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e, Eli Lilly and Company, andUniversity of Wis
onsin-Madison and East China Normal UniversityAbstra
t: Nonresponse is very 
ommon in survey sampling. Nonignorable nonre-sponse, a response me
hanism in whi
h the response probability of a survey variableY depends dire
tly on the value of Y regardless of whether Y is observed or not,is the most diÆ
ult type of nonresponse to handle. The population mean estima-tors ignoring the nonrespondents typi
ally have heavy biases. This paper studiesan empiri
al likelihood-based estimation method, with samples under nonignor-able nonresponse, when an observed auxiliary 
ategori
al variable Z is available.The likelihood is semiparametri
: we assume a parametri
 model on the responseme
hanism and the 
onditional probability of Z given Y , and a nonparametri
model on the distribution of Y . When the number of Z 
ategories is not small,a pseudo empiri
al likelihood method is applied to redu
e the 
omputational in-tensity. Asymptoti
 distributions of the proposed population mean estimators arederived. For varian
e estimation, we 
onsider a bootstrap pro
edure and its 
on-sisten
y is established. Some simulation results are provided to assess the �nitesample performan
e of the proposed estimators.Key words and phrases: Empiri
al likelihood, Pseudo likelihood, Nonignorable non-response, Sample survey, Semiparametri
 likelihood, Strati�ed samples.1. Introdu
tionNonresponse is a 
ommon phenomenon in sample surveys. Let Y be a vari-able of interest having nonrespondents and Z be a 
ovariate with no nonresponse.If the propensity P (Æ = 1jY;Z), where Æ is the response indi
ator for Y , dependsnot only on Z and observed Y , but also on unobserved Y , then the nonresponseme
hanism is nonignorable. Nonignorable nonresponse 
reates a great 
hallengein the estimation of the mean of Y based on in
omplete survey data. Ignoringthe dependen
e of nonresponse probability on unobserved Y typi
ally leads toheavy bias.



2 FANG FANG, QUAN HONG AND JUN SHAOGreenlees, Ree
e, and Zies
hang (1982) studied maximum likelihood estima-tors for survey data with nonignorable nonresponse, based on a parametri
 modelon the propensity P (Æ = 1jY;Z) and a parametri
 (normal) model on L(Y jZ),the distribution of Y 
onditional on Z. However, parametri
 models (espe
iallynormal models) on L(Y jZ) for survey data are often not valid. In fa
t, Greenlees,Ree
e, and Zies
hang (1982) admitted that the normality assumption on L(Y jZ)was not valid for the data in their example, even though their method was betterthan the method of ignoring the fa
t that nonresponse was nonignorable.On the other hand, it is impossible to develop a pure nonparametri
 methodthat produ
es a 
onsistent estimator of the mean of Y in the presen
e of nonignor-able nonresponse. Thus, some semiparametri
 methods assuming a parametri
model on one of P (Æ = 1jY;Z) and L(Y jZ) have been proposed in the literature.Tang, Little, and Ra
hunathan (2003) developed a likelihood method by assum-ing a parametri
 model on L(Y jZ); they assumed that P (Æ = 1jY;Z) = P (Æ =1jY ) but otherwise is nonparametri
. Qin, Leung, and Shao (2002) proposed anempiri
al likelihood method by assuming a parametri
 model on P (Æ = 1jY;Z)and a nonparametri
 model on L(Y jZ); the resulting estimator of the mean of Yis similar to the estimator obtained by weighting ea
h respondent by the inverseof an estimated propensity P (Æ = 1jY;Z) (Robins, Rotnitzky, and Zhao (1994)).For survey data, �nding a suitable parametri
 model for P (Æ = 1jY;Z) is mu
heasier than �nding an appropriate parametri
 model for L(Y jZ). However, theestimation of P (Æ = 1jY;Z) is still diÆ
ult under a parametri
 assumption onP (Æ = 1jY;Z) be
ause of the presen
e of unobserved Y values.In many survey problems the 
ovariate Z is 
ategori
al, e.g., age group, sex,ra
e, edu
ation level, type of industry et
., while the main variable Y is 
ontinu-ous. If there is an appropriate parametri
 model on the 
onditional distributionL(ZjY ) given Y (e.g., the logisti
 model), then we 
an improve the approa
h inQin, Leung, and Shao (2002). The purpose of this paper is to study an empiri
allikelihood approa
h under parametri
 models on P (Æ = 1jY;Z) and L(ZjY ) witha dis
rete Z, and under a nonparametri
 model on the distribution of Y . Ourapproa
h works for a strati�ed sampling design with a superpopulation withinea
h stratum, whi
h is 
ommonly used in pra
ti
e. Furthermore, we study apseudo empiri
al likelihood to redu
e the amount of 
omputation when the num-
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ategories is not small. Although losing some eÆ
ien
y, the estimatorsbased on the pseudo empiri
al likelihood are still 
onsistent and asymptoti
allynormal. Note that the same te
hnique has been applied to the 
ase of ignorablenonresponse (Fang, Hong, and Shao (2009)).This paper is organized as follows. Se
tion 2 presents details on the samplingdesign and model, and gives results for estimation without imputation. In ad-dition to the derivation of empiri
al likelihood estimators, their 
onsisten
y andasymptoti
 normality are established. Se
tion 3 dis
usses the pseudo empiri
allikelihood estimators. Se
tion 4 
onsiders varian
e estimation by bootstrapping.In Se
tion 5, we 
onsider two imputation methods related to the results in Se
-tions 2 and 3. Se
tion 6 examines by simulation the �nite sample performan
eof the proposed estimators, under some response patterns and models. The Ap-pendix 
ontains proofs or sket
hed proofs.2. Empiri
al Likelihood Approa
hWe 
onsider the following sampling design 
ommonly used in su
h businesssurveys as the Current Employment Survey 
ondu
ted by the U.S. Bureau ofLabor Statisti
s (Wolter, Shao, and Hu� (1998)), the Transportation AnnualSurvey 
ondu
ted by the U.S. Census Bureau (Census Bureau (1987)), and theFinan
ial Farm Survey 
ondu
ted by Statisti
s Canada (Ran
ourt (1999)). The�nite population P is strati�ed into H (a �xed positive integer) strata and sam-ples are taken independently a
ross the strata. Within ea
h stratum, a largenumber of units are either independently sampled with repla
ement a

ordingto a probability sampling plan, or sele
ted as a simple random sample withoutrepla
ement with a negligible sampling fra
tion. A

ording to the sampling plan,survey weights f!ig are 
onstru
ted so that for any set of values fxig,ES  Xi2S !ixi! =Xi2P xi;where S is the sample and ES is the expe
tation with respe
t to sampling.Let Y be the variable of interest in the survey and Z be a 
ategori
al 
ovariatetaking values in fz1; :::; zsg. We assume that values of (Y;Z) are iid from asuperpopulation within ea
h stratum, and are independent a
ross strata. Topresent the main idea, we �rst 
onsider the spe
ial 
ase of one stratum so that
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ript for stratum is omitted.Under the superpopulation model (within ea
h stratum), Y has an unknownnonparametri
 distribution F , and we assume a parametri
 probability fun
tionP (Z = zjY = y) = f(y; z; �); (1.1)where � is an unknown parameter ve
tor and f is a known fun
tion. For ea
hsampled unit, the Z value is always observed, but the Y value may be a nonre-spondent. We assume that the probability that an individual responds on Y 
andepend on both Y and Z a

ording to�(Y;Z; 
) = P (Æ = 1jY;Z); (1.2)where Æ is the response indi
ator for Y, � is a known fun
tion, and 
 is anunknown parameter ve
tor.Without loss of generality, we assume that the �rst r sampled units arerespondents and the rest of n� r sampled units are nonrespondents. Thus, theobserved data set isf(Yi; Zi); i = 1; :::; rg [ fZi; i = r + 1; :::; ng:Let pi = dF (Yi) be the point mass that F pla
es on Yi. For observed Yi, thelikelihood is �(Yi; Zi; 
)f(Yi; Zi; �)pi:For a nonrespondent Yi, the likelihood isZ [1� �(y; Zi; 
)℄f(y; Zi; �)dF (y):Together with the survey weights (see, e.g., Chen and Qin (1993)), we obtain thefollowing log-likelihood for the entire samplerXi=1 wi log(�(Yi; Zi; 
)f(Yi; Zi; �)pi)+ nXi=r+1wi log�Z [1� �(y; Zi; 
)℄f(y; Zi; �)dF (y)� ;



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 5where wi = !i=N and N is the �nite population size. The use of wi, instead of!i, does not 
hange the maximization of the log-likelihood over the parameters.Sin
e Z takes values z1; :::; zs, this log-likelihood 
an be written asrXi=1 wi log(�(Yi; Zi; 
)f(Yi; Zi; �)pi) + sXj=1 aj log(�j); (1.3)where aj =Pni=r+1wiIfZi=zjg, IA is the indi
ator fun
tion of the event A, and�j = P (Æ = 0; Z = zj) = Z [1� �(y; zj ; 
)℄f(y; zj ; �)dF (y):Note that �j is a fun
tion of 
, �, and F . Maximizing (1.3) over 
, �, and F isequivalent to maximizing (1.3) over 
, �, pi's, and �j 's subje
t topi � 0; rXi=1 pi = 1; �j = rXi=1 pi[1� �(Yi; zj ; 
)℄f(Yi; zj ; �); j = 1; :::; s: (1.4)By introdu
ing Lagrange multipliers, we 
an derive thatpi = wiN̂r +Psj=1 �j[(1 � �(Yi; zj ; 
))f(Yi; zj ; �) � �j ℄ ; i = 1; :::; r; (1.5)where N̂r =Prk=1wk and �j 's are Lagrange multipliers satisfyingrXi=1 wi[(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄N̂r +Psj=1 �j[(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄ = 0; j = 1; :::; s: (1.6)Treating pi in (1.5) as a fun
tion of �, 
, � = (�1; :::; �s), and � = (�1; :::; �s),and substituting pi into (1.3), the pro�le log-likelihood with Lagrange multipliersis l(�; 
; �; �) = rXi=1 wi log(�(Yi; Zi; 
)f(Yi; Zi; �)) + sXj=1 aj log(�j)+ rXi=1 wi log wiN̂r +Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄! ;Di�erentiating l(�; 
; �; �) with respe
t to �, �, �, and 
, and setting the partial



6 FANG FANG, QUAN HONG AND JUN SHAOderivatives to 0, we haveaj�j+ rXi=1 wi�jN̂r +Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄ = 0; j = 1; :::; s; (1.7)rXi=1 wi[(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄N̂r +Psj=1 �j[(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄ = 0; j = 1; :::; s; (1.8)rXi=1 (wi� log f(Yi; Zi; �)�� � wiPsj=1 �j(1� �(Yi; zj ; 
))�f(Yi; zj ; �)=��N̂r +Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j℄)=0;(1.9)rXi=1 (wi� log�(Yi; Zi; 
)�
 + wiPsj=1 �j��(Yi; zj ; 
)=�
f(Yi; zj ; �)N̂r +Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �) � �j℄)=0:(1.10)From (1.5), (1.7), and the fa
t that Pri=1 pi = 1, we have�j = �aj=�j ; j = 1; :::; s: (1.11)Let (�̂; 
̂; �̂; �̂) be a solution to equations (1.8)-(1.11). The maximum empiri
allikelihood estimator (MELE) of (�; 
) is (�̂; 
̂), and the MELE of F is the em-piri
al distribution F̂ putting mass p̂i at Yi, i = 1; :::; r, where p̂i is given by (1.5)with (�; 
; �; �) repla
ed by (�̂; 
̂; �̂; �̂). If the parameter of interest is the �nitepopulation mean �Y =Pi2P Yi=N , its MELE is�̂Y = rXi=1 p̂iYi: (1.12)If the parameter of interest is the 
ell mean �Yj , the �nite population mean of Ygiven Z = zj, the MELE is�̂Yj = rXi=1 p̂if(Yi; zj ; �̂)Yi= rXi=1 p̂if(Yi; zj ; �̂): (1.13)Let � = (�; 
; �), �̂ = (�̂; 
̂; �̂), and �̂ = �̂=N̂r + J=(1 �Psj=1 �̂j), whereJ is the s-ve
tor of ones. The following result shows that (�̂; �̂) 
onverges to(�0; 0), where �0 = (�0; 
0; �0) is the true value of (�; 
; �). Also, �̂Y and �̂Yjare 
onsistent for �Y and �Yj, respe
tively. Furthermore, (�̂; �̂), �̂Y , and �̂Yj are
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ally normal. The proof is given in the Appendix.Theorem 1. Assume the following.(i) The sample from the �nite population is sele
ted with repla
ement a

ordingto a probability sampling plan or sele
ted as a simple random sample without re-pla
ement. The values of (Y;Z) in the population is iid from a superpopulationa

ording to (1.1)-(1.2) with a nonparametri
 Y -marginal F .(ii) As n!1, N !1, n=N ! 0, maxi�N wi = O(1=n), and nPNi=1wi=N ! dfor some 
onstant d.(iii) f(y; z; �) and �(y; z; 
) are twi
e 
ontinuously di�erentiable in � and 
for any y and z, and k� log f(y;z;�)�� k2, k� log �(y;z;
)�
 k2, k�2f(y;z;�)����� k2, k�2�(y;z;
)�
�
� k2,k�f(y;zj ;�)�� k3, k��(y;zj ;
)�
 k3, k[�f(y;zj ;�)�� ℄[�f(y;zk ;�)�� ℄�k2, k[��(y;zj ;
)�
 ℄[��(y;zk ;
)�
 ℄�k2,and k[�f(y;zj ;�)�� ℄[��(y;zk ;
)�
 ℄�k2 are bounded by some integrable fun
tions in a neigh-borhood of �0 and 
0, j; k = 1; :::; s.(iv) For any nonzero ve
tor 
 2 Rp+q, the value of 
�  � log f(y; zj ; �0)=��� log�(y; zj ; 
0)=�
 !depends on j, where p and q are the dimensions of � and 
.(v) �0 is a unique root of E[g(Y; �)jÆ = 1℄ = 0 and E[g(Y; �0)g(Y; �0)� jÆ = 1℄ ispositive de�nite, where g = (g1; :::; gs)� andgj(y; �) = (1�Psk=1 �k) [(1� �(y; zj ; 
))f(y; zj ; �)� �j ℄Psk=1 �(y; zk; 
)f(y; zk; �) : (1.14)(vi) �(y; z; 
) has a positive lower bound.Then, there exists a sequen
e f�̂; �̂; n = 1; 2; :::g su
h that as n!1,P (�̂ is a solution to (1.8)-(1.10))! 1; (1.15)pn �̂ � 0�̂ � �0 !!d N(0;�); (1.16)where the probability P and !d (
onvergen
e in distribution) are with respe
tto the sampling and the superpopulation, and � is a positive de�nite matrix.Furthermore, if fun
tions ky �f(y;zj ;�)�� k2 and ky ��(y;zj ;
)�
 k2 are bounded by some
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tions in a neighborhood of �0 and 
0 for ea
h j, thenpn( �̂Y � �Y )!d N(0; �2) and pn( �̂Yj � �Yj)!d N(0; �2j ); j = 1; :::; s; (1.17)where �2 and �2j are some 
onstants.In 
ondition (v), E[g(Y; �)jÆ = 1℄ = 0 has a unique root �0 is equivalentto �j = R [1 � �(y; zj ; 
)℄f(y; zj ; �)dF (y) is uniquely de�ned by (�; 
), i.e., a
ondition of identi�ability of the � by (�; 
).We now 
onsider the strati�ed sample des
ribed in the beginning of thisse
tion. If (�; 
) in 
onditions (1.1) and (1.2) has di�erent values in di�erentstrata, then we 
an solve (1.7)-(1.10) within ea
h stratum to obtain an estimatorof (�; 
) for ea
h stratum. If (�; 
) is 
ommon for all strata, then 
onstraint (1.4)is within ea
h stratum, the sums in (1.7)-(1.8) are over ea
h stratum, and thesums in (1.9)-(1.10) are over all strata. In any 
ase, the marginal distributionof Y for stratum h is the empiri
al distribution putting mass p̂i at Yi with i instratum h; the estimator of �Y is the weighted average of estimators given by(1.12) over all strata with the weights Wh = Nh=N , where Nh is the populationsize for stratum h and N =PhNh; the estimator of �Yj is the ratio of the averagesof the numerators and denominators in (1.13) with the weights Wh. Theorem 1still holds if all 
onditions are given within ea
h stratum and nh=n 
overges to apositive 
onstant, where nh is the sample size in stratum h and n =Ph nh.3. Pseudo Empiri
al LikelihoodWhen s (the number of Z 
ategories) is not small, numeri
al solutions to(1.8)-(1.11) may be 
omputationally intensive. Hen
e, we apply the idea ofpseudo likelihood (Gong and Samaniego (1981)). That is, we substitute ea
h�j in (1.8)-(1.11) by a 
onsistent estimator ~�j . Note that 
onsistent estimatorsof �j's are easy to 
onstru
t. For example, we may estimate �j by~�j = nXi=1 wiIfÆi=0;Zi=zjg. nXi=1 wi: (1.18)Let ~� = (~�j ; j = 1; :::; s), ~�j = �aj=~�j , and ~� = (~�1; :::; ~�s). Maximizingthe pseudo empiri
al likelihood l(�; 
; ~�; ~�) over (�; 
) results in the maximumpseudo empiri
al likelihood estimator (MPELE) ( ~�; ~
). Note that the MPELE
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e ~� is not �̂. However, we 
an dire
tly establish the
onsisten
y and asymptoti
 normality of the MPELE.Let ~pi be the estimator of pi obtained by using (1.5) with �, 
, �j , and�j repla
ed by ~�, ~
, ~�j, and ~�j , respe
tively. Be
ause the MPELE is used,Pri=1 ~pi 6= 1, although Pri=1 ~pi !p 1. The MPELE of �Y is~�Y = rXi=1 ~piYi. rXi=1 ~pi; (1.19)and the MPELE of �Yj is~�Yj = rXi=1 ~pif(Yi; zj ; ~�)Yi. rXi=1 ~pif(Yi; zj ; ~�): (1.20)Estimators under strati�ed sampling 
an be obtained as des
ribed in the end ofSe
tion 2, with the sums in (1.18) within ea
h stratum.The following result shows that the MPELE is 
onsistent and asymptoti
allynormal.Theorem 2. Assume the 
onditions in Theorem 1. There exists a sequen
ef~�; ~
; n = 1; 2; :::g su
h that, as n!1,P  �l( ~�; ~
; ~�; ~�)�(�; 
) = 0!! 1 and pn ~� � �0~
 � 
0 !!d N(0;�p); (1.21)where �p is a positive de�nite matrix. Furthermore,pn( ~�Y � �Y )!d N(0; �2p) and pn( ~�Yj � �Yj)!d N(0; �2pj); j = 1; :::; s; (1.22)where �2p and �2pj are some 
onstants.4. Varian
e Estimation by BootstrappingIt is a 
ommon pra
ti
e in sample surveys to report a varian
e estimate forea
h estimate of the parameter of interest. We fo
us on the most 
ommonly usedestimators, the mean estimators �̂Y , ~�Y in (1.12) and (1.19), and the 
ell meanestimators �̂Yj, ~�Yj in (1.13) and (1.20). Be
ause the formulation of these estima-tors is 
ompli
ated, it is diÆ
ult to derive an analyti
 form of their asymptoti
varian
es, �2, �2j in (1.17), and �2p, �2pj in (1.22) . Thus, we apply the bootstrap
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onsists of the following steps. In the following, �̂ denotes any of �̂,
̂, �̂, �̂, �̂Y , �̂Yj, ~�, ~
, ~�, ~�Y , and ~�Yj.1. Within stratum h, draw a simple random sample of size nh with repla
ementfrom the set of sampled units (respondents or nonrespondents). Carry outthis pro
edure independently a
ross strata. For ea
h unit in the bootstrapsample, the bootstrap data are the Z and Y values (if the Y is missing, thebootstrap datum is treated as missing) and their survey weights.2. Compute �̂�, whi
h is the same as �̂ but with the original data repla
ed bythe bootstrap data generated in Step 1.3. Repeat the previous steps independently B times and obtain �̂�1; :::; �̂�B .Estimate the varian
e of �̂ by the sample varian
e of �̂�1; :::; �̂�B .The following result establishes the asymptoti
 validity of the bootstrap.Theorem 3. Assume the 
onditions in Theorem 1.(i) Let (1.8�)-(1.11�) be the bootstrap analog of (1.8)-(1.11). Then there exists asequen
e f�̂�; �̂�; n = 1; 2; � � � g su
h that, as n!1,P�(�̂� is a solution to (1.8�)-(1.10�))!p 1; (1.23)pn �̂� � �̂�̂� � �̂ !!d� N(0;�); (1.24)where � is given in (1.16), P� denotes the bootstrap probability 
onditional onthe data, and #�n !d� # means P�(#�n 2 B) � P (# 2 B) !p 0 for any Borel setB. Furthermore,pn( �̂Y � � �̂Y )!d� N(0; �2) and pn( �̂Y �j � �̂Yj)!d� N(0; �2j ); (1.25)where �2 and �2j are de�ned in (1.17).(ii) Let ~�� = (~��1; :::; ~��s ), with ~��j being the bootstrap analog of ~�j in (1.18). Thenthere exists a sequen
e f~��; ~
�; n = 1; 2; � � � g su
h that, as n!1,P� �l�( ~��; ~
�; ~��; ~��)�(�; 
) = 0!!p 1 and pn ~�� � ~�~
� � ~
 !!d� N(0;�p); (1.26)



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 11where �p is given in (1.21). Further,pn( ~�Y � � ~�Y )!d� N(0; �2p) and pn( ~�Y �j � ~�Yj)!d� N(0; �2pj); (1.27)where �2p and �2pj are de�ned in (1.22).5. ImputationImputation is often 
arried out for pra
ti
al reasons (Kalton and Kasprzyk(1986)). After imputation, estimates of parameters are 
omputed by treatingimputed values as observed data and using the standard formulas for the 
aseof no nonresponse. In this se
tion we 
onsider imputation for the estimationof the population mean �Y and the population 
ell mean �Yj. Let Ŷi = Yi if Yiis a respondent and Ŷi be an imputed value if Yi is a nonrespondent. Afterimputation, the population mean �Y and 
ell mean �Yj are estimated by�̂YI = nXi=1 wiŶi; (1.28)�̂YjI = nXi=1 wiŶiIfZi=zjg. nXi=1 wiIfZi=zjg; (1.29)respe
tively. Under strati�ed sampling, (1.28)-(1.29) should be modifed as de-s
ribed at the end of Se
tion 2.The naive mean imputation method imputes ea
h nonrespondent with Z =zj by the 
ell sample mean Pri=1wiYiIfZi=zjgÆPri=1 wiIfZi=zjg. The naive ran-dom imputation method imputes ea
h nonrespondent with Z = zj by a randomsample with repla
ement from respondents with Z = zj , where ea
h Yi withZi = zj has probability wiIfZi=zjg=Pri=1wiIfZi=zjg to be sele
ted, i = 1; :::; r.The population mean estimators based on the naive imputation methods are in-
onsistent sin
e they do not 
onsider the di�eren
e between the respondents andthe nonrespondents.Using the MELE estimators developed in Se
tion 2, we 
onsider the followingtwo imputation pro
edures.1. Empiri
al Likelihood Mean Imputation. For ea
h nonrespondent with Z =zj , the imputed Y value isPri=1 p̂i[1� �(Yi; zj ; 
̂)℄f(Yi; zj ; �̂)YiPri=1 p̂i[1� �(Yi; zj ; 
̂)℄f(Yi; zj ; �̂) :



12 FANG FANG, QUAN HONG AND JUN SHAO2. Empiri
al Likelihood Random Imputation. Ea
h nonrespondent with Z =zj is imputed by a random sample with repla
ement from all respondents,where the probability of ea
h Yi to be sele
ted isp̂i[1� �(Yi; zj ; 
̂)℄f(Yi; zj ; �̂)Pri=1 p̂i[1� �(Yi; zj ; 
̂)℄f(Yi; zj ; �̂) :For strati�ed sampling, imputation should be 
arried out within ea
h stratum.Similarly, using the MPELE estimators developed in Se
tion 3, we 
an de-velop Pseudo Empiri
al Likelihood Mean Imputation and Random Imputation.They are similar to the Empiri
al Likelihood Mean Imputation and Random Im-putation that we des
ribed above. We just need to repla
e �̂, 
̂, and p̂i by ~�, ~
,and ~pi, respe
tively.The following result shows that the estimators of �Y and �Yj based on thesefour imputation pro
edures are 
onsistent and asymptoti
ally normal.Theorem 4: Under the 
onditions of Theorem 1, for empiri
al likelihood meanimputation, empiri
al likelihood random imputation, pseudo empiri
al likelihoodmean imputation, or pseudo empiri
al likelihood random imputation,pn( �̂YI � �Y )!d N(0; �2I ); and pn( �̂YjI � �Yj)!d N(0; �2jI); j = 1; :::; s;where �2I and �2jI are some 
onstants.The asymptoti
 varian
es �2I and �2jI do not have simple analyti
 forms.Varian
e estimation 
an be 
arried out using the bootstrap pro
edure des
ribedin Se
tion 4. It should be emphasized that, to address the variability 
aused byimputation, nonrespondents in ea
h bootstrap data set must be imputed usingthe bootstrap data and the same imputation method as that used to impute theoriginal data set, as suggested by Shao and Sitter (1996).6. Simulation ResultsIn this se
tion, we report on simulation of the �nite-sample properties of theMELE, MPELE, the empiri
al likelihood imputation, and the pseudo empiri
allikelihood imputation. We 
reated a �nite population similar to the Current Es-tablishment Survey 
ondu
ted by the U.S. Bureau of Labor Statisti
s. We 
hosefour di�erent industries as four strata with sizes N1 = 3370; N2 = 2910; N3 =



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 135430, and N4 = 4110. The variable Y is the total pay for ea
h establishmentand values of Y in stratum h were generated from a superpopulation Fh. Theform of Fh was 
hosen to be the gamma distribution and F1 = �(43; 0:20),F2 = �(42; 0:19), F3 = �(38; 0:20), and F4 = �(50; 0:17), where �(a; b) denotesthe gamma distribution with shape parameter a and s
ale parameter b. Theparameters in Fh's were 
hosen to mat
h the mean and varian
e of a data setfrom the Current Establishment Survey.The 
ovariate Z 2 f1; 2; 3; 4; 5g was generated by the logisti
 modelP (Z = jjY = y) = expf�j + �5yg1 +P4k=1 expf�k + �5yg ; j = 1; 2; 3; 4;P (Z = 5jY = y) = 11 +P4k=1 expf�k + �5yg ;where �k, k = 1; 2; 3; 4; 5, are unknown parameters whose values in the simulationare 0:25, 0:5, 0:75, 1, and �0:1, respe
tively.The sampling plan was strati�ed simple random sampling. In ea
h stratum,the sampling fra
tion was 0.05. For ea
h sampled unit, the Y respondent wasgenerated a

ording to the response probability fun
tionP (Æ = 1jY = y; Z = j) = expf�10� j + 
yg1 + expf�10 � j + 
ygwith a parameter 
 = 1:8 or 2, orP (Æ = 1jY = y; Z = j) = expf10 + j + 
yg1 + expf10 + j + 
ygwith 
 = �1:4. The following table lists the response rate for ea
h Z and themean response rate E[P (Æ = 1jZ)℄.
 1.8 2 -1.4P (Æ = 1jZ = 1) 0.888 0.951 0.457P (Æ = 1jZ = 2) 0.803 0.910 0.621P (Æ = 1jZ = 3) 0.697 0.842 0.751P (Æ = 1jZ = 4) 0.560 0.749 0.856P (Æ = 1jZ = 5) 0.469 0.675 0.908E[P (Æ = 1jZ)℄ 0.651 0.804 0.756
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h of the three 
, Table 1-3 respe
tively reports the relative bias (RB)and varian
e (VAR) of the MELE estimators in (1.12) and (1.13), the MPELEestimators in (1.19) and (1.20), the naive estimators that simply ignore nonre-spondents, and the imputation estimators in (1.28) and (1.29) based on empiri
al,pseudo empiri
al, or naive mean imputation and random imputation. We alsoreport their bootstrap varian
e estimators (Vboot) based on the bootstrap repli-
ation size B = 200, the 
overage probabilities (CP) and the lengths (LEN) ofthe bootstrap 
on�den
e intervals of the formpoint estimate� 1:96pVbootthat approximately have nominal 
overage probability 95%.Table 4 reports the mean and the varian
e (VAR) of the parameter estimates.Table 5 reports the ratios of the mean squared errors. Ea
h MPELE is 
omparedwith its 
ounterpart; that is, ~�Y in (1.19) is 
ompared with �̂Y in (1.12), ~�Yj in(1.20) is 
ompared with �̂Yj in (1.13), and �̂YI in (1.28) (or �̂YjI in (1.29)) withpseudo empiri
al likelihood mean (or random) imputation is 
ompared with �̂YIin (1.28) (or �̂YjI in (1.29)) with empiri
al likelihoodmean (or random) imputationdes
ribed in Se
tion 5.The 
omputation was done using MATLAB in a UNIX at the Department ofStatisti
s, University of Wis
onsin-Madison. For ea
h 
 and a single simulation,it took about 12 se
onds to 
ompute the MELE, MPELE, and imputed estimatesfor �Y and �Yl, l = 1; :::; 5. Be
ause of the bootstrap, however, ea
h simulationwith a given 
 took about 40 minutes. For ea
h 
, we ran the simulation 250times.The simulation results 
an be summarized as follows.1. In all 
ases, the proposed population mean and population 
ell mean esti-mators based on empiri
al likelihood or pseudo empiri
al likelihood (withimputation or not) performed well in terms of the relative bias (less than1%) and varian
e, while the naive methods had heavy relative biases up to10.31%.2. The bootstrap varian
e estimate for our proposed estimators worked well inmost 
ases in terms of its bias and the 
overage probability of the bootstrap
on�den
e interval. For the naive estimators, the 
overage probability of
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on�den
e interval was very low.3. Although the MPELE estimators required less 
omputational intensities,they were less eÆ
ient in terms of larger MSE 
ompared with the MELEestimators. Most of the MSE ratios were greater than 1 (Table 5). For theestimators without imputation, the ratios were all greater than 5, and someof them were even greater than 20. The lengths of 
on�den
e intervals ofthe MPELE estimators were all greater than those of the MELE estimators,espe
ially for the estimators without imputation.4. Although the varian
es of the � and 
 parameter estimates were a little bitlarge, the estimation of the population mean and population 
ell means,whi
h is our major interest, was still good.A
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iation, 775-780.AppendixThe proofs in this appendix are for the spe
ial 
ase of one stratum. The proof for the 
aseof H > 1 is similar.Lemma 1: Let  (x; �) be a fun
tion satisfying E( (x; �)) = 0. Assume that E [ (x; �0) � (x; �0)℄is positive de�nite, � (x; �)=�� is 
ontinuous in a neighborhood of �0, k� (x; �)=��k andk (x; �)k3 are bounded by some integrable fun
tions in the neighborhood. Under the 
ondi-tions (i)-(ii) of Theorem 1, with probability 1, there exists a � su
h that Pni=1 wi (xi;�)1+�� (xi;�) = 0.Furthermore, let l(�; �) = �Pni=1 wi logf1+ �� (xi; �)g, then in an Op(n�1=3) neighborhood of�0, � = �(�) is a fun
tion of �, and l(�; �(�)) attains its maximum value at some interior pointof the ball 

� � �0

 � n�1=3.Proof. Consider the problem of maximizing Pni=1 wi log pi under the 
onstraints pi � 0,Pni=1 pi = 1, and Pni=1 pi (xi; �) = 0. Sin
e E( (x; �)) = 0, it follows from the arguments ofOwen (1990) that, as n ! 1, 0 is 
ontained in the 
onvex hull of f (xi; �); i = 1; :::; ng withprobability 1. For a given �, when 0 is inside of the 
onvex hull, a unique maximum exists,whi
h 
an be found via Lagrange multipliers as follows. LetH = nXi=1 wi log pi + �(1� nXi=1 pi)� nXk=1wk�� nXi=1 pi (xi; �)



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 17where � and � are Lagrange multipliers. Taking derivatives with respe
t to pi, we have�H�pi = wipi � �� nXk=1wk�� (xi; �) = 0:Then nXi=1 pi �H�pi = nXi=1 wi � � = 0;whi
h leads to pi = wi1 + �� (xi; �)� nXi=1 wiwith � satisfying nXi=1 wi (xi; �)1 + �� (xi; �) = 0:This proves the �rst 
on
lusion for Lemma 1.Note that it is ne
essary that 0 � pi � 1, whi
h implies that � and � must satisfy 1 +�� (xi; �) � wi=Pni=1 wi for ea
h i. For �xed �, let D� = f� : 1 + �� (xi; �) � wi=Pni=1 wig;D� is 
onvex and 
losed, and it is bounded when 0 is inside the 
onvex hull of the  (xi; �)'s.Noti
e that ���n nXi=1 wi  (xi; �)1 + �� (xi; �)o = � nXi=1 wi (xi; �) �(xi; �)[1 + �� (xi; �)℄2is negative de�nite. By the inverse fun
tion theorem � = �(�) is a di�erentiable fun
tion. Let i =  i(xi; �). Sin
e 0 = nXi=1 wi  i1 + �� i = nXi=1 wi� i �  i �i1 + �� i ��;we have 


 nXi=1 wi i


 = k�k nXi=1 wi  i �i1 + �� i � k�k1 + k�k � nXi=1 wi i �i ;where  � = max1�i�n k ik = o(n1=3), a.s., by lemma 3 of Owen (1990) and the 
onditionEk (xi; �)k3 < 1. When k� � �0k = n�1=3, 


Pni=1 wi i


 = Op(n�1=3) and Pni=1 wi i �i =Op(1). Then k�k1 + k�ko(n1=3) = Op(n�1=3);and � = �(�) = Op(n�1=3): Furthermore, similar to the proof of Owen (1990), we have�(�) = h nXi=1 wi i �i i�1h nXi=1 wi ii+ op(n�1=3); k� � �0k = n�1=3:



18 FANG FANG, QUAN HONG AND JUN SHAOIt follows from the arguments of Qin and Lawless (1994) thatl(�; �(�)) < l(�0; �(�0)) in probability;if k � � �0 k= n�1=3. Then l(�; �(�)) attains its lo
al maximum value at some interior point ofthe ball 

� � �0

 � n�1=3.Proof of Theorem 1. Let �j = �j=N̂r + (1 �Psj=1 �j)�1, � = (�1; :::; �s)� and g(Yi; �) bede�ned by (1.14). Then1 + ��g(Yi; �) = 1 + Psj=1 h (1�Psj=1 �j)�jPrk=1 wk + 1i [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄Psj=1 �(Yi; zj ; 
)f(Yi; zj ; �)= 1 + Psj=1 [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄Psj=1 �(Yi; zj ; 
)f(Yi; zj ; �)+Psj=1(1�Psj=1 �j)�j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄Prk=1 wkPsj=1 �(Yi; zj ; 
)f(Yi; zj ; �)= Psj=1 [f(Yi; zj ; �)� �j ℄Psj=1 �(Yi; zj ; 
)f(Yi; zj ; �)+(1�Psj=1 �j)Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄Prk=1 wkPsj=1 �(Yi; zj ; 
)f(Yi; zj ; �)= 1�Psj=1 �jPsj=1 �(Yi; zj ; 
)f(Yi; zj ; �)+(1�Psj=1 �j)Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄Prk=1 wkPsj=1 �(Yi; zj ; 
)f(Yi; zj ; �)= (1�Psj=1 �j)fPrk=1 wk +Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄gPrk=1 wkPsj=1 �(Yi; zj ; 
)f(Yi; zj ; �)Then the fun
tion l(�; 
; �; �) 
an be written asl(�; 
; �; �)= rXi=1 wi log(�ifi) + sXj=1 aj log(�j) + rXi=1 wi log wi(1�Psj=1 �j)(1 + ��g(Yi; �))Prk=1 wk Psj=1 �ijfij= � rXi=1 wi logf1 + ��g(Yi; �)g+ rXi=1 wi log(�ifi)� rXi=1 wi log sXj=1 �ijfij!+ sXj=1 aj log(�j) + rXi=1 wi log(1� sXj=1 �j) + rXi=1 wi log wiPrk=1 wk ;where �i = �(Yi; Zi; 
), fi = f(Yi; Zi; �), �ij = �(Yi; zj ; 
), and fij = f(Yi; zj ; �). Thereforel(�; 
; �; �) is equal to l(�; �) = l1(�; �) + l2(�) + l3(�)



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 19plus a term that does not depend on the parameters, wherel1(�; �) = � rXi=1 wi logf1 + ��g(Yi; �)g;l2(�) = rXi=1 wi log ��(Yi; Zi; 
)f(Yi; Zi; �)�� rXi=1 wi log � sXj=1 �(Yi; zj ; 
)f(Yi; zj ; �)�;l3(�) = sXj=1 aj log �j + rXi=1 wi log 1� sXj=1 �j! :Noti
e thatrXi=1 wigj(Yi; �)1 + ��g(Yi; �) = rXi=1 wi[(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄Prk=1 wk +Psj=1 �j [(1� �(Yi; zj ; 
))f(Yi; zj ; �)� �j ℄ rXk=1wk:Then 
onstraint (1.6) be
omes rXi=1 wig(Yi; �)1 + ��g(Yi; �) = 0: (1.30)Sin
e E[g(Yi; �)jÆ = 1℄ = 0, it follows from (1.30) and Lemma 1 that in an Op(n�1=3) neighbor-hood, we 
an determine uniquely a di�erentiable impli
it fun
tion� = �(�) = Op(n�1=3) if k � � �0 k� Op(n�1=3);and l1(�; �(�)) < l1(�0; �(�0)) in probability; (1.31)if � is in the set Bn = f� :k � � �0 k= n� 13 g:For l2(�; 
) = l2(�), denote E
 as the 
onditional expe
tation of (Y; Z) given Æ = 1, whi
his E
 = Xz2fz1;��� ;zsgZ ��(y; z; 
0)f(y; z; �0)P (Æ = 1) dF (y):Then�l2(�0; 
0)�� = rXi=1 wi �f(Yi; Zi; �0)=��f(Yi; Zi; �0) � rXi=1 wi Psj=1 �(Yi; zj ; 
0) �f(Yi;zj ;�0)��Psj=1 �(Yi; zj ; 
0)f(Yi; zj ; �0)!p P (Æ = 1)E
 �f(y; z; �0)=��f(y; z; �0) � P (Æ = 1)E
 Psj=1 �(y; zj ; 
0) �f(y;zj;�0)��Psj=1 �(y; zj ; 
0)f(y; zj ; �0)= 0By similar 
al
ulation, we 
an show that �l2(�0;
0)�
 !p 0, �2l2(��;
�)�(�;
)2 !p �U , where (��; 
�) is
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) and (�0; 
0), and U is de�ned asU =  U11 U12U�12 U22 ! ; (1.32)U11 = Z  Xj �jfj ��fj�� �2 � (Pj �j �fj�� )2Pj �jfj ! dF (y);U12 = Z  Xj �fj�� ��j�
� � [Pj �j �fj�� ℄[Pj ��j�
 fj ℄�Pj �jfj ! dF (y);U22 = Z  Xj fj�j ���j�
 �2 � (Pj ��j�
 fj)2Pj �jfj ! dF (y);where �j = �(y; zj ; 
0) and fj = f(y; zj ; �0). For any nonzero ve
tor 
 = (
1; 
2), by Cau
hy'sinequality,
�U
 = Z 8><>:X s�f � 
�1 �f�� +sf� � 
�2 ���
!2 � �P� � 
�1 �f�� +P f � 
�2 ���
 �2P�f 9>=>; dF (y) � 0If the equation holds, then 
�1 � log f(y;zj ;�0)�� + 
�2 � log �(y;zj ;
0)�
 = 
(y) for j = 1; � � � ; s, a.s., whi
h
ontradi
ts 
ondition (iv). Hen
e the equation does not hold and U is positive de�nite. By
entral limit theorem and delta method, we 
an show that pn �l2(�0;
0)�(�;
) is asymptoti
al normal.When � 2 Bn, we have (�; 
) = (�0; 
0) + n� 13 u� ; k u k� 1,l2(�)� l2(�0) = l2(�; 
)� l2(�0; 
0)= n� 13 u� �l2(�0; 
0)�(�; 
) + 12n� 23 u� �2l2(��; 
�)�(�; 
)2 u= n� 23 �n 13 u� �l2(�0; 
0)�(�; 
) � 12u�Uu+ op(1)�Denote �min is the smallest eigenvalue of U . Sin
e U is positive de�nite, �min > 0. ThenP (k n 13 u� �l2(�0; 
0)�(�; 
) k� �min4 k u k) = P (k u�pn�l2(�0; 
0)�(�; 
) k� �min4 k u k n 16 )� P (k pn�l2(�0; 
0)�(�; 
) k� �min4 n 16 )! 1where the last 
onvergen
e holds sin
e pn �l2(�0;
0)�(�;
) is asymptoti
al normal and �min4 n 16 !1.Sin
e 12u�Uu � �min4 k u k� �min4 k u k� 0 and the last equation holds if and only if k u k=0,we have l2(�) � l2(�0) in probability if � 2 Bn; (1.33)and the equation holds if and only if k u k=0.



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 21For l3(�) = l3(�),�l3(�0)��j = aj�j0 � rXi=1 wi 11�Psj=1 �j0= nXi=r+1wi IfZi = zjg�j0 � rXi=1 wi 11�Psj=1 �j0!p E�(1� Æ)IfZ = zjg�j0 ��E Æ 11�Psj=1 �j0!= P (Æ = 0; Z = zj)�j0 � P (Æ = 1)1�Psj=1 P (Æ = 0; Z = zj)= 1� 1= 0By similar 
al
ulation we 
an show that�2l3(��)��2 !p �diag� 1�10 ; � � � ; 1�s0�� 11�Psj=1 �j0 JJ�where �� is between � and �0 and J is a 
olumn ve
tor of 1 with length s. By 
entral limittheorem and delta method, we 
an show that pn �l3(�0)�� is asymptoti
ally normal. If we denotek � � �0 k= n� 13 v, then by similar arguments for l2(�), we 
an show thatl3(�) � l3(�0) in probability if � 2 Bn; (1.34)and the equation holds if and only if k v k=0.Therefore, by (1.31), (1.33)and (1.34), we show that, in the set Bn,l(�; �(�)) < l(�0; �(�0)) in probability.Be
ause l(�; �(�)) is 
ontinuous and di�erentiable, it must attain lo
al maximum at some point�̂ inside the ball with surfa
e Bn and �̂ and �̂ = �(�̂) satisfyQ1n(�̂; �̂) = 0; Q2n(�̂; �̂) = 0; (1.35)where Q1n(�; �) = rXi=1 wi g(Yi; �)1 + ��hg(Yi; �) ;Q2n(�; �) = rXi=1 wi (�g(Yi; �)=��)�1 + ��g(Yi; �) � � �l2(�)�� � �l3(�)�� :Noti
e that (1.35) is equivalent to that (�̂; �̂) is the solution to (1.8)-(1.11). This proves (1.15).



22 FANG FANG, QUAN HONG AND JUN SHAOThe 
onsisten
y of (�̂; �̂) follows from the fa
t that Bn shrinks to �0 as n!1.Expanding Q1n(�̂; �̂), Q2n(�̂; �̂) at (�0; 0), we have0 = Q1n(�̂; �̂) = Q1n(�0; 0) + �Q1n(�0; 0)�� (�̂ � �0) + �Q1n(�0; 0)��� (�̂ � 0) + op(�n);0 = Q2n(�̂; �̂) = Q2n(�0; 0) + �Q2n(�0; 0)�� (�̂ � �0) + �Q2n(�0; 0)��� (�̂ � 0) + op(�n);where �n = k�̂ � �0k+ k�̂k. Then �̂�̂ � �0 ! = S�1n  �Q1n(�0; 0) + op(�n)�Q2n(�0; 0) + op(�n) ! ; (1.36)where Sn =  �Q1n��� �Q1n���Q2n��� �Q2n�� !!p S =  S11 S12S�12 S22 ! ; (1.37)S11 = �(1� sXj=1 �j0)E(gg� jÆ = 1);S12 = (1� sXj=1 �j0)E��g�� ����Æ = 1�� ;S22 = diag fU; V g ;V = diag� 1�10 ; � � � ; 1�s0�+ 11�Pj �j0 JJ� ;�j0 is the true value of �j , U is de�ned in (1.32), and J is a 
olumn ve
tor of 1 with length s.By 
entral limit theorem,pn Q1n(�0; 0)Q2n(�0; 0) !!d N(0; T ) = N  0; �T11 00 T22 !! ; (1.38)where T11 = dS11; T22 = diag fdU; dV g ;and d is de�ned in 
ondition (ii). Then by (1.36), (1.37) and (1.38), we 
on
lude that (1.16)holds with � = S�1TS.Let k(�; �) =Pri=1 piYi. Then by Taylor expansion,�̂Y = k(�̂; �̂) = k(�0; 0) + �k(�?; �?)�� (�̂ � 0) + �k(�?; �?)�� (�̂ � �0); (1.39)where (�?; �?) is between (�̂; �̂) and (�0; 0). By the 
onvergen
e of (�̂; �̂), we 
an show that��k(�?;�?)�� ; �k(�?;�?)�� � is 
onsistent for a 
onstant ve
tor 
. Then by (1.36), (1.37), (1.38) and



ESTIMATION FOR SAMPLES WITH NONIGNORABLE NONRESPONSE 23(1.39), we havepn( �̂Y � �Y ) = pn( �̂Y �EY ) + op(1)= pn k(�0; 0)� 
�S�1 Q1n(�0; 0)Q2n(�0; 0)!�EY!+ op(1) (1.40)= pnt nXi=1 wi�(xi; �0)!+ op(1); (1.41)where xi = (Æi; Yi; Zi),�(xi; �0) = (ÆiYi(1�Pj �j0)Pj �ijfij ; Æi; Æig(Yi; �0); Æi � log fi�� � Pj �ij �fij��Pj �ijfij ! ;Æi � log �i�
 � Pj ��ij�
 fijPj �ijfij ! ; (1� Æi)IfZi = zjg�j0 � Æi1�Pj �j0 �����j=1;��� ;s);fi = f(Yi; Zi; �0), �i = �(Yi; Zi; 
0), fij = f(Yi; zj ; �0), �ij = �(Yi; zj ; 
0), and fun
tion t isde�ned ast(�; �; �; �; &; %1; � � � ; %s) = �� � 
�S�1 f�;��;�&;�%1; � � � ;�%sg� �EYwith � being s-dimensional, � being p-dimensional, & being q-dimensional, and �, �, %1; � � � ; %sbeing real numbers. Denote �� = Pni=1 wi�(xi; �0) and E� = E(��). By 
entral limit theoremand Æ-method, pn �t(��)� t(E�)�!d N(0; �2); (1.42)where �2 = �t0(E�)� [dE��� �E�E�� ℄ �t0(E�)�� :Then by (1.41) and (1.42), we havepn� �̂Y � �Y � t(E�)�!d N(0; �2): (1.43)On the other hand, �̂Y � �Y !p 0 by (1.40) and the fa
t that k(�0; 0) !p EY . Then it follows(1.43) that t(E�) = 0 and pn( �̂Y � �Y )!d N(0; �2). The proof of pn( �̂Yj � �Yj) !d N(0; �2j ) issimilar. This shows (1.17) and 
ompletes the proof of Theorem 1.Proof of Theorem 2. Noti
e that l(�; 
; ~�; ~�) = l2(�). By the proof of Theorem 1, (1.21)holds with �p = dU�1. (1.22) 
an be shown similarly to the proof of (1.17).Proof of Theorem 3. The proof is similar to the proof of Theorems 1 and 2, but we repla
ethe fun
tions and the parameters with their bootstrap analog. First of all, in Lemma 1, if we



24 FANG FANG, QUAN HONG AND JUN SHAOdenote fx�1; � � � ; x�ng as a bootstrap sample, sin
eE (g(x�; �0)) = E 1n nXi=1 g(xi; �0)! = E(g(x; �0)) = 0;we know that when k� � �0k = Op(n�1=3), as n ! 1, 0 is 
ontained in the 
onvex hull offg(x�i ; �); i = 1; � � � ; ng with probability 1. The bootstrap analog of Lemma 1 follows. Then,similar to the proof of Theorem 1, we 
an show (1.23) and (�̂�; �̂�) satis�esQ�1n(�̂�; �̂�) = 0; Q�2n(�̂�; �̂�) = 0;where Q�1n and Q�2n are the bootstrap analog of Q1n and Q2n. Then �̂� � �̂�̂� � �̂ ! = S�n�1 �Q�1n(�̂; �̂) + op(��n)�Q�2n(�̂; �̂) + op(��n) ! ; (1.44)where ��n = k�̂� � �̂k+ k�̂� � �̂k andS�n =  �Q�1n(�̂;�̂)��� �Q�1n(�̂;�̂)���Q�2n(�̂;�̂)��� �Q�2n(�̂;�̂)�� ! : (1.45)By Lemma 1 of Fang, Hong, and Shao (2008), S�n !p S, where S is given in (1.37), andpn Q�1n(�̂; �̂)�Q1n(�̂; �̂)Q�2n(�̂; �̂)�Q2n(�̂; �̂) !!d� N(0; T ); (1.46)where T is given in (1.38). Noti
e that Q1n(�̂; �̂) = 0 and Q2n(�̂; �̂) = 0. Then by (1.44), (1.45)and (1.46), we show (1.24). The proofs of (1.25), (1.26) and (1.27) are similar.Proof of Theorem 4. The proofs for the mean imputation estimators are similar to thatof Theorem 1. Conditional on the sample, the mean of the random imputation estimatorsare equal to the mean imputation estimators. Then the results for the random imputationestimators follow from those for the mean imputation estimators and Lemma 1 of S
henker andWelsh (1988).
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Table 1: For 
 = 1:8: Relative Bias (RB) in % and Varian
e (VAR) of the Estimators, Bootstrap Varian
e Estimates (Vboot), Coverage Probability (CP) in %, andLength (LEN) of 95% Con�den
e IntervalMethod Naive MELE MPELERB VAR Vboot CP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LENWithoutImputation Y 5.92 .0026 .0025 0 .19 .23 .0042 .0041 91.5 .24 .16 .0446 .0522 96.5 .84Y1 1.95 .0175 .0160 74.0 .49 .26 .0043 .0044 93.5 .25 .19 .0362 .0414 96.5 .75Y2 3.45 .0112 .0127 30.0 .44 .26 .0043 .0044 92.8 .25 .17 .0362 .0414 96.9 .75Y3 5.75 .0106 .0107 0 .40 .24 .0043 .0044 91.8 .25 .18 .0362 .0414 96.5 .75Y4 8.63 .0105 .0097 0 .38 .23 .0043 .0044 90.8 .25 .20 .0362 .0414 96.9 .75Y5 10.59 .0151 .0141 0 .46 .16 .0146 .0150 94.1 .47 .41 .1208 .1333 94.2 1.37MeanImputation Y 6.74 .0026 .0025 0 .19 .15 .0031 .0034 91.2 .22 .15 .0055 .0059 95.8 .29Y1 2.30 .0173 .0157 66.4 .48 .10 .0151 .0165 96.2 .50 .22 .0173 .0162 95.8 .50Y2 3.62 .0137 .0126 26.8 .43 .10 .0138 .0127 94.4 .43 .18 .0127 .0128 96.2 .44Y3 5.75 .0105 .0106 0 .40 .31 .0101 .0102 93.2 .39 .23 .0122 .0120 91.9 .42Y4 8.45 .0103 .0097 0 .38 .13 .0070 .0079 91.5 .34 .04 .0141 .0143 95.8 .45Y5 10.31 .0149 .0145 0 .46 .09 .0131 .0145 93.6 .47 .14 .0183 .0236 96.2 .58RandomImputation Y 6.72 .0032 .0030 0 .21 .13 .0033 .0037 91.0 .23 .12 .0058 .0062 95.4 .30Y1 2.24 .0194 .0169 70.8 .50 .08 .0154 .0170 95.7 .50 .19 .0176 .0166 95.8 .50Y2 3.64 .0124 .0142 30.8 .46 .10 .0147 .0134 94.0 .45 .20 .0138 .0135 96.9 .45Y3 5.70 .0124 .0125 1.2 .43 .29 .0109 .0111 91.5 .41 .16 .0135 .0130 94.6 .44Y4 8.47 .0117 .0118 0 .42 .12 .0081 .0092 91.5 .37 .00 .0155 .0156 96.2 .48Y5 10.26 .0185 .0175 0 .51 .04 .0163 .0168 94.0 .50 .10 .0213 .0258 96.5 .61
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Table 2: For 
 = 2: Relative Bias (RB) in % and Varian
e (VAR) of the Estimators, Bootstrap Varian
e Estimates (Vboot), Coverage Probability (CP) in %, and Length(LEN) of 95% Con�den
e IntervalMethod Naive MELE MPELERB VAR Vboot CP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LENWithoutImputation Y 3.61 .0021 .0020 0 .17 .18 .0026 .0026 94.8 .20 .13 .0243 .0323 94.6 .67Y1 .81 .0158 .0162 92.4 .49 .17 .0032 .0032 90.4 .22 .03 .0196 .0232 96.8 .57Y2 1.64 .0120 .0120 80.4 .42 .18 .0032 .0032 94.8 .22 .01 .0196 .0232 93.5 .57Y3 3.19 .0105 .0096 23.6 .38 .17 .0032 .0032 93.6 .22 .02 .0196 .0232 94.2 .57Y4 5.09 .0079 .0078 .4 .34 .20 .0032 .0032 94.8 .22 .04 .0196 .0232 94.6 .57Y5 6.58 .0108 .0103 0 .39 .15 .0118 .0116 95.6 .42 .26 .0752 .0915 94.2 1.14MeanImputation Y 3.96 .0022 .0021 0 .17 .14 .0026 .0024 94.4 .19 .06 .0035 .0035 96.2 .23Y1 1.11 .0153 .0161 88.8 .49 .12 .0171 .0168 94.8 .50 .18 .0169 .0165 94.6 .50Y2 1.79 .0118 .0119 76.8 .42 .17 .0124 .0126 95.2 .43 .05 .0132 .0126 93.5 .44Y3 3.21 .0105 .0095 22.0 .38 .13 .0097 .0098 94.4 .38 .27 .0108 .0104 95.0 .40Y4 4.97 .0080 .0078 .4 .34 .15 .0079 .0076 94.8 .34 .03 .0103 .0107 96.2 .40Y5 6.61 .0106 .0104 0 .39 .12 .0119 .0116 95.6 .42 .15 .0153 .0162 96.5 .49RandomImputation Y 3.94 .0026 .0023 0 .18 .12 .0027 .0025 94.4 .19 .08 .0036 .0037 95.8 .23Y1 1.15 .0159 .0167 87.6 .50 .12 .0176 .0169 95.2 .50 .18 .0172 .0167 94.6 .50Y2 1.78 .0126 .0128 79.6 .44 .18 .0129 .0129 95.2 .44 .08 .0136 .0129 94.6 .44Y3 3.20 .0116 .0106 26.8 .40 .12 .0105 .0103 94.8 .39 .26 .0110 .0108 94.2 .41Y4 4.92 .0096 .0091 .4 .37 .15 .0089 .0083 94.8 .35 .07 .0109 .0112 96.2 .41Y5 6.58 .0133 .0123 0 .43 .06 .0135 .0127 96.0 .44 .15 .0159 .0172 95.0 .50
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Table 3: For 
 = �1:4: Relative Bias (RB) in % and Varian
e (VAR) of the Estimators, Bootstrap Varian
e Estimates (Vboot), Coverage Probability (CP) in %, andLength (LEN) of 95% Con�den
e IntervalMethod Naive MELE MPELERB VAR Vboot CP LEN RB VAR Vboot CP LEN RB VAR Vboot CP LENWithoutImputation Y -3.96 .0018 .0019 0 .17 .20 .0031 .0031 94.0 .21 .57 .1084 .1195 95.4 1.18Y1 -9.89 .0201 .0204 0 .55 .20 .0043 .0039 90.0 .24 .58 .1224 .1369 96.2 1.28Y2 -7.11 .0135 .0131 0 .44 .25 .0043 .0039 92.5 .24 .63 .1224 .1369 95.4 1.28Y3 -4.84 .0085 .0090 2.0 .37 .19 .0043 .0039 91.5 .24 .58 .1224 .1369 95.4 1.28Y4 -2.86 .0065 .0068 19.2 .32 .22 .0043 .0039 94.5 .24 .60 .1224 .1369 95.8 1.28Y5 -1.72 .0085 .0086 66.8 .36 .15 .0112 .0106 94.0 .40 .30 .0823 .0776 96.9 .96MeanImputation Y -4.57 .0018 .0019 0 .17 .25 .0027 .0028 92.7 .20 .15 .0054 .0059 94.2 .29Y1 -9.46 .0211 .0208 0.4 .55 .26 .0124 .0128 95.4 .44 .08 .0279 .0269 97.3 .60Y2 -6.81 .0132 .0130 0 .44 .36 .0112 .0113 94.2 .41 .03 .0180 .0190 97.3 .52Y3 -4.80 .0086 .0089 2.4 .36 .14 .0096 .0097 93.1 .38 .20 .0130 .0134 96.5 .44Y4 -2.97 .0067 .0068 17.2 .32 .26 .0070 .0078 94.6 .34 .16 .0098 .0100 95.4 .39Y5 -1.93 .0085 .0086 60.4 .36 .27 .0102 .0099 94.2 .38 .35 .0102 .0099 93.5 .39RandomImputation Y -4.58 .0022 .0022 0 .18 .24 .0031 .0031 93.8 .21 .17 .0059 .0063 95.0 .29Y1 -9.47 .0025 .0024 0.8 .60 .25 .0167 .0186 96.5 .53 .01 .0337 .0327 97.3 .67Y2 -6.83 .0152 .0155 0 .48 .30 .0132 .0142 93.5 .46 .08 .0218 .0222 96.9 .56Y3 -4.80 .0105 .0103 3.6 .39 .18 .0118 .0112 93.5 .41 .18 .0147 .0149 95.8 .47Y4 -2.95 .0076 .0075 20.0 .33 .23 .0086 .0084 95.0 .35 .15 .0106 .0106 94.2 .41Y5 -1.94 .0091 .0092 60.8 .37 .25 .0104 .0103 95.0 .39 .34 .0109 .0104 92.7 .40
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Table 4: The Mean(Mean) and the Varian
e (VAR) of the Parameter Estimates. The true values are �1 = 0:25, �2 = 0:5, �3 = 0:75, �4 = 1, and �5 = �0:1.MELE MPELE
 = 1:8 
 = 2 
 = �1:4 
 = 1:8 
 = 2 
 = �1:4Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR Mean VAR�1 .2554 .4074 .2425 .2987 .2986 .3863 0.3935 2.1449 .1479 1.5564 .2592 .5873�2 .5173 .3873 .5216 .3025 .5644 .3883 0.6505 2.0736 .4004 1.4972 .4986 .6183�3 .7601 .3990 .7667 .2984 .8052 .3792 0.9012 1.9614 .6580 1.4382 .7515 .6906�4 1.0171 .3878 1.0136 .2945 1.0621 .3713 1.1373 1.8363 .9075 1.3843 .9882 .7577�5 -.1006 .0057 -.1015 .0041 -.1075 .0054 -.1164 .0214 -.0896 .0167 -.0994 .0127
 1.7952 .0004 1.9960 .0005 -1.4038 .0002 1.8236 .0597 2.0350 .1310 -1.3912 .0163

Table 5: The Ratio of MSE: mse(MPELE)/mse(MELE).Without Imputation Mean Imputation Random ImputationY Y1 Y2 Y3 Y4 Y5 Y Y1 Y2 Y3 Y4 Y5 Y Y1 Y2 Y3 Y4 Y5
 = 1:8 9.85 7.38 7.41 7.51 7.54 7.78 1.23 0.97 0.84 1.11 1.39 1.27 1.16 0.95 0.84 1.06 1.28 1.15
 = 2 8.01 5.38 5.34 5.35 5.24 7.39 1.01 0.85 1.05 1.21 1.16 1.17 1.00 0.85 1.04 1.15 1.09 1.28
 = �1:4 23.91 24.90 24.13 25.16 24.74 4.34 1.46 1.69 1.04 1.13 1.33 1.00 1.52 1.47 1.03 1.04 1.40 1.04


