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Supplementary Material

S1. Imputing the dates of infection of CPs and DCs

The methodology described so far relies on the assumption that the infection status of all
farms is known throughout the epidemic. Section 3 detailed how this information was arrived at
for IPs. However, no such information is available for CPs and DCs farms since they could have
been infected but culled before symptoms appeared. Thus, in order to use the methodology
described so far, we must impute the infection status of all culled farms. Under the Bayesian
framework already developed here, in which data and parameters are, in effect, interchangeable,
it is possible to impute the time of infection of culled farms and, thus, calculate the proportion
of culled farms that were infected before slaughter. Unfortunately, we cannot do this for CPs
and DCs separately since the data does not allow us confidence in deciding upon whether a
substantial proportion farms were culled as a CP or a DC. Due to uncertainty about which
culled farms should fall into which category, we treat CPs and DCs as a single category of culls
(C). We now consider the estimation of the proportion of these farms which were infected before
culling, Ac. As stated in Section 3, imputing times for other forms of cull, such as the welfare

cull, is not considered here.

S1.1. Notation and Model Framework

Let nc denote the total number of culled (CP and DC) farms, and Cr(k) be the time of
cull (removal) for £ = 1,...,nc. Further, let Cr(k) denote the number of days before Cr(k)
that culled farm k was exposed to FMD. Obviously, Cg (k) = 0 implies that no infection of farm
k occurred before slaughter and, so, the probability that a culled farm was infected is simply
the posterior probability that Cr(k) > 0. In addition, we have that Cr(k) < 9 otherwise, we

assume, the farm would have exhibited symptoms and been recorded as an IP.
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We now have a set of parameters Cg(k), k = 1,...,nc which we wish to estimate. We
therefore extend (2) to the situation where the parameter vector is now
0 =0p = (Ts,Tc,Sc,b,€,00, ko, V5,5, Vs 00 Vr,6, Y70, CE(L), ... ,CE(NC)) and the likelihood is
given by (2) with P(i,t) = Pg(i,t). The full posterior for these nc + 11 parameters, up to a
constant of proportionality, is then explored via MCMC as described below and in Section 7
(results are also given in Section 7).

For ease of exposition we also introduce the following notation. Let F7 denote the set of
all farms which at some point in time became an IP with Fo denoting the set of all farms which

at some point in time were culled either as a CP or DC. Clearly, F;z N Fp = 0.

S1.2. Further Reducing Computational Expense

In the 2001 UK epidemic there were 3609 CPs and 1442 DCs (Anderson, 2002), so the
imputation of the infection status for these farms could potentially involve the inclusion of an
additional 5051 parameters. Even with the techniques described in Section 5, naive implemen-
tation of the MCMC algorithm with these additional parameters is prohibitive computationally.
In this section we explain how these updates can be performed in a reasonable time by calculat-
ing the likelihood ratio corresponding to the current and proposed new infection state for any
one farm directly rather than calculating the two likelihoods independently before dividing one
by the other.

At any given point in time, ¢, a culled farm can be in one of four states, S,&,Z, R. Whilst
the farm is in states £ and R it makes no contribution to the likelihood since it can neither be
infected nor can it infect other farms. Thus, it is the Z and S states (and the transitions to and
from them) that are the key states in terms of the corresponding likelihood contribution. In
addition, since 0 < Cg(k) < 9 we know that if we update this parameter then the majority of
the likelihood contribution for farm k (i.e. before t = Cr(k) — 9 and after Cr(k)) will remain
unchanged. Note that there is no likelihood contribution on the day of cull since we assume that
upon cull the farm is neither infectious nor susceptible. Further, in the general case in which
we propose updating Cg(k) = c¢1 to Cr(k) = ca, say, the corresponding likelihood contribution
changes only for times ¢t = Cr(k) — me, ..., Cr(k) — 1, where m. = max(c1, c2). The change in
likelihood is therefore a ratio of products over these times of the likelihood contribution of farm
k which, in turn, depends upon the current or proposed new state.

Here, we let Lgc) (c) denote the contribution to the likelihood of culled farm k, at t = C’gc) —c
if, at time t = ng) —c+ 1, k is a susceptible farm (i.e. k € S(C;zk) — ¢+ 1)). Similarly, we let
Lg)(c) denote the contribution to the likelihood of culled farm k, at ¢ = ng) — c if, at time
t= C’gc) — c+ 1, k becomes newly exposed (i.e. k € S(Cgc) —c+ 1)\ S(C’g) —c)). We also let
L(Ik)(c) denote the contribution to the likelihood of culled farm k, at ¢ = CI(?I?) — c if, at time
t= C’I(-f) —c¢, k is infectious (i.e. k € I(C’I(-f) —¢)). Finally, we let LY (¢) denote the contribution
of culled farm k at time ¢t = Cl(f) — ¢ if farm k is neither susceptible nor newly exposed at time

t= C’gc) — ¢+ 1, nor infectious at time ¢t = C’gc) —c.
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Clearly,
L (e) =1,

LE () =1-Ps(k,C{ —c),

and

LY (c) = Pp(k, Cf = o).

Finally, L(llf)(c) is given by

L(Ik)(c) = [1 1-Pacy - [ PelGCY -0
i€eS(t+1) S ACES VA
—1

k). k k). k
X H 1-— P}(S,Q)(z, 01(2) —c) H Pg; (, C;z) —c)
ieS(t+1) ieE+1N\E®)

- [1 1-PYGcy -0 ] PeGCy -0

ieS(t+1) ieEt+1N\E®)
—1
x I[1 PSG.cw —o (S1.1)
ieEt+1\E(t)
where,
Ppi(i,t) =1 —exp —Szz(N}/’S;wS,%) > TN;’ZJTKB(dij)
i€Z@)
PE (i t)=1—exp —552(N?S;¢S7¢S) > TN;pTKB(dij)
J€L(t)\{k}
and

PY)(i,t) =1 —exp {—Sﬁ(N}/’S s, ¢S)TN§’TKB(dik)} .

S1.3. Partitioning the Summations with Culled Farms

The methodology of Section 5 whereby likelihood computation speed was drastically in-

creased by avoiding calculating the entire likelihood every time a parameter was changed as

part of the MCMC algorithm, is reliant on the epidemic event history being static over MCMC

iterations. Of course, if the infection status of culled farms are allowed to vary, this has implica-

tions for the use of this methodology. However, although some increase in computation time is

necessary when dealing with variable infection times for culled farms, it is possible to combine

the methodology of Section 5 with that of Section S1.2 to produce an algorithm which runs in

reasonable time.
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The purpose of the work of Section 5 was to avoid having to calculate (7) in its entirety.

To extend this this methodology, we rewrite (7) as

)= T {1 —-Psti,0} [T {0 - Ps(i,t)}
i€Cy i€C2
where C1 = {i € S(t+1):i ¢ Foporic Fp &t < C’éi)—lo} and Co = {i € S(t+1) : i €
Fo &t > C8 —10}.

It is easy to see that [[,c., {1 — Pg(i,t)} consists of a product over farms at points in time
with a static event history. That is, C1 consists of all susceptible farms which are not culled,
and culled farms for the period up to 10 days before culling (i.e. points in time when a change
in Cr does not affect the likelihood). It is therefore possible to use the techniques described in
icc, 11— Pp(i,t)} is calculated “in full,” as a
new likelihood calculation is required depending on the value of Cg at any given time.

The contributions to the likelihood, Lgc)(c) and Lgf) (c) are calculated in full each time a

new likelihood calculation is required. L(llf)(c) is treated as above, by splitting the likelihood

Section 5 to calculate this quantity. The factor ]

into parts that have variable event history, and parts that do not. To see this we rewrite (S1.1)

as
) = {1—P33 i, C® } 11 {1—P33 i, C® )} [ PouGcd -
ieCy ieCz ieEt+1N\E )
—1
X [I Ps(iCE -0

icEt+1N\E(t)

Once again, HiEC1 {1 — Ppgs(i, C(Ck) - c)} can be calculated using the techniques of Section 5,
and [[,cc, {1 — Pps(i, C(Cf“) — c)} calculated ‘in full’.
The above methodology is framed within the context of the model of (6), but this can be

easily extended to other models which fall under the general framework of (1).

S2. Model Comparison

The Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002) was used to provide
evidence that the newly proposed models here provided an improvement over that of Keeling
et al. (2001). The DIC obtained for the model of Keeling et al. (2001) was 1542.11; for the
model Pr, 1302.29; and for model Pp, 927.22. These results would therefore imply that Pg
provides a better fit to the data than Pp and the original model of Keeling et al. (2001).

S3. Estimation Procedure Simulation Studies

In order to ascertain that the MCMC estimation procedure was working correctly, two
simulation studies were carried out. The first of these was used to assess that the parameter

estimation is satisfactory in the case where the model is true. To this end, twenty epidemics

)
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were simulated using model Pg and then parameters estimated from this simulated data. The
posterior means estimated from the UK 2001 epidemic were used as the parameter values in
the simulations (Table 1). The simulations used only IP culling so no cull date imputation
was required. (N.B. Some simulations produced no, or very small epidemics, and thus little
data. When this occurred the epidemic was re-run in order to produce more informative data.)
It was found that posterior means for all estimated parameters were distributed around the
true parameter values. For 19 out of the 20 simulated epidemics, the HPDI for all parameters
contained the true value. The exceptions to this was one parameterisation which underestimated
Ts with a 95% HPDI of (0.00,2.24) x 107! against a true value of 2.62 x 10™'. Results for a
typical (randomly chosen) parmeterisation are shown in Table 2. A similar study showed similar
results in terms of parameterising epidemics simulated from model Pr (see Section 7) which
used the tracing data kernel of Keeling et al. (2001).

A second simulation study consisted a stochastic ring-culling procedure wherein a fixed
proportion, prc of farms within 10km of any IP were culled the day after the IP had been
culled. A proportion of farms were culled, as opposed to culling all farms within the given
radius since entire ring-culling, even for small rings, tends to produce a very large number of
culls. This results in a large number of C'r parameters and leads to very long computation
times. prc = 0.1 was used (although other values produce similar results). Ten simulations
were carried out with the posterior means estimated from the 2001 UK epidemic as parameter
values (Table 1). Then ten simulations were carried out with the same parameter values, except
Ts and T. were multiplied by 2.5. These two sets of simulations were used to test the estimation
of \¢ for different levels of the true Ac.

The main parameters of the model were parameterised well, similarly to the first study.
The posterior mean estimates of A¢, along with the true values, are shown in Table 3. As we
can see, although there is a large uncertainty in some of the estimates of \¢, the estimation

procedure appears to work reasonably well.

S4. Assessing Control Strategies

Many simulation studies have been undertaken in order to determine the effectiveness of
different control strategies for the 2001 UK FMD epidemic (e.g. Keeling et al., 2001, 2003;
Tildesley et al., 2006; Ferguson et al., 2001a,b). However, the models used in these papers were
parameterised under a classical framework and, hence, uncertainty about the parameters is not
fully propagated through to the predictive simulations that underpin the conclusions drawn.
Here, we demonstrate how the Bayesian paradigm provides a natural framework for predictive
simulation and describe two simulation studies used to explore a ring-culling strategy for the
UK epidemic. We base our simulations on the full model of (6) which includes spark infections,
non-linearity in the susceptibility and transmissibility of farms, and the change-point kernel.
(Note that we are not suggesting that ring-culling would be a useful or efficient FMD control
policy. The purpose of the simulation study is purely illustrative of the idea of simulation from

the posterior.)
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The Bayesian approach to predictive simulation is to produce single epidemics for each of
a series of parameter realisations drawn from the posterior distribution. This contrasts with
the classical approach in which all simulations are based upon the MLE or some other suitable
point estimate. The Bayesian approach therefore incorporates parameter uncertainty into the
simulation. For comparison, we compare our results with those obtained by simply taking the
posterior mean for each parameter as a fixed basis for all predictive simulations.

Epidemics are simulated in two counties, Cumbria and Devon, which were key to the 2001
epidemic but show different topographic and farm-type distributions. For the purposes of these
simulations the two regions are treated in isolation.

Our ring-culling model assumes that IPs are culled 10 days after infection, and the day
after an IP is culled, all animals on cattle and/or sheep farms within a radius d,. of the culled IP
are also culled. Our aim is to determine the optimal culling radius. Each simulation begins with
the infection of ten farms chosen uniformly from the susceptible set, and ends when there are
no more infected farms in the region. One thousand simulations using model Pp were carried
out for é,. € {0,250, ...,3000,4000,...,10000} in both Cumbria and Devon.

Tables 4 and 5 show results for Cumbria epidemics simulated from the posterior distribution
and posterior mean (Table 1) for model Pg. These tables show the mean number of farms on
which animals were culled (either as a result of being IP culled or ring-culled), mean number of
animals culled, and mean length of epidemic, over all simulated epidemics, for ring-culls up to
3000m in radius. Tables 6 and 7 show similar results for Devon.

Figure 6 shows plots for the number of farms on which animals were culled, number of
animals slaughtered, and length of epidemic against d,., for the both the simulations based
upon draws from the posterior density, and those which used the posterior mean as a basis for
the simulations, in Cumbria. Figure 7 provides similar plots for Devon. In Figures 6 and 7
mean results for each §,. are shown as a continuous line, and individual simulation results are
shown as points.

Perhaps the first thing to notice when comparing Tables 4 and 5, and, Tables 6 and 7, is that
the posterior mean simulations tend to produce much more intense epidemics than the posterior
sampled simulations; they result in more farms being affected, more animals being culled, and
longer epidemics. The differences between the posterior mean and posterior simulations are
larger in situations when less culling is carried out.

In terms of optimising outcomes, it is clear, whether we consider the posterior mean, or
posterior sampled, simulations, the larger the ring-cull, the shorter the epidemic. For example,
in the posterior mean Cumbria study, length of epidemic is reduced from an average of 107.1
days with no ring-cull to 27.5 days with a 3km ring-cull; in the posterior sampled Cumbria
study, the reduction is from 77.6 days to 24.8 days. Such an outcome may be of interest if we
wish to minimise the effect of a foot-and-mouth disease outbreak on the whole UK economy. It
is plain to see, however, that maximising the ring-cull does not optimise our other two criteria.

In terms of these two outcomes, basing the two simulations on the posterior mean and

ignoring parameter uncertainty appears to give quite misleading results. For example, in the
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case of Cumbria using the posterior mean simulation study, the optimal ring size appears to
be 1500m, both in terms of minimising affected farms, and minimising numbers of animals
culled. This also results in a sizable improvement over no ring-culling (an average of 178.7 farms
affected with 1500m ring-cull against 261.4 farms affected with no ring-cull; and 86391.2 animals
culled with 1500m ring-cull against 263585.7 animals culled with no ring-cull). However, in the
posterior sampled simulations we see far fewer farms affected and animals culled, for given
ring-cull sizes, than for the posterior mean simulations. For example, in the posterior mean
simulations with no ring-cull we see an average of 106.3 farms affected by the epidemic (261.4
in the posterior sampled simulations) and 103968.1 animals culled on average (263586.7 in the
posterior sampled simulations). Also, if posterior sampling is used then ring-culling tends to
increase the number of farms on which animals are culled (there is a slight reduction in the mean
number of farms culled against no ring-culling if a ring-cull of 750m is used; 104.7 against 106.3),
suggesting that perhaps no ring-culling should be carried out if we consider this our primary
response. If we wish to minimise the number of animals culled, these simulations suggest a ring-
cull of 1250m (similar to the posterior mean simulations). However, the improvement is not as
drastic in terms of animals saved as for the posterior sampled simulations (55463.8 with 1250m
ring-cull against 103968.1 with no ring-cull) and, of course, this strategy has a detrimental effect
in terms of the total number of farms on which animals are culled (120.9 with 1250m ring-cull
against 106.3 with no ring-cull).

Figure 6 shows that, in the posterior mean simulation with no (or small scale ring-culling)
both the distributions for the number of farms affected, and the numbers of animals culled, are
bimodal. This is, of course, a common trait in stochastic models (see for example, Andersson
and Britton, 2000). Consider, for example, the distribution of the total number of farms infected
and/or culled over the 1000 simulations in which there was no ring-culling for the posterior mean
and posterior sampled Cumbria simulations, shown in Figure 8. We can see that, in the case of
the posterior mean simulations, one mode of this distribution is centred around very small scale
epidemics of around 10-50, and the other mode is centred around larger epidemics of around
800 - 950 farms. Ring-culling appears to help by making it more likely that the potentially large
epidemics are stamped out early.

In the posterior sampled simulations, however, the distribution of farms affected by the
epidemic (and distribution of numbers of animals culled) when there is no ring-culling, although
still bimodal, is less polarised. That is, there is a mode around epidemics of size 10-50 (ten being
the initial number of farms infected) and a mode around 500-600. However, the distribution
has visible mass between these two modes and spreads out up to around epidemic size 950.
(This may give the strange initial impression that the posterior sampled simulations actually
have less variation than the mean sampled simulations. This is, of course, not true but due
to the fact that the extra variation is realised in a way that produces more mass between the
two modes. Furthermore, since we have only a finite number of simulations, in the case of the
posterior sampled simulations, the mass existing between the two (flatter) modes means the

upper tail is less protracted. If a larger number of posterior sampled, as well as posterior mean
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simulations, without ring-culling are run, then the distribution of the number of farms affected
by the epidemic does visibly encompass that of the distribution obtained from the posterior
mean simulations.) Thus, if we consider the parameter uncertainty inherent in the posterior
sampled simulations, we conclude that the consequences of having no ring-cull are less serious
than in the posterior mean simulations.

In Devon, the differences between posterior sampled, and posterior mean, simulation stud-
ies are less marked. Results for the posterior mean simulations (Table 6) imply that a small
improvement can be made in the number of animals culled by using a ring-cull of size 750m
(102015.2 animals), as opposed to no ring-cull (123268.4 animals). However, this improvement
is small compared to either the posterior sampled, or indeed posterior mean, results in Cumbria.
There appears to be no improvement to be made on no ring-culling for the numbers of farms
affected (175.2).

In the case of the posterior sampled simulations for Devon, we see much smaller epidemics
(for simulations with no ring-cull, an average of 67.3 farms affected and 44863.8 animals culled)
than in the case of the posterior mean simulations. This implies, once again, that taking account
of parameter uncertainty, at least in this situation, should drastically reduce our fear about the
likely damage of an outbreak. In the case of the posterior sampled simulations for Devon, once
again, there appears to be no improvement to be made from any sort of ring-cull.

One general conclusion here seems to be that taking into account parameter uncertainty
when devising control strategy can drastically alter our perceptions about potential epidemic
intensity, and it is possible, in certain circumstances, that this may result in a change in rec-
ommended culling policy. (Another possible conclusion is that optimal control policy may vary
quite widely over different regions. For example, in the case of the posterior simulated simu-
lations, if we are primarily interested in minimising the numbers of animals culled, Devon and
Cumbria appear to demand quite different policies.) Of course, as already stated, we do not
present this study as part of any prescription for an actual control policy, but to show how the
use of distributional, rather than point, parameter estimates can be used to explore epidemic

and control strategy dynamics.
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Appendix: Expressions for ( terms of Section 5.

5‘2, for z € {1,2,3} and q € {s,c} for use in (8)

me o= 30 Nt
ieS(t+1)
B = D> NS In(Na)
ieS(t+1)
HIONED DI el A
ieS(t+1)
W = 3 Nt
ieS(t+1)
B0 = 30 Nei®In(Ney)
ieS(t+1)
1
B0 = 3 N (V)
ieS(t+1)

éqz)(j7 t), for z € {1,...9} and ¢ € {s,c} for use in (10)

0G0 = D digNgtsa
ieS(t+1)
DG = > diyNgYsaln(dy)
ieS(t+1)
1
Loy = > §dist,iws,q1n2(dij)
ieS(t+1)
960 = Y diNei"seIn(N,,)
ieS(t+1)
éqr) (j7 t) = Z diqu,in’q ln(dij) 1H(Ns,i)
ieS(t+1)
1
06 = D SNt n(dig) In(Ne)
ieS(t+1)
260 = > diyNg'san*(N)
ieS(t+1)
206, = Y diNei"saIn(diy) In*(N.y:)
ieS(t+1)
1
Wen = > §diqu,in’q1n2(dij)1n2(Ns,z‘)

ieS(t+1)
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Figure 4: Example change-point distance kernels, K 4(d;;) : (a) b = —1.0, éo = 0; (b)
b=—14, 5 =0; and (c) b= —0.8, §y = 15; ko = 0.2
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Figure 5: Example susceptibility functions against number of sheep, SsNi,SwS’s :

(2) Sy = 2.0, g, = 1.0; (b) S, = 1.0, ¢bg , = 1.0; (¢) S, = 20.0, ¥, = 0.5; and

(d) S5 = 40.0, ¢g , = 0.25. N.B. The same examples hold for equivalent sheep/cattle
and/or susceptibility /transmissibility functions.
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Table 2: Statistics of marginal posterior densities for simulation study under Pgp

Parameter Posterior Mean True
Estimate Value
(95% HPDIs)
b -1.67 -1.66
(-1.73, -1.59)
T, 2.09x107! 2.62 x10~1
(0.01, 4.86)><10_1
T, 1.65 x1071 1.22x1071
(0.01, 5.16)x10~*
S, 1.00 1.00
Se 7.23 7.14
(2.01, 12.2)
€ —2.05 x 10710 —2.45 x 10710
(-60.1, 0.00)x 1019
ko 1.39x107° 1.85x107°
(0.41, 2.46)x 1075
0o 1038 719
(595,1565)
wT,S 0.14 0.074
(0.000, 0.30)
wT,c 0.36 0.32
(0.000, 0.79)
Vg s 0.89 0.91
(0.81, 0.99)
ws,c 0.90 0.87

(0.74, 1.07)
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Table 3: Results of simulation study to test estimation of A¢

UK 2001 epidemic UK 2001 epidemic
parameters parameters but with
increased transmissibility
Posterior Mean True Posterior Mean True
Estimate Value Estimate Value
(95% HPDISs) (95% HPDIs)
0.066 0.036 0.184 0.135
(0.000, 0.121) (0.072, 0.260)
0.058 0.047 0.142 0.158
(0.000, 0.128) (0.058, 0.231)
0.032 0.048 0.161 0.175
(0.000, 0.144) (0.089, 0.264)
0.031 0.068 0.158 0.230
(0.000, 0.095) (0.101, 0.257)
0.039 0.030 0.223 0.176
(0.000, 0.136) (0.093, 0.291)
0.024 0.034 0.173 0.187
(0.000, 0.091) (0.065, 0.282)
0.029 0.031 0.172 0.189
(0.000, 0.086) (0.103, 0.289)
0.056 0.073 0.159 0.183
(0.000, 0.076) (0.098, 0.239)
0.029 0.020 0.163 0.147
(0.000, 0.087) (0.077, 0.241)
0.041 0.049 0.173 0.222
(0.000, 0.104) (0.115, 0.276)
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Table 4: Statistics of interest for Cumbria posterior mean simulation study

Distance Mean no. of Mean no. of Mean end date
(m) culled farms culled animals of epidemic
0.0 261.4 263585.7 107.1

250.0 273.7 253063.4 100.8
500.0 271.1 211423.4 91.9
750.0 251.5 169931.7 76.7
1000.0 223.6 133016.8 63.3
1250.0 198.4 105190.3 51.7
1500.0 178.7 86391.2 43.3
1750.0 193.5 89366.8 38.7
2000.0 212.6 92116.4 35.6
2250.0 226.1 97712.2 33.1
2500.0 237.4 101159.0 294
2750.0 260.1 112127.8 28.9
3000.0 284.1 118662.5 27.5

Table 5: Statistics of interest for Cumbria posterior sampled simulation study

Distance Mean no. of @ Mean no. of Mean end date
(m) culled farms culled animals of epidemic
0.0 106.3 103968.1 77.6

250.0 118.0 105975.1 77.6
500.0 124.0 90692.8 67.0
750.0 104.7 62945.7 52.3
1000.0 111.5 58122.6 43.7
1250.0 120.9 55462.8 38.9
1500.0 132.7 59500.3 36.3
1750.0 148.9 63747.6 31.8
2000.0 178.5 73332.5 30.8
2250.0 197.1 81218.1 28.2
2500.0 218.8 90878.6 28.4
2750.0 240.7 100121.9 26.4
3000.0 261.8 106444.3 24.8
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Table 6: Statistics of interest for Devon posterior mean simulation study

Distance Mean no. of @ Mean no. of Mean end date
(m) culled farms culled animals of epidemic
0.0 175.2 123268.4 1474
250.0 198.4 116937.5 132.7
500.0 228.9 112825.0 120.1
750.0 254.8 102105.2 97.7

1000.0 292.4 108255.0 83.2
1250.0 328.4 114434.2 69.4
1500.0 375.8 119314.9 60.5
1750.0 451.1 141117.6 56.5
2000.0 527.3 159920.1 53.3
2250.0 587.9 170259.6 48.9
2500.0 647.7 182977.1 46.1
2750.0 712.7 199241.0 43.4
3000.0 819.3 229332.9 42.7

Table 7: Statistics of interest for Devon posterior sampled simulation study

Distance Mean no. of @ Mean no. of Mean end date
(m) culled farms culled animals of epidemic
0.0 67.3 44863.8 85.6
250.0 83.6 46087.5 83.4
500.0 103.4 46570.1 77.5
750.0 150.6 56231.8 71.0

1000.0 183.7 66092.7 62.1
1250.0 229.6 77961.0 53.9
1500.0 295.3 91070.0 50.5
1750.0 348.1 106075.8 45.7
2000.0 419.6 123564.6 44.0
2250.0 494.4 140347.6 42.8
2500.0 562.1 155478.7 40.8
2750.0 634.7 174292.3 38.5
3000.0 713.9 194370.1 37.8
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Figure 7: Results for Devon Simulation Study
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Figure 8: Final epidemic size distributions under no ring culling for Cumbria simulation
Study



