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Abstract: The penalized least squares method with some appropriately defined

penalty is widely used for simultaneous variable selection and coefficient estimation

in linear regression. However, the efficiency of least squares (LS) based methods

is adversely affected by outlying observations and heavy tailed distributions. On

the other hand, the least absolute deviation (LAD) estimator is more robust, but

may be inefficient for many distributions of interest. To overcome these issues, we

propose a novel method termed the regularized rank regression (R3) estimator. It

is shown that the proposed estimator is highly efficient across a wide spectrum of

error distributions. We show further that when the adaptive LASSO penalty is

used, the estimator can be made consistent in variable selection. We propose using

a score statistic-based information criterion for choosing the tuning parameters,

which bypasses density estimation. Simulations and data analysis both show that

the proposed method performs well in finite sample cases.
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viariable selection.

1. Introduction

Consider the linear regression problem described by the model

yi = a0 + xT
i β0 + εi, i = 1, . . . , n,

for independent and identically distributed observations {yi,xi}, where εi follow
some distribution with pdf f and cdf F , yi ∈ R is a univariate response variable,
and xi = (xi,1, . . . ,xi,p)T is a vector of p covariates. We assume that xi and
εi are independent. We are interested in estimating the unknown vector β0 =
(β0

1 , . . . , β0
p)T and identifying any nonzero components. For notational purposes,

the set of nonzero entries in β0 is labeled as A with A = {k : β0
k 6= 0}.

Recently, a number of approaches, formulated to simultaneously estimate A
and β via the penalized likelihood method, have gained increasing popularity.
See, for example, the nonnegative garrote (Breiman (1995)), LASSO (Tibshirani
(1996)), SCAD (Fan and Li (2001)) and LARS (Efron, Hastie, Johnstone and
Tibshirani (2004)). A comprehensive account of these recent developments can
be found in Fan and Li (2006).
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Since such approaches aim to build sparse models without sacrificing ac-
curacy, the oracle property, emphasized by Fan and Li (2001), is particularly
relevant. Procedures possessing this property basically allow one to estimate
the unknown coefficient vector β as if the set A were known in advance. More
precisely, we say a variable selection and coefficient estimation procedure π is an
oracle estimator if the estimator β̂(π) has the properties (1) Selection consistency:
P({k : β̂k(π) 6= 0} = A) → 1; (2) Estimation efficiency:

√
n(β̂A(π) − β̂A) →

N(0, ΣAA), where ΣAA is the asymptotic variance of the MLE fitted to the sub-
model using the covariates in A.

Considerable attention has been given to the least squares (LS) method.
When combined with a suitably defined penalty function such as the adaptive
LASSO penalty or the SCAD penalty on the regression coefficients, these estima-
tors are shown to be consistent variable selection estimators (Fan and Li (2001),
and Zou (2006)). However, the efficiency of the estimators via LS cannot be
guaranteed. It is now well understood that the least squares method is sensitive
to outliers, and is much less efficient if the error distribution has heavier tails
than the normal distribution. In particular the asymptotic efficiency, introduced
later, of the LS estimator is zero if the error distribution is Cauchy (Lehmann
(1983)). On the other hand, formulation of a fully efficient estimator requires
estimation of the unknown pdf f , which creates extra technical difficulties.

At first glance, a natural alternative seems to be the least absolute deviation
(LAD) estimator (Wang, Li and Jiang (2007)), which can be more robust when
f deviates from the normal. Nevertheless, the efficiency of the LAD compared
to the MLE is proportional to the density at the median. For the Gaussian
error case, the distribution of the greatest interest, this quantity is only 0.637.
And, worse still, the efficiency can be arbitrarily small if f(0) is close to zero
(Hettmansperger and McKean (1998)).

To overcome some of the above issues, Zou and Yuan (2008) proposed the
composite quantile regression (CQR) estimator by averaging K quantile regres-
sions. They showed that CQR is selection consistent and can be more robust
in various circumstances. Note that CQR can be seen as a special case of the
weighted sum of quantile functions (Koenker (2005, Chap. 5.5)). In this paper,
we propose an equally efficient estimator compared with CQR, referred to as
the R3 (Regularized Rank Regression) estimator. R3 is a simple yet attractive
estimator that combines properties of LAD and LS. The basic idea is to take
pairwise differences among observations and then to fit the differences by LAD.
This procedure is followed by applying the penalized least squares method via
the adaptive LASSO penalty (Zou (2006), and Zhang and Lu (2007)). The LAD
step can be seen as a rank-based estimator via Wilcoxon scores, to minimize
the residual dispersion function given in Jaeckel (1972). The rank estimator is
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generally more robust than LS and more efficient than the LAD estimator, and
it is consistent and asymptotically normal. In addition, efficiency need not be
sacrificed when the rank estimator is used in lieu of LAD or LS (Hettmansperger
and McKean (1998)). Along with its simplicity, this formulation permits us to
take advantage of the fast LARS algorithm (Efron et al. (2004)) for computing all
the solutions on the regularization path. We show that when the penalty param-
eter is appropriately chosen, the R3 method is consistent in variable selection,
and its asymptotic efficiency is the same as the oracle CQR. When compared to
the LS estimator, its efficiency is never below 0.864, which sharpens the bound
0.703 given in Zou and Yuan (2008). We propose further the use of a novel
score statistic-based information criterion to choose the penalty parameter. It is
shown that this criterion gives consistent results in terms of variable selection. At
the same time, the proposed approach gives estimates with the same asymptotic
covariance as that of the rank estimator as if the true model were known.

Some aspects of our approach echo to a degree those of the least squares
approximation (LSA) in Wang and Leng (2007), who investigated a generalization
of the LARS formulation in general parametric models. Rank-based variable
selection is an active field of research. In independent work, Johnson and Peng
(2008) and Wang and Li (2009) studied rank-based regression with SCAD. These
approaches possess the oracle property. However it seems difficult, although not
impossible, to develop a path-following algorithm for SCAD penalized methods,
because of the nonconvexity of the penalty function (Fan and Li (2001)). Our
approach, on the other hand, makes use of the fast Lars-Lasso algorithm in Efron
et al. (2004) and can be quickly implemented to obtain the solution path.

The rest of the paper is organized as follows. Section 2 introduces the R3

procedure and gives its asymptotic properties. The formulation of R3 permits us
to develop an efficient path-following algorithm to compute the entire solution
path of the estimator, which is given in Section 3. In the same section, we propose
a score statistic-based information criterion to choose the tuning parameter. We
present some simulations and two data analyses in Section 4. Concluding remarks
can be found in Section 5. A set of R functions are freely downloadable from
http://www.stat.nus.edu.sg/~stalc. Online supplement to this paper can be
found on http://www.stat.sinica.edu.tw/statistica.

2. The Regularized Rank Regression Estimator

Let yij = yi − yj and xij = xi − xj . We propose the initial estimator

β̃ = argmin
β

D(β), where D(β) = (2n)−1
n∑

i,j=1

∣∣∣yij − xT
ijβ

∣∣∣, (2.1)

http://www.stat.nus.edu.sg/~stalc
http://www.stat.sinica.edu.tw/statistica
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followed by an updated estimator obtained by minimizing the regularized least
squares objective function

β̂λ = argmin
β

(β − β̃)T XT X

n
(β − β̃) + λ

p∑
k=1

λk|βk|, (2.2)

where λ and λk are positive tuning parameters and X is the design matrix.
The individual weights on entries of β are introduced to alleviate the effect that
a uniform penalization parameter for all the coefficients may fail to identify a
consistent yet efficient model (Zou (2006)). We can also take the SCAD penalty
in the R3 formulation and all the theoretical properties will continue to hold.
The initial estimate mimics LAD by taking xij and yij as the observations, while
the updating estimator is typical of a penalized least squares problem. Note that
the objective function D(β) is free of the intercept α from linear regression. The
objective function D(β) can be seen as Jaeckel’s (1972) rank dispersion function
for Wilcoxon scores

β̃ = argmin
β

(n)−1
n∑

i=1

{
R(yi − xT

i β) − (n + 1)
2

}(
yi − xT

i β
)
, (2.3)

where R(zi) is the rank of zi among z1, . . . , zn. For this reason, we refer to β̃ as the
Rank Regression (R2) estimator and β̂λ as the regularized rank regression (R3)
estimator. Note that the R2 estimator is scale and affine equivariant. A simple
estimator of α0 can be taken as the median of the residuals α̂ = med{yi −xT

i β̂},
once we have evaluated β̂.

To study the asymptotic properties of R3, we make the following assump-
tions: (A1) Cn = n−1XT X = n−1

∑n
i=1 xT

i xi →P C as n → ∞; (A2) maxi=1,...,n

‖xi‖/
√

n →p 0 as n → ∞; (A3) Eε{D(β)} is uniquely minimized by β0 ∈ Rp,
where the expectation is with respect to the distribution of ε. Assumptions A1
and A2 are routinely made in the linear regression modeling literature. Assump-
tion A3 states that Eε{D(β)} is uniquely minimized by β0. The asymptotic
properties of the R2 estimator is given in the following theorem.

Theorem 1. Under conditions A1−A3, we have
√

n(β̃ −β0) →d N(0, 1/(12ω2)
C−1) for n → ∞, where ω =

∫
f2(t)dt.

Asymptotically, CQR has the same distribution as the rank regression estimator.
Note that the asymptotic variance of R2 and CQR is the same as the Hodges-
Lehmann estimator. The scale multiplier 1/{12(

∫
f2(t)dt)2} is a measure of

scale that is the rank analogue of the variance in the least squares procedure.
The constant (

∫
f2(t)dt)2 indicates the height of the density of Y1 − Y2 at the

origin. Defining the asymptotic relative efficiency of the R2 to LS as e(β̃, β̂
LS

),
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Theorem 6.1 of Lehmann (1983) showed that infFS e(β̃, β̂LS) = 0.864 where
FS denotes cdf’s which have finite Fisher information. This result tightens the
bound 0.7026 given by Zou and Yuan (2008).

Note that the MLE oracle estimator is asymptotically N(0, I−1
f C−1

AA) where
If =

∫
[f ′(t)′]2/f(t)dt is the Fisher information. The absolute efficiency of R2,

defined as the efficiency of R2 compared to that of the MLE, is thus given by
e(β̃, β̂

MLE
) = I−1

f 12(
∫

f2(t)dt)2, The absolute asymptotic efficiency of R2, to-
gether with that of R2 compared to LS and LAD, are documented in Table 1 for
a number of distributions, which is available in the online supplementary materi-
als. Generally speaking, R2 is almost as efficient as LS for normal errors but can
be more robust for other errors; and R2 is asymptotically much more efficient
than LAD for many distributions of interest.

To simplify computation, we pre-select {λk}’s as λk = |β̃k|−1, k = 1, . . . , p.
For such λk, we define an = max{λk : k ∈ A}, which is of Op(1), and bn =
min{λk : k ∈ AC} which is of Op(nτ/2) → ∞, since the {β̃k}’s are

√
n-consistent.

The asymptotic properties of R3 are in the following theorem.

Theorem 2. Assume that
√

nλan → 0, and that
√

nλbn → ∞. Then under
Assumptions A1−A3, the R3 solution β̂λ satisfies

1. Selection consistency: P({k : β̂λk 6= 0} = A) → 1;
2. Asymptotic normality:

√
n(β̂λA − β0

A) → N(0, 1/(12ω2)C−1
AA), where ω =∫

f2(t)dt and CAA is the submatrix of C whose entries correspond to the
variables in A.

Remark 1. For model selection, the LSA in Wang and Leng (2007) requires
a consistent estimator of 1/(12ω2)C−1, the asymptotic covariance matrix of β̃.
Here this condition is relaxed and we only need a consistent estimator of C with-
out estimating 1/(12ω2). Therefore, we avoid density estimation for ω. This may
seem a trivial point at first glance but it clearly has implications in computa-
tional implementation, especially because density estimation requires a careful
choice of the bandwidth (Silverman (1986)).

3. Computation and Tuning

The initial estimate β̃ can be efficiently computed, e.g., by the R function
rq in library quantreg. Letting ỹ = Xβ̃, we can write the objective function in
(2.2) as

1
n

(ỹ − Xβ)T (ỹ − Xβ) + λ

p∑
k=1

λk|βk|.

This is a standard penalized least squares problem, whose solution path can be
computed by the fast LARS algorithm at a computational complexity equal to a
single least squares fit.
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Let the score statistic for β̂λ be

Tλ = 3n−1GT (β̂λ)C−1
n GT (β̂λ), where G(β̂λ) =

∂

∂β
D(β)

∣∣∣
β=β̂λ

. (3.1)

In this definition, this partial derivative is set to zero at zero. For tuning param-
eter selection, we propose λ to minimize the following score information criterion
(SIC): SICλ = Tλ+dfλ log log(n), where the degrees of freedom dfλ is the number
of nonzero entries in β̂λ. An advantage of SIC is that we do not need to estimate
the nuisance parameter ω, whose estimation requires density estimation. The
use of the score statistic seems novel in the penalized model selection literature.
The consistency of the proposed SIC method can be proved in a way similar to
Wang and Leng (2007), and the proof is in the online supplement.

Remark 2. Mimicking the Bayesian information criterion (BIC), we can de-
fine an alternative information criterion (Wang and Leng (2007)) as 12ω2(β̂λ −
β0)T Cn(β̂λ−β0)+dfλ log(n)/n. However, in this formulation, density estimation
is required to obtain ω. An alternative criterion is (β̂λ − β0)T Cn(β̂λ − β0) +
dfλ log(n)/n, but this information criterion does not perform well in small sam-
ple cases as the results can be sensitive to the value of ω (results not shown).
Although the proposed SIC method avoids density estimation for ω, density es-
timation is still mandatory for statistical inference of the estimated coefficients.
In practice, we use a consistent estimator of ω for statistical inference on the
estimated coefficients (Terpstra and McKean (2005)). An alternative induced
smoothing approach for inference in this context can be found in Brown and
Wang (2005, Sec. 5). This approach can be applied after the model is identified
by R3. This line of research will be pursued elsewhere.

4. Simulation and Data Analysis

We study the finite sample performance of R3 in this section via a simulation
study and two data analyses: one on the Boston housing data set and the other
on the Diabetes data set. The analyses imply that the R3 method provides more
accurate estimates when the normality assumption on the error distribution fails
and, at the same time, provides comparable results to those of the penalized least
squares method when the error distribution comes from the normal.

4.1. Simulation

For comparison purposes, we include in this section the adaptive LASSO
estimates by using LS and LAD as the loss function, respectively. More precisely,
these estimators are obtained by minimizing L(β) + λ

∑p
k=1 λk|βk|, where for

LS, L(β) is the least squares criterion, and for LAD, L(β) is the least absolute
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deviation loss. We also compare R3 with CQR (Zou and Yuan (2008)), the SCAD
estimator (Johnson and Peng (2008), and Wang and Li (2009)), and another
penalized rank (PR) estimator suggested by two anonymous referees which solves
minβ(2n)−1

∑n
i,j=1 |yij −XT

ijβ|+ λ
∑p

j=k λk|βk|. The parameters {λk} are set in
a fashion simialar to those for R3. Following Zou and Yuan (2008), we fit the
model using the generated data set and choose the tuning parameter via an
independent validation set as an alternative to SIC. This is referred to as cross
validation and, for the methods compared, we denote them as R3-CV, LAD-
CV, LS-CV and CQR-CV. These methods are compared to R3-SIC and PR-SIC,
where SIC is used for tuning. Note that the simulation scheme is in favor of cross
validation as an additional data set is used for choosing the tuning parameters.
For CQR, we follow the suggestion of Zou and Yuan (2008) by taking the number
of quantiles to be 19 so quantiles at 5%, 10%, . . . , 95% are used. The simulation
setup follows Example 1 in Wang and Li (2009). Specifically, we simulated 500
data sets consisting 100 training observations from the following linear model
y = xT β+σε, where β = (3, 1.5, 0, 0, 2, 0, 0, 0) and x follows a multivariate normal
distribution N(0, Σx) with (Σx)ij = 0.5|i−j|. To choose λ via cross validation,
100 additional observations were generated from the model for each experiment.
We considered three error distributions: the standard normal, the t distribution
with 3 degrees of freedom (t3) and a contaminated normal distribution with 10%
outliers from the standard Cauchy distribution.

Since we knew the true model, we could compute the model error given by
ME = E{(β̂ − β0)T Σx(β̂ − β0)}. In Table 3.1, we report the median relative
model errors (MRME) of various methods compared to the unpenalized rank-
based estimator, the average number of correct zeros (C), the average number of
incorrect zeros (IC), and the percentage of correct models identified. The results
for SCAD are taken from Wang and Li (2009).

A few observations can be made from Table 3.1. First, the proposed R3

method was highly efficient for all the distributions under consideration. Its
efficiency compared to LS and LAD was high. The LS-CV method performed
worst for t3 and contaminated normal distributions. Second, the proposed SIC
method for choosing λ performed satisfactorily and conformed to the asymptotic
results. The cross validation based variable selection procedures (LS-CV, LAD-
CV and CQR-CV) did not seem to give consistent model selection results. This
confirms the findings in Leng, Lin and Wahba (2006). A related discussion on
why cross validation fails in model selection can be found in Wang, Li and Tsai
(2007). Additionally, the SIC method seemed to outperform the BIC approach in
Wang and Li (2009) in terms of variable selection and median model error. This
may be due to the fact that Tλ essentially follows a χ2 distribution for overfitted
models. Third, because of improved performance in terms of variable selection,
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Table 3.1. Estimation performance.

Error No. of Zeros Correct MRME

Distribution Method C IC Fit (%) (%)

Normal SCAD 4.42 0 68.5 43.8

CQR-CV 4.30 0 62.4 44.8

PR-SIC 4.94 0 96.4 33.2

LS-CV 3.93 0 52.0 39.7

LAD-CV 4.05 0 54.2 55.3

R3-CV 4.02 0 54.4 37.0

R3-SIC 4.93 0 94.4 35.1

t3 SCAD 4.46 0 73.0 40.5

CQR-CV 4.30 0 71.2 41.7

PR-SIC 4.94 0 94.6 36.8

LS-CV 4.08 0 57.2 58.1

LAD-CV 4.03 0 54.4 45.6

R3-CV 4.13 0 60.8 37.1

R3-SIC 4.93 0 93.6 36.4

Contaminated SCAD 4.48 0 67.5 40.6

Normal CQR-CV 4.53 0 68.0 44.8

PR-SIC 4.93 0 93.0 38.9

LS-CV 3.92 0 53.2 71.2

LAD-CV 4.04 0 55.0 48.6

R3-CV 4.00 0 58.4 39.5

R3-SIC 4.94 0 94.2 37.9

R3-SIC gave smaller model errors compared to R3-CV. Finally, the performance
of R3-SIC and PR-SIC were similar, as has been discussed for general linear
models in Wang and Leng (2007).

To illustrate the accuracy of the asymptotic variance formula, we estimated
ω using the method in Terpstra and McKean (2005). As in Fan and Li (2001),
the median absolute deviation divided by .6745, denoted by SD in Table 3.2, of
500 estimated coefficients in 500 simulations can be regarded as the true standard
error. The median of the 500 estimated SD’s, denoted by SDm, measures the
performance of the standard errors. The estimated mean bias is also included in
this table. We can see clearly that the R3 estimates were nearly unbiased and
that the inference procedure was satisfactory.

We make a few remarks on the computational issue for R3 and PR. Both
R3 and PR require one to compute the R2 estimator β̃ in order to get λk. As
correctly pointed out by an anonymous referee, a path-following algorithm for the
PR estimator can be derived in a way similar to the quantile regression in Li and
Zhu (2008). However, PR deals with a penalized LAD problem with n(n − 1)/2
observations while R3 only deals with a penalized least square problem with n

observations. More severely, the data pairs (xij , yij) are no longer independent
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Figure 3.1. The solution paths for a simple three-dimensional example. Any
line segment between two adjacent gray lines is linear.

Table 3.2. Accuracy of inference. N: standard normal, CN: contaminated normal.

ε β1 β2 β5

Bias SD SDm Bias SD SDm Bias SD SDm

N -0.008 0.122 0.121 0.028 0.124 0.123 0.017 0.107 0.106

t3 0.010 0.150 0.153 0.024 0.168 0.155 0.017 0.136 0.135

CN 0.002 0.153 0.152 0.023 0.145 0.152 0.022 0.127 0.134

and this complicates the path-following algorithm for PR. Indeed, we observe
empirically that for the simulation study in this section, it took PR many more
steps than R3. To demonstrate this, we generated 20 observations from a simple
three dimensional example y = 3x1 + 1.5x2 + 0x3 + ε, where (x1, x2, x3)T was
generated as before and ε was N(0, 1). In Figure 3.1, we plot the whole solution
paths for the two algorithms, where R3 requires three steps and PR requires
145 steps. The computational demand for PR increases for problems with larger
sample sizes. Alternatively, we can fit PR on a fixed grid. For each grid value,
we need to minimize a penalized LAD problem with n(n − 1)/2 observations,
which again can be slower than R3. We conclude that R3 is computationally
more desirable than PR.

4.2. Boston housing data

The Boston Housing data set was analyzed by Harrison and Rubinfeld (1978)
who wanted to find out whether “clean air” had an influence on house prices.
This data set is available in the R package mlbench with 14 variables and 506
cases. The response of interest here is the logarithm of the median value of
owner occupied homes (LMV). The other 13 independent variables include the
following: per capita crime rate by town (CRIM); proportion of residential land
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Table 3.3. Estimates for the Boston Housing data.

Method Least Squares PLS R3

Coef×102 SE×102 Z Value Coef×102 Coef×102

CRIM -1.027 (0.132) -7.81 -1.010 -0.819

ZN 0.117 (0.055) 2.13 0.086 0

INDUS 0.247 (0.246) 1.00 0 0

CHAS 10.089 (3.449) 2.93 9.746 4.625

NOX -77.840 (15.289) -5.09 -69.896 -42.280

RM 9.083 (1.673) 5.43 9.114 15.781

AGE 0.021 (0.053) 0.40 0 0

DIS -4.909 (0.798) -6.15 -4.894 -2.923

RAD 1.427 (0.266) 5.37 1.259 0.698

TAX -0.063 (0.015) -4.16 -0.052 -0.037

PTRATIO -3.827 (0.524) -7.31 -3.755 -3.411

B 0.041 (0.011) 3.85 0.039 0.052

LSTAT -2.904 (0.203) -14.30 -2.882 -2.511

zoned for lots over 25,000 sq.ft (ZN); proportion of non-retail business acres
per town (INDUS); Charles river dummy variable (= 1 if tract bounds river;
0 otherwise. CHAS); nitric oxides concentration (parts per 10 million, NOX);
average number of rooms per dwelling (RM); proportion of owner-occupied units
built prior to 1940 (AGE); weighted distances to five Boston employment centers
(DIS); index of accessibility to radial highways (RAD); full-value property-tax
rate per 10, 000 (TAX); pupil-teacher ratio by town (OTRATIO); 1000(bk−0.63)2

where bk is the proportion of blacks by town (B); proportion of population that
has a lower status (LSTAT).

In fitting a linear regression model to the data set, we start with the usual
least squares (LS) fit and list the fitted coefficients in Table 3.3. The penalized
LS (PLS) estimates with the adaptive LASSO penalty are also presented in the
same table. In view of the simulation results, the tuning parameter λ is chosen by
minimizing the BIC criterion BICλ = log(RSSλ/n) + dfλ log(n)/n, where RSSλ

is the residual sum of squares for the model fitted with the parameter λ. But the
normality assumption on the error distribution may be poor, as suggested by the
density plot and the quantile-quantile (Q-Q) plot for the LS residuals in Figure
3.2 (a) and (b). In fact, a one-sample Kolmogorov-Smirnov test on the residuals
is highly significant (p-value = 0.01).

These two sets of estimates are compared to the proposed R3 estimates
via SIC. From Table 3.3, we see that the PLS produces estimates very close to
the LS ones and shrinks two insignificant coefficients (ZN and AGE) to zero.
The proposed R3 gives three zero coefficients (ZN, AGE and INDUS). The R3

estimates are visually different from those of LS and PLS. As a matter of fact,
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Figure 3.2. Checking normality assumptions. (a): Histogram of the LS
residuals for the Boston Housing dataset; (b): Q-Q plot of the LS residuals
for the Boston Housing dataset; (c): Histogram of the LS residuals for the
Diabetes dataset; (d): Q-Q plot of the LS residuals for the Diabetes dataset.

four estimated coefficients (NOX, RM, DIS and RAD) for R3 are not within twice
the standard errors of the corresponding LS estimates.

Both PLS and R3 solutions are piecewise linear functions of λ and can be
efficiently computed via the LARS algorithm. The two solution paths are pre-
sented in Figure 3.3. As this figure shows, the solution paths of R3 and PLS
are quite different, especially for the variables RM and RAD. The magnitude of
some estimated regression coefficients of the two methods, eg LSTAT and NOX,
is also visually different in the figure.

In order to compare the predictive performance of PLS and R3, we randomly
divided the data set into 10 subsets which are about equally sized. Each time,
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Figure 3.3. The solution paths for the Boston housing data set. The coeffi-
cients are standardized by the corresponding standard errors of the covari-
ates. The vertical black lines indicate the chosen models.

we used 9 subsets of the observations for model fitting, and the remainder as
the test set. We calculated the mean absolute errors for the test set in terms of
|y − α̂ − xT β̂| for PLS and R3 estimates, respectively. The average error and
model size over the 10 runs are summarized in Table 3.4. Pairwise t-tests suggest
that R3 produced significantly smaller errors (p-value = 0.02) and models with
fewer number of covariates (p-value < 0.01). The comparison results are not
surprising due to the previous observation that the normal error assumption is
poor. Therefore, we conclude that the R3 method is the preferred method for
analyzing this data set.

4.3. Diabetes data

We examine the diabetes data set in Efron et al. (2004). This data set con-
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Table 3.4. Cross validation results. Standard errors are in parentheses.

Boston Housing Diabetes

Variable Absolute Error Model Size Absolute Error Model Size

PLS 0.1372 (0.0096) 12.4 (0.31) 44.42 (1.07) 6.4 (0.16)

R3 0.1334 (0.0097) 10.3 (0.15) 44.84 (1.18) 5.7 (0.15)

Table 3.5. Estimates for the Diabetes data.

Variable Least Squares PLS R3

Coef SE Z Value Coef Coef

AGE -10.0 59.7 -0.17 0 0

SEX -239.8 61.2 -3.92 -201.7 -250.0

BMI 519.8 66.5 7.81 540.5 539.4

BP 324.4 65.4 4.96 314.5 330.9

x5 -792.2 416.7 -1.90 -514.2 -579.3

x6 476.7 339.0 1.41 268.7 297.1

x7 101.0 212.5 0.48 0 0

x8 177.1 161.5 1.10 119.6 132.1

x9 751.3 171.9 4.37 682.5 716.3

x10 67.6 66.0 1.03 0 0

sists of 442 diabetic patients with ten baseline factors age (AGE), sex (SEX),
body mass index (BMI), average blood pressure (BP), and six blood serum mea-
surements (coded as x5 to x10). The response is a quantitative measurement
of disease progression one year after baseline. The aim for this data set is to
build a predictive model to relate the response to the ten covariates. An LS fit
of the model produces the density plot and Q-Q plot given in Figure 3.2 (c) and
(d), which justifies a normality assumption for the error distribution. Indeed,
a one-sample Kolmogorov-Smirnov test on the residuals is insignificant (p-value
= 0.95). The fitted models for LS, PLS, and R3 are listed in Table 3.5. We
note that both PLS and R3 choose the same model with 7 covariates. Further,
the difference between the R3 estimates and the corresponding LS estimates is
small. Actually, the largest difference between these two, standardized by the
standard errors of the LS estimates, is x10, which is about one. These results
show a close agreement between the LS, the PLS, and the R3 estimates. In order
to evaluate the predictive performance of PLS and R3, we again applied a 10-fold
cross validation technique to compute the average absolute errors. The results
are summarized in Table 3.4. Pairwise t-test suggests that there is no significant
difference between the errors for the two estimates (p-value = 0.19) and that the
R3 produces significantly smaller models (p-value = 0.02). This example shows
that even in the case that the normal assumption based least squares method is
the preferred method, the R3 method is still competitive in terms of predictive
values.
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5. Conclusion

In this paper, we propose R3 as an alternative to the penalized least squares
method for simultaneous variable selection and coefficient estimation. We show
that R3 enjoys the oracle property in variable selection and is highly efficient.
The simplicity of R3 facilitates the development of a path-following algorithm. A
novel score statistic-based information criterion is proposed to choose the penalty
parameter. This criterion guarantees consistency in variable selection and as a
result, gives better small sample prediction performance in the simulation study.
Our simulation study and data analysis both show that R3 performs well and
that it may be preferred over LAD and LS. How to extend R3 to problems with
diverging dimensionality is an interesting topic left for future research (Fan and
Lv (2008), and Bickel, Ritov and Tsybakov (2009)).
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