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Abstract: In this paper, we propose two tests for parametric models belonging to

the Archimedean copula family, one for uncensored bivariate data and the other

one for right-censored bivariate data. Our test procedures are based on the Fisher

transform of the correlation coefficient of a bivariate (U, V ), which is a one-to-

one transform of the original random pair (T1, T2) that can be modeled by an

Archimedean copula model. A multiple imputation technique is applied to establish

our test for censored data and its p value is computed by combining test statistics

obtained from multiply imputed data sets. Simulation studies suggest that both

procedures perform well when the sample size is large. The test for censored data

is carried out for a medical data example.
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1. Introduction

The problem of specifying a probability model for independent observations
(T11, T21), . . . , (T1n, T2n) from a bivariate population with continuous survivor
function S(t1, t2) can be simplified by expressing S in terms of its marginals,
S1(t1), S2(t2), and their associated dependence function, C, implicitly defined
through the identity

S(t1, t2) = C
{

S1(t1), S2(t2)
}

.

Here C, called a copula, characterizes the dependence structure between the
random variables T1, T2 (see Joe (1997) and Nelsen (1999)). Because of its
simple form, copula models have been widely used to model multivariate data.

A bivariate survivor function S(t1, t2) with marginal survivor functions S1(t1)
= S(t1, 0) and S2(t2) = S(0, t2) is defined to be generated by an “Archimedean
copula” if it can be expressed in the form S(t1, t2) = q−1[q{S1(t1)} + q{S2(t2)}]
for some convex, decreasing function q defined on [0, 1] with q(1) = 0 (see Genest
and Rivest (1993) and Genest and MacKay (1986)). A large class of Archimedean
copulas arise naturally from bivariate frailty models (Oakes (1989) and Nelsen
(1999)) in which T1 and T2 are conditionally independent given an unobserved
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‘frailty’ W (here W is common to both T1 and T2) and each follows proportional
hazards model in W . Denote the distribution function of W as F (·). Take
p(·) = q−1(·) where p(s) = E(e−sW ), the Laplace transform of the F (·). The
first model of such a type in the survival analysis literature was proposed by
Clayton (1978). He used the Gamma distribution with p(s) = (1+ s)−1/α, which
leads to the bivariate survivor function

S(t1, t2) =
{

1
S1(t1)−α + S2(t2)−α − 1

}1/α

,

for α > 0, see Oakes (1982). Another important frailty model, the Frank model
(Clayton (1978)), has p(s) = − log{1 − (1 − e−β)/es}/β; its bivariate survivor
function is

S(t1, t2) = − 1
β

log
[
{exp(−β) − 1 + (exp{−βS1(t1)} − 1)(exp{−βS2(t2)} − 1)}

(exp(−β) − 1)

]
for β 6= 0. Other models, such as the Hougaard model (Hougaard (1986)) and
the Inverse Gaussian copula model, belong to this family.

Many authors have proposed goodness-of-fit tests for models belonging to
the Archimedean copula family. Oakes (1989) proposed a graphic diagnostic ap-
proach to check the goodness-of-fit for such type of models. Shih (1998) proposed
a goodness-of-fit test for the Clayton model. That can be applied to both un-
censored and censored data. However, the test procedure is designed specifically
for the Clayton model. Wang and Wells (2000a) proposed a model selection pro-
cedure within the Archimedean copula family for right-censored bivariate data
based on the so-called L2 norm of the Kendall distribution (basically a distance
measure between the empirical and the estimated Kendall distribution). Genest,
Quessy, and Rémillard (2006) extended the idea in Wang and Wells (2000a) and
proposed a general goodness-of-fit test procedure for models belonging to the
Archimedean copula family. Their test is designed for uncensored data and it
does not seem to allow an easy extension to right-censored bivariate data. An-
derson, Ekstraum, Klein, Shu and Zhang (2005) proposed a bootstrap goodness-
of-fit test for copula models that can be applied to bivariate survival data. The
bootstrap p-value of their test is calculated based on a procedure that involves
generating both the original bivariate data and the independent censoring data.
It turns out that none of above test statistics has a simple distribution under
the null hypothesis, and most of them are quite computationally intensive. For
censored bivariate data, there has not been any simple goodness-of-fit test for
Archimedean copula models.

In this paper, we propose a simple goodness-of-fit test to check the
Archimedean copula model assumption for uncensored bivariate data. We then
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extend our test to right-censored data by combining p values obtained from a
multiple imputation procedure. Simulation studies suggest that our test proce-
dures work quite well when the sample size is large.

Our paper is organized in the following way. In Section 2, we propose our
test for uncensored data. We then extend our test to censored bivariate data in
Section 3. Simulation studies are presented in Section 4. The test for censored
data is used on the DRS data in Section 5. We end our paper with some discussion
in Section 6.

2. A Simple Test for Uncensored Data

Genest and Rivest (1993) have shown that if (T1, T2) follows an Archimedean
copula with the marginal survivor functions S1(t1) and S2(t2), then

U =
q(S1(T1))

q{S(T1, T2)}
, V = S(T1, T2) = p

[
q{S1(T1)} + q{S2(T2)}

]
are independently distributed random variables (here p(·) = q−1(·)), U is [0, 1]
and V follows the so-called “the Kendall distribution” with the density function

k(v) =
q(v)q′′(v)

q′(v)2

defined on [0, 1], where q as a function of v depends on an unknown parameter
θ. Our null hypothesis is that (T1, T2) follows some Archimedean copula model
Cθ. Under this assumption, we know that the corresponding random variables
U and V are independent, which means that their correlation coefficient ρ =
E[U − E(U))(V − E(V ))]/

√
var(U)var(V ) = 0. Hence a goodness-of-fit test for

H0 : C = Cθ where Cθ is a parametric model belonging to the Archimedean
copula family versus H1 : C 6= Cθ can be constructed based on a test procedure
for the null hypothesis H ′

0 : ρ = 0 versus H ′
1 : ρ 6= 0.

In reality, we cannot observe U and V . However, they can be consistently
estimated by

Û =
qθ̂{Ŝ1(T1)}

qθ̂{Ŝ(T1, T2)}
and V̂ = Ŝ(T1, T2)

respectively, where Ŝ1(T1), Ŝ(T1, T2) are empirical marginal and joint survivor
functions, and θ̂ is a consistent estimator of the unknown parameter θ. Such an
estimator can be the moment estimator proposed by Genest and Rivest (1993)
or the pseudo-MLE proposed by Genest, Ghoudi and Rivest (1995). In the case
where margins are estimated within a parametric model, a two-stage estimation
procedure (Shih and Louis (1995)) can be applied. Basically, we first estimate the
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unknown parameter in the marginal distributions, then we estimate the depen-
dence parameter θ by solving the score equation based on the pseudo-observations
(Ŝ1(T1i), Ŝ2(T2i)) for i ∈ {1, . . . , n}. Under suitable regularity conditions, consis-
tency of above estimators has been established.

By the Continuous Mapping Theorem, (Û , V̂ ) → (U, V ) in distribution when
n → ∞. Therefore, when the sample size is large, the distribution of (Û , V̂ ) is
approximately that of (U, V ) with joint density function k(v) defined on [0, 1] ×
[0, 1] (since U and V are independent with U being a Uniform[0, 1] and V having
the Kendall density k(v) defined above).

Let

rn =
∑n

i=1(Ûi − ¯̂
U)(V̂i − ¯̂

V )√∑n
i=1(Ûi − ¯̂

U)2
∑n

i=1(V̂i − ¯̂
V )2

,

where

Ûi =
qθ̂{Ŝ1(T1i)}

qθ̂{Ŝ(T1i, T2i)}
, V̂i = Ŝ(T1i, T2i),

and ¯̂
U , ¯̂

V are the sample means of Ûi and V̂i, respectively. Take Zn = 1/2 log{(1+
rn)/(1− rn)}. Hawkins (1989) proved the following about the asymptotic distri-
bution of Fisher’s Z statistic.

Theorem 1. Suppose that (Ui, Vi), for i ∈ {1 . . . n}, are independently iden-
tically distributed random pairs with mean (0, 0) and variance (1, 1) that follow
some bivariate distribution F with finite fourth moments. Then as n → ∞,√

n[Zn − 1/2 ln((1 + ρ)/(1 − ρ))] → N(0, τ2
F ) in distribution, where τ2

F = (1 −
ρ2)−21/4{(m40 +2m22 +m04)ρ2−4(m31 +m13)ρ+4m22}, with mrs = EF (U r

i V s
i )

for r, s ∈ {0, 1, 2, 3, 4}.

Under H0, U and V are independent, so ρ = 0 for {U − E(U)}/
√

var(U)
and {V − E(V )}/

√
var(V ). Also because of the independence of U and V , we

can see that

m22 =
E[{U − E(U)}2{V − E(V )}2]

var[{U − E(U)}]var[{V − E(V )}]
= 1.

Noticing the fact that Zn is location and scale invariant such that Zn is un-
changed after U and V have been replaced by {U − E(U)}/

√
var(U) and {V −

E(V )}/
√

var(V respectively, we can reach the following conclusion after applying
Theorem 1.

Theorem 2. Under the null hypothesis that (T1i, T2i) for i ∈ {1 . . . n} are in-
dependently identically distributed random pairs that follow some Archimedean
copula model Cθ,

√
nZn → N(0, 1) in distribution.

A simple test of H0 for uncensored bivariate data can therefore be established
as: reject H0 at 5% significance level if |

√
nZn| > Z0.975 = 1.96.
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3. A Test for Censored Data

In this section, we propose a test procedure to check the parametric model as-
sumption for models belonging to the Archimedean copula family when bivariate
data is subject to right-censoring. We assume that (T1i, T2i), i = 1, . . . , n, are in-
dependently identically distributed random pairs whose distribution can be mod-
eled by a specific Archimedean copula. We also assume that (T1i, T2i) are subject
to independent right-censoring by censoring vectors (C1i, C2i) for i = 1, . . . , n.
Because of the right-censoring, we can only observe {(X1i, X2i), (δ1i, δ2i)} where
X1i = min{T1i, C1i}, X2i = min{T2i, C2i}, δ1i = I{T1i ≤ C1i}, and δ2i = I{T2i ≤
C2i}. As a result, we have four different censoring patterns: (1) δ1i = δ2i = 0,
i.e., T1i > C1i = c1i and T2i > C2i = c2i; (2) δ1i = 1, δ2i = 0; (3) δ1i = 0, δ2i = 1;
(4) δ1i = 1, δ2i = 1. We apply a multiple imputation (MI) procedure to recover
the pseudo complete data (Ûi, V̂i) for i = 1, . . . , n (they can not be consistently
estimated as before because of the right-censoring) based on different censoring
patterns and then establish our test based on multiply imputed complete data
sets. The following Theorems are needed, proofs are given in a supplementary
file of this paper posted on http://www.stat.sinica.edu.tw/statistica.

Theorem 3. Let (T1, T2) have a distribution that can be modelled by an ab-
solutely continuous Archimedean copula. If (T1, T2) is subject to independent
right-censoring by a censoring vector (C1, C2) that follows a bivariate continuous
distribution, then we have:

1. the distribution function of {(U, V )|T1 > c1, T2 > c2} (i.e., T1 > C1 = c1,
T2 > C2 = c2) is

H1(u, v)=



[v− q(v)−q{S(c1,c2)}
q′(v)

−(1−u)p{ q(S2(c2))
1−u

}]
S(c1,c2) , 1 − q{S2(c2)}

q(v) < u ≤ 1

{uv+
q{S1(c1)}−uq(v)

q′(v)
}

S(c1,c2) , q{S1(c1)}
q(v) < u ≤ 1 − q{S2(c2)}

q(v)

{up{ q{S1(c1)}
u

}}
S(c1,c2) , 0 ≤ u ≤ q{S1(c1)}

q(v)

for 0 ≤ v ≤ S(c1, c2);

2. the distribution function of {(U, V )|T1 = t1, T2 > c2} (i.e., C1 > T1 = t1,
T2 > C2 = c2) is

H2(u, v) =


p′{q(v)}

p′{q(S(t1,c2)} , q{S1(t1)}
q(v) < u ≤ 1

p′[q{S1(t1)}/u]
p′{q(S(t1,c2)} , 0 ≤ u ≤ q{S1(t1)}

q(v)

for 0 ≤ v ≤ S(t1, c2);

http://www.stat.sinica.edu.tw/statistica
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3. the distribution function of {(U, V )|T1 > c1, T2 = t2} (i.e., T1 > C1 = c1,
C2 > T2 = t2) is

H3(u, v) =

{
p′(q(v)) − p′[q{S2(t2)}/(1 − u)]

}
p′{q(S(c1, t2)}

, 1 − q{S2(t2)}
q(v)

≤ u ≤ 1

for 0 ≤ v ≤ S(c1, t2).

Corollary 1. Let (T1, T2) have a distribution that can be modelled by an ab-
solutely continuous Archimedean copula. If (T1, T2) is subject to independent
right-censoring by a censoring vector (C1, C2) that follows a bivariate continuous
distribution, then we have:

1. the distribution function of (V |T1 > c1, T2 > c2) (i.e., T1 > C1 = c1, T2 >

C2 = c2) is

F1(v, c1, c2) =
1

S(c1, c2)

[
v − q(v) − q{S(c1, c2)}

q′(v)

]
, 0 ≤ v ≤ S(c1, c2);

2. the distribution function of (V |T1 = t1, T2 > c2) (i.e., C1 > T1 = t1, T2 >

C2 = c2) is

F2(v, t1, c2) =
p′{q(v)}

p′{q(S(t1, c2))}
, 0 ≤ v ≤ S(t1, c2);

3. the distribution function of (V |T1 > c1, T2 = t2) (i.e., T1 > C1 = c1, C2 >

T2 = t2) is

F3(v, c1, t2) =
p′{q(v)}

p′{q(S(c1, t2))}
, 0 ≤ v ≤ S(c1, t2).

Corollary 2. Let (T1, T2) have a distribution that can be modelled by an abso-
lutely continuous Archimedean copula Cθ with the copula generator q. If (T1, T2)
is subject to independent right-censoring by a censoring vector (C1, C2) that fol-
lows a bivariate continuous distribution, then we have;

1. the distribution function of (U |T1 > c1, T2 > c2) (i.e., T1 > C1 = c1, T2 >

C2 = c2) is

G1(u, c1, c2) =


1 − 1−u

S(c1,c2)p
(

q(S2(c2))
1−u

)
, q(S1(c1))

q(S(c1,c2)) ≤ u ≤ 1

u
S(c1,c2)p

(
q(S1(c1))

u

)
, 0 ≤ u ≤ q(S1(c1))

q(S(c1,c2)) ;
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2. the distribution function of (U |T1 = t1, T2 > c2) is

G2(u, t1, c2) =
p′{q(S1(t1))/u}
p′{q(S(t1, c2)}

, 0 ≤ u ≤ q{S1(t1)}
q{S(t1, c2)}

;

3. the distribution function of (U |T1 > c1, T2 = t2) is

G3(u, c1, t2) = 1 − p′{q(S2(t2))/(1 − u)}
p′{q(S(c1, t2))}

,
q{S1(c1)}

q{S(c1, t2)}
≤ u ≤ 1.

To impute the unknown random vector (U, V ) from doubly censored data,
we need another result about the conditional distribution of the random variable
(U |V = v, T1 > c1, T2 > c2).

Theorem 4. Let (T1, T2) have a distribution that can be modeled by an
Archimedean copula. The conditional distribution of the random variable (U |V =
v, T1 > c1, T2 > c2) is uniformly distributed on the interval [q{S1(c1)}/q(v), 1 −
q{S2(c2)}/q(v)].

Remark. when c1 = c2 = 0, q{S1(c1)} = q{S2(c2)} = q(1) = 0, the conditional
distribution of (U |V = v, T1 > c1, T2 > c2) is uniform distribution on [0, 1] and
independent of V . This result corresponds to the uncensored case and coincides
with the fact proved by Genest and Rivest (1993).

Based on previous results, if the original data pairs (T1i, T2i) for i ∈ {1 . . . n}
are subject to independent right-censoring by random pairs (C1i, C2i) for i ∈
{1 . . . n}, our goodness-of-fit test for censored bivariate data can be set up as
follows.

1. Estimation step. Estimate the dependence parameter by a semiparamet-
ric estimator θ̂ such as the one proposed by Shih and Louis (1995), or the
nonparametric estimator proposed by Brown, Hollander and Korwar (1974)
for censored data. Estimate the marginal survivor functions by Kaplan-
Meier estimates, and the joint survivor function by the Dabrowska estimator
(Dabrowska (1988)). For simplicity, we use (Ûi, V̂i) to denote the imputed or
estimated bivariate random vector corresponding to (Ui, Vi).

2. Data imputation step. For imputation, we replace the unknown parameter
and survivor functions with the corresponding estimators obtained from the
estimation step.

(a) When (T1i, T2i) is doubly censored, i.e., T1i > c1i, T2i > c2i for some
observed pair (C1i, C2i) = (c1i, c2i), we first generate V̂i = v from the
distribution of (V |T1 > c1i, T2 > c2i) (whose distribution function is just
the F1 defined in Corollary 1(1)) using the inverse CDF method. We
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generate Ûi from the distribution of (U |V = v, T1 > c1i, T2 > c2i) using
the result presented in Theorem 4. It is easily seen that in this way we can
generate a random pair (Ûi, V̂i) which follows {(U, V )|T1 > c1i, T2 > c2i}
distribution asymptotically.

(b) When (T1i, T2i) is singly censored and T1i > c1i, T2i = t2i, we first generate
V̂i from the distribution of (V |T1 > c1i, T2 = t2i) (whose distribution
function is just the F2 defined in Corollary 1(2)) to obtain V̂i = v. We
estimate Ui by

Ûi =
qθ̂(v) − qθ̂{Ŝ2(t2i)}

qθ̂(v)
.

(c) When (T1i, T2i) is singly censored and T1i = t1i, T2i > c2i, we first generate
V̂i from the distribution of (V |T1 = t1i, T2 > c2i) (whose distribution
function is just the F3 defined in Corollary 1(3)) to obtain V̂i = v. We
estimate Ui by

Ûi =
qθ̂{Ŝ1(t1i)}

qθ̂(v)
.

(d) When (T1i, T2i) is uncensored in both components, i.e., T1i = t1i, T2i = t2i,
we estimate Ui and Vi by

Ûi =
qθ̂(Ŝ1(t1i))

qθ̂{Ŝ(t1i, t2i)}
and V̂i = Ŝ(t1i, t2i),

respectively.

We repeat the above imputation procedures to generate m imputed data sets
of size n.

3. Test step. For each complete data sample obtained from the previous data
imputation step, we conduct the Z-test proposed in Section 2, and combine
the test results for m (m ≥ 3) imputed samples as described in Rubin (1987).
The detailed procedure is: from m complete data sets and m values for Ẑ,
Ẑ?1 . . . Ẑ?m, use the test statistic Tm = Z̄m/

√
Vm, where Z̄m =

∑m
l=1 Ẑ?l/m

and Vm = (1 + 1/m)Bm + 1/n, with Bm =
∑m

l=1(Ẑ?l − Z̄m)2/(m − 1). The p

value associated with Tm is Pm = 2[1−Fw(|Tm|)], where Fw is the distribution
function of a t random variable with w = (m − 1)[Vm/(1 + m−1)Bm]2 df.

If the combined p value is less than 0.05, we reject the null hypothesis that the
data can be modelled by the assumed Archimedean copula. Rubin (1987) and Li,
Raghunathan and Rubin (1991) justified their way of combining test statistics
by deriving the procedure theoretically. They also demonstrated their method
via extensive simulation studies.
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Table 1. Percentage of rejection of two different null hypotheses using statis-
tics at the 5% level when the data is uncensored (N = 300 based on 1000
repetitions); the Zn column lists our Z-test results and the Sn column lists
the results of the test proposed by Genest, Quessy, and Rémillard (2006).

Family τ H0 : The Clayton Model H0 : The Frank Model

No Censoring No Censoring

True Model Zn Sn Zn Sn

The Clayton model 0.3 4.1 6.6 83.6 95.0

0.5 5.0 7.0 100.0 100.0

0.7 5.3 2.8 100.0 100.0

The Frank model 0.3 67.1 88.0 1.9 5.4

0.5 99.9 100.0 4.5 4.7

0.7 100.0 100.0 5.7 4.7

The Hougaard model 0.3 94.5 99.4 11.2 45.0

0.5 100.0 100.0 47.1 81.0

0.7 100.0 100.0 83.0 96.0

It can be easily shown that the imputation step does produce complete im-
puted samples (Ûi, V̂i) which follow the joint distribution of (U, V ) asymptotically.
A reviewer of this paper has raised a question about how to justify the previ-
ous imputation procedure, specifically, why the “pseudo observations” from MI
can still have the uncorrelated property (as stated in Theorem 1) under the null
hypothesis? To answer this question, we have proved the following result.

Theorem 5. Let (T1i, T2i) for i ∈ {1, . . . , n} be independently identically dis-
tributed with a distribution that can be modelled by an Archimedean copula. Let
(T1i, T2i) be subject to independent right-censoring by a censoring vector (C1i, C2i)
that follows a bivariate continuous distribution. Under suitable regularity condi-
tions, (Ûi, V̂i) and (Ûj , V̂j) defined in the above MI procedure are asymptotically
independent for i 6= j, i, j ∈ {1, . . . , n}.

4. Simulation Studies

In this section, we demonstrate the proposed test procedures in simulation
studies. The bivariate data were first generated from the Clayton model and
the Frank model with unit exponential marginal distributions. Our simulation
studies concern uncensored data and censored data. For uncensored bivariate
data, we estimated the unknown parameter by inverting the sample estimate
of τ (Genest and Rivest (1993)), i.e., θ̂ = g−1(τ̂), where g is a function such
that τ = g(θ) (for the Clayton model, τ = α/(α + 2); for the Frank model,
τ = 1 + 4{D1(β) − 1}/β, where D1 is the Debye function defined by D1(β) =∫ β
0 t/(et − 1)dt/β).
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Table 2. Percentage of rejection of two different null hypotheses using statis-
tics at the 5% level when the data is under 30% censoring (here censoring
means that at least one component is censored, the percentages are obtained
based on 1,000 repetitions).

Family τ H0 : The Clayton Model H0 : The Frank Model

True Model N = 100 N = 300 N = 100 N = 300

The Clayton model 0.3 1.0 2.0 2.0 10.7

0.5 2.1 3.0 5.6 43.5

0.7 4.3 5.3 14.8 73.4

The Frank model 0.3 39.4 76.8 2.2 2.0

0.5 77.8 100.0 3.0 2.2

0.7 91.6 100.0 4.4 3.2

The Hougaard model 0.3 47.4 84.6 12.0 19.6

0.5 87.2 99.6 32.0 67.0

0.7 97.8 100.0 58.2 94.2

Simulation results are presented in Table 1, and suggest that our test per-
forms quite well. Comparing it with the one proposed by Genest, Quessy, and
Rémillard (2006), we find that their test for uncensored data is slightly more
powerful than ours when the dependence (measured by Kendall’s τ) is relatively
weak; when the dependence gets stronger, both tests are powerful in detecting
departure from the null model.

For censored bivariate data we used the Brown estimator (Brown et al.
(1974)) to estimate Kendall’s τ , following Wang and Wells (2000b). The bivari-
ate censoring vectors were generated to follow exponential marginal distributions
with mean 5. With this, about 30% of pairs will have at least one component
censored (either singly or doubly censored). For our test, we chose m = 10
when generating imputed data; if the combined p value was less than 0.05, we
rejected the null hypothesis. Results are presented in Table 2. There we can see
that the proposed test procedure achieved about 5% significance level when the
null model and the true model were the same. When the sample size was large
(N = 300), our test had quite good power in detecting departures from the null
model when the true model was different, except when we fit the data from the
Frank model by the Clayton model. In this situation, a larger sample size (for
example N = 400) was needed to achieve good power (according to other sim-
ulation studies we have conducted and which are not reported here). Generally
speaking, the power of our test increased with sample size.

In our simulation studies, we replaced the unknown quantities (the unknown
parameter and the survivor functions) with their sample counterparts. As a
consequence, the resulting test may not be efficient. To get better test results,
we can choose more efficient parameter estimates in the assumed Archimedean
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copula model (such as the estimator proposed by Shih and Louis (1995)). When
the Dabrowska estimator is improper (it can be negative as pointed out by Wang
and Wells (2000b)), we can estimate the joint survivor function using the assumed
copula structure and the estimated marginal survivor functions. To obtain a
more precise estimate of the bivariate survival function under independent right
censoring, we can also try other estimators such as the Prentice-Cai estimator
(Prentice and Cai (1992)). We have found that the proposed test achieves better
power if the estimates of the unknown quantities in our test statistic are more
efficient (accurate).

It should be emphasized that our test for uncensored data is much simpler
than the one proposed by Genest, Quessy, and Rémillard (2006); we can obtain
an explicit p value from the normal table based on our test statistic, while their
test relies on a parametric bootstrap procedure to determine its p value. Another
advantage of our test procedure is that it can be extended to a test for censored
data, while theirs does not seem to have an easy extension to censored data
situation.

5. An Illustrative Example: the Diabetic Retinopathy Study.

This study examined the effectiveness of laser photocoagulation for delaying
the onset of blindness (visual acuity less than 5/200 at two successive visits) in
patients with diabetic retinopathy. The original data set includes 197 patients,
either with adult-onset diabetes, or with juvenile-onset diabetes. One eye of each
patient was randomly selected for photocoagulation treatment, the other eye was
untreated. Manatunga and Oakes (1999) have shown that the data set that only
includes patients with adult onset diabetes can be fit well using the Clayton
model based on the diagnostic plot proposed by Oakes (1989). The data set
consists of 83 patients, 14 experienced failure in both eyes, 40 experienced failure
in one eye, and 29 experienced no failure. Using the nonparametric estimator
proposed by Brown et al. (1974), one finds τ̂ = 0.21. We performed our second
test to check the goodness-of-fit of the Clayton model and obtained a p value of
0.65, with mean correlation coefficient 0.07 for U and V based on ten complete
imputed data sets; this is insignificant. We reach the same conclusion as stated
in Manatunga and Oakes (1999): there is not enough evidence to reject the
Clayton model assumption. Applying our test procedure to check the Frank
model assumption, we obtain a p value of 0.08 with mean correlation coefficient
−0.23 for U and V based on complete imputed data sets. Both tests yield
insignificant p-values, and hence the data can be modelled by either model; the
Clayton model seems to be a better fit.
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6. Discussion

In this paper, we have proposed two goodness-of-fit tests for Archimedean
copula models, one for uncensored data and the other one for right censored
bivariate data. In our simulation studies, we find that both procedures work
quite well. Both tests are quite simple to implement and explicit p values are
provided when testing the null hypothesis.

The ideas of our new tests are the same, we use the properties of (U, V )
instead of the properties of (T1, T2) to check the model assumption. By doing so,
we avoid deriving the asymptotic distribution of test statistics such as the one
proposed by Wang and Wells (2000a) or the one proposed by Genest, Quessy,
and Rémillard (2006). As the asymptotic distribution of their test statistics are
intractable for both uncensored and censored data; see Wang and Wells (2000a)
or Genest, Quessy, and Rémillard (2006) for a more detailed discussion.

The distributional results of (U, V ) given different censoring patterns are im-
portant because they provide us with insights to the structure of Archimedean
copula models under right-censoring. The usefulness of our results has been
shown in our data imputation step: we can impute missing bivariate data from
a specified Archimedean copula model by simply applying the inverse CDF ap-
proach. With imputed data sets in hand, one can conduct “standard” complete
data analyses and the test or estimation results based on imputed data sets can
be combined. We expect that the proposed test procedures will be useful in
correlation studies using Archimedean copula models when censoring is present.
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