.4 .43 .18 .0127 .0128 96.2 .44
Y3 5.75 .0105 .0106 0 .40 31 .0101 .0102 93.2 .39 .23 .0122 .0120 91.9 .42
Ys 8.45 .0103 .0097 0 .38 .13 .0070 .0079 91.5 .34 .04  .0141 .0143 95.8 .45
Ys 10.31 .0149 .0145 0 .46 .09  .0131 .0145 93.6 47 .14 .0183 .0236 96.2 .58

Random

Imputation Y 6.72 .0032 .0030 0 .21 .13 .0033 .0037 91.0 .23 .12 .0058 .0062 95.4 .30
Y1 2.24 0194 .0169 70.8 .50 .08 .0154 .0170 95.7 .50 .19 .0176 .0166 95.8 .50
Ys 3.64 .0124 .0142 30.8 .46 .10 .0147 .0134 94.0 .45 .20 .0138 .0135 96.9 .45
Y3 5.70 .0124 .0125 1.2 .43 .29 .0109 0111 91.5 .41 .16 .0135 .0130 94.6 .44
Ys 8.47  .0117 .0118 0 .42 .12 .0081 .0092 91.5 .37 .00  .0155 .0156 96.2 .48
Ys 10.26 .0185 .0175 0 .51 .04  .0163 .0168 94.0 .50 .10 .0213 .0258 96.5 .61

HSNOJSHUNON HTAVHONDINON HLIM SHTdNVS 404 NOILVINILLSH
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Table 2: For v = 2: Relative Bias (RB) in % and Variance (VAR) of the Estimators, Bootstrap Variance Estimates (Vboot), Coverage Probability (CP) in %, and Length
(LEN) of 95% Confidence Interval

Method Naive MELE MPELE
RB VAR  Vboot CpP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LEN

Without

Imputation Y 3.61 .0021 .0020 0 17 .18 .0026 .0026 94.8 .20 .13 .0243 .0323 94.6 .67
Y1 .81 .0158 .0162 92.4 .49 17 .0032 .0032 90.4 .22 .03 .0196 .0232 96.8 .57
Yo 1.64 .0120 .0120 80.4 .42 .18 .0032 .0032 94.8 .22 .01 .0196 .0232 93.5 .57
Yz 3.19 .0105 .0096 23.6 .38 .17 .0032 .0032 93.6 .22 .02 .0196 .0232 94.2 57
Yy 5.09 .0079 .0078 4 .34 .20 .0032 .0032 94.8 .22 .04 .0196 .0232 94.6 57
Ys 6.58 .0108 .0103 0 .39 .15 .0118 .0116 95.6 42 .26 .0752 .0915 94.2 1.14

Mean

Imputation Y 3.96 .0022 .0021 0 17 .14 .0026 .0024 94.4 .19 .06  .0035 .0035 96.2 .23
Y1 1.11 .0153 .0161 88.8 .49 12 0171 .0168 94.8 .50 .18 .0169 .0165 94.6 .50
Yo 1.79 .0118 .0119 76.8 .42 A7 .0124 .0126 95.2 .43 .05 .0132 .0126 93.5 .44
Y3 3.21 .0105 .0095 22.0 .38 .13 .0097 .0098 94.4 .38 .27 .0108 .0104 95.0 .40
Y, 4.97 .0080 .0078 4 .34 .15 .0079 .0076 94.8 .34 .03 .0103 .0107 96.2 .40
Ys 6.61 .0106 .0104 0 .39 .12 .0119 .0116 95.6 42 .15 .0153 .0162 96.5 .49

Random

Imputation Y 3.94  .0026 .0023 0 .18 12 .0027 .0025 94.4 .19 .08  .0036 .0037 95.8 .23
Y1 1.15 .0159 .0167 87.6 .50 12 .0176 .0169 95.2 .50 .18 0172 .0167 94.6 .50
Yo 1.78 .0126 .0128 79.6 .44 .18 .0129 .0129 95.2 .44 .08 .0136 .0129 94.6 .44
Y3 3.20 .0116 .0106 26.8 .40 12 .0105 .0103 94.8 .39 .26 .0110 .0108 94.2 .41
Yy, 4.92 .0096 .0091 4 .37 .15 .0089 .0083 94.8 .35 .07 .0109 .0112 96.2 41
Ys 6.58 .0133 .0123 0 .43 .06 .0135 .0127 96.0 .44 .15 .0159 .0172 95.0 .50
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Table 3: For v = —1.4: Relative Bias (RB) in % and Variance (VAR) of the Estimators, Bootstrap Variance Estimates (Vboot), Coverage Probability (CP) in %, and

Length (LEN) of 95% Confidence Interval

Method Naive MELE MPELE
RB VAR  Vboot CpP LEN RB VAR Vboot CpP LEN RB VAR Vboot CcpP LEN

Without

Imputation Y -3.96 .0018 .0019 0 17 .20 .0031 .0031 94.0 .21 .57 1084 1195 95.4 1.18
Y1 -9.89 .0201 .0204 0 .55 .20 .0043 .0039 90.0 .24 .58 .1224 .1369 96.2 1.28
Yo -7.11 .0135 .0131 0 .44 .25 .0043 .0039 92.5 .24 .63 .1224 .1369 95.4 1.28
Ys -4.84 .0085 .0090 2.0 .37 .19 .0043 .0039 91.5 .24 .58 1224 .1369 95.4 1.28
Y, -2.86 .0065 .0068 19.2 .32 .22 .0043 .0039 94.5 .24 .60 1224 .1369 95.8 1.28
Ys -1.72 .0085 .0086 66.8 .36 .15 .0112 .0106 94.0 .40 .30 .0823 .0776 96.9 .96

Mean

Imputation Y -4.57  .0018 .0019 0 17 .25 .0027 .0028 92.7 .20 .15 .0054 .0059 94.2 .29
Y1 -9.46 .0211 .0208 0.4 .55 .26 .0124 .0128 95.4 .44 .08 .0279 .0269 97.3 .60
Yo -6.81 .0132 .0130 0 .44 .36 .0112 .0113 94.2 41 .03 .0180 .0190 97.3 .52
Yz -4.80 .0086 .0089 2.4 .36 .14 .0096 .0097 93.1 .38 .20 .0130 .0134 96.5 .44
Y, -2.97 .0067 .0068 17.2 .32 .26 .0070 .0078 94.6 .34 .16 .0098 .0100 95.4 .39
Ys -1.93 .0085 .0086 60.4 .36 .27 .0102 .0099 94.2 .38 .35 .0102 .0099 93.5 .39

Random

Imputation Y -4.58  .0022 .0022 0 .18 .24 .0031 .0031 93.8 .21 .17 0059 .0063 95.0 .29
Y1 -9.47  .0025 .0024 0.8 .60 .25 .0167 .0186 96.5 .53 .01 .0337 .0327 97.3 .67
Yo -6.83 .0152 .0155 0 .48 .30 .0132 .0142 93.5 .46 .08 .0218 .0222 96.9 .56
Y3 -4.80 .0105 .0103 3.6 .39 .18 .0118 .0112 93.5 41 .18 .0147 .0149 95.8 .47
Y, -2.95 .0076 .0075 20.0 .33 .23 .0086 .0084 95.0 .35 .15 .0106 .0106 94.2 41
Ys -1.94 .0091 .0092 60.8 .37 .25 .0104 .0103 95.0 .39 .34 .0109 .0104 92.7 .40
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Table 4: The Mean(Mean) and the Variance (VAR) of the Parameter Estimates. The true values are 31 = 0.25, 82 = 0.5, 33 = 0.75, 84 = 1, and 35 = —0.1.

MELE MPELE
vy=1.8 =2 vy=-—-1.4 vy=1.8 =2 vy=—-14
Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR
B1 .2554 .4074 .2425 .2987 .2986 .3863 0.3935 2.1449 .1479 1.5564 .2592 5873
Ba 5173 .3873 .5216 .3025 .5644 .3883 0.6505 2.0736 .4004 1.4972 .4986 .6183
B3 7601 .3990 L7667 .2984 .8052 .3792 0.9012 1.9614 .6580 1.4382 .7515 .6906
Ba 1.0171 .3878 1.0136 .2945 1.0621 .3713 1.1373 1.8363 19075 1.3843 19882 7577
Bs -.1006 .0057 -.1015 .0041 -.1075 .0054 -.1164 .0214 -.0896 .0167 -.0994 .0127
o 1.7952 .0004 1.9960 .0005 -1.4038 .0002 1.8236 .0597 2.0350 .1310 -1.3912 .0163
Table 5: The Ratio of MSE: mse(MPELE)/mse(MELE).
Without Imputation Mean Imputation Random Imputation
Y Y1 Y> Yz Ya Ys Y Y1 Y> Y3 Ys Ys Y Y1 Y> Yz Ys Ys
v=138 9.85 7.38 7.41 7.51 7.54 7.78 1.23 0.97 0.84 1.11 1.39 1.27 1.16 0.95 0.84 1.06 1.28 1.15
v=2 8.01 5.38 5.34 5.35 5.24 7.39 1.01 0.85 1.05 1.21 1.16 1.17 1.00 0.85 1.04 1.15 1.09 1.28
=—-14 23.91 24.90 24.13 25.16 24.74 4.34 1.46 1.69 1.04 1.13 1.33 1.00 1.52 1.47 1.03 1.04 1.40 1.04
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