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A.1. Proof of the results in Section 3.

Proof of Lemma 1. For simplicity, we prove the lemma in terms of the natural parameter

rather than in the mean parameter. The results follow since there is a one-to-one positive

monotone correspondence between the two parameterizations.

The result i) is due to Cifarelli and Regazzini (1987).

Point ii). With no loss of generality assume a = 0, otherwise one can translate Y .

Because Θ is not empty, for θ0 ∈ Θ we have

∞ > M(θ0) = log
∫

exp{θ0 y}ν(dy) ≥ log
∫

exp{θ1 y}ν(dy) = M(θ1)

for each θ1 < θ0. As a consequence inf Θ = −∞ and we have to compute

lim
θ→−∞

pθ(0) = lim
θ→−∞

exp{−M(θ)} = lim
θ→−∞

[
ν(0) +

∫

Y\{0}
exp{θ y}ν(dy)

](−1)

. (A.1)

If θ < θ0 < 0, then exp{θ y} < exp{θ0 y}, since y > 0, with exp{θ0 y} integrable w.r.t.

ν. Furthermore limθ→−∞ exp{θ y} = 0 and so, by the dominated convergence theorem,

we have limθ→−∞
∫
Y\{0} exp{θ y}ν(dy) = 0. As a consequence (A.1) converges to ν(0)−1

and limθ→−∞ pθ(0)ν(0) = 1. Consider now θ → sup Θ. Since exp{θ y} is a monotone

increasing function in θ, from the monotone convergence theorem it follows directly that
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limθ→sup Θ

∫
Y exp{θ y}ν(dy) = M(sup Θ) = ∞, where the last equality follows by the

definition of Θ in a regular NEF. It follows that

lim
θ→sup Θ

pθ(0)ν(0) = lim
θ→sup Θ

exp{−M(θ)}ν(0) = exp{−M(sup Θ)}ν(0) = 0.

Point iii) is analogous to point ii) assuming b = 0, and noticing that sup Θ = ∞. ¦

Proof of Theorem 2. With no loss of generality, set k = 1 and notice that

H(x; z) = Px([z,∞)) = 1− Px(z) + px(z)ν(z), ∀x ∈ (a, b). (A.2)

Consider first a < z < b. By (A.2) and using i) of Lemma 1, we have

lim
x→a+

Px([z,∞)) = 0 and lim
x→b−

Px([z,∞)) = 1.

For a < x < b, we have: H(x; z) = 1 − Px(z) when Px is absolutely continuous, while,

when Px is discrete with support points {a = z1 < z2 < · · · < zN = b}, N ≤ ∞,

H(x; z) = Px([z,∞)) = Px([zi+1,∞)) = 1− Px(zi) (A.3)

for zi < z ≤ zi+1, i = 1, 2, . . . , N−2 and for zN−1 < z < zN = b if i = N−1. In both cases,

H(x; z) is clearly a continuous function in x, and since Px(z) has a monotone likelihood

ratio in z (see Lehmann (1959, Chap.3, Lemma 2)), it is monotone non decreasing in x.

The density h(x; z) on (a, b) can be computed by deriving under the sign of integral

h(x; z) =
d

dx
Px([z,∞)) =

dθ

dx

∫

[z,∞)

d

dθ
exp (θt−M(θ))dν(t) =

1
V (x)

∫

[z,∞)
(t− x)dPx(t),

recalling that x = dM(θ)/dθ and V arθ(Z) = d2M(θ)/dθ2.

For z ≤ a, it is clearly H(x; z) = 1 for any x ∈ (a, b) so that H(x; z) = 0 for x < a

and H(x; z) = 1 for x ≥ a, that is H(·; z) is degenerate on a.

For z = b, H(x; z) = Px([b,∞)) for a < x < b. Therefore, if Px is absolutely

continuous, H(x; z) = 0 for x < b, so that it is degenerate on b because, by definition,
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H(·; z) is right-continuous. If Px is discrete with mass px(b)ν(b) on b, using iii) of Lemma

1, we have

H(x; z) =





0 x ≤ a

px(b)ν(b) a < x < b

1 x ≥ b

with px(b) monotone increasing in x, and limx→b− px(b)ν(b) = 1. The expression of the

relative density is a clear specialization of (3.6). ¦

Proof of Theorem 3. The expression (3.10) corresponds to (3.9) by the definition (3.5)

of Hk(x; z) (see also formula (3.4)). By Theorem 2, the kernels Hk(x; z) are d.f.’s, so that

Bk,U is a d.f.. We now study the mass concentrated at the extreme points a and b. Using

Lemma 1, it is easy to verify that limx→a+ Bk,U (x) = U(a) and

lim
x→b−

Bk,U (x) = lim
x→b−

(
Hk(x; a)U(a) +

∫

(a,b)
Hk(x; z)dU(z) + Hk(x; b)U({b})

)

= U(a) +
∫

(a,b)
dU(z) + U({b}) lim

x→b−
Hk(x; b)

=





U(a) + (1− U(a)− U({b})) + 0 = 1− U({b}) if ν(b) = 0

U(a) + (1− U(a)− U({b})) + U({b}) limx→b− pk,x(b)ν{b} = 1 if ν{b} > 0.

For the continuity points a < x < b,

dBk,U (x)
dx

=
d

dx
(U(a) +

∫

(a,b)
Hk(x; z)dU(z) + Hk(x; b)U({b})).

By Theorem 2, Hk(·; z) is absolutely continuous for z ∈ (a, b) and Hk(x; b) is either zero for

x < b, or it is absolutely continuous. Therefore hk(·, ·) is measurable and the result follows

applying Fubini’s Theorem. ¦

Proof of Lemma 2. As a preliminary step, we define Qr
k(x) = E(Zr

k,x) =
∫
(a,b) zr hk(x; z)dz

for z ∈ (a, b) and r ≥ 0 and show that

Qr
k(x) =

k

r + 1
V (x)−1

(
E(Zr+2

k,x )− xE(Zr+1
k,x )

)
. (A.4)
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For a continuous ERS and recalling the definition (3.6) of hk(x; z) for x ∈ (a, b), an

integration by parts of Qr
k leads to

Qr
k(x) =

k

r + 1
V (x)−1

[
zr+1

∫ b

z
(t− x)dPk,x(t)

∣∣∣∣
b

a

+
∫ b

a
zr+1(z − x)dPk,x(z)

]
. (A.5)

The first term in the right hand side of (A.5) is trivially zero for z → a and z → b

with a and b finite. If a or b are not finite, the same result follows applying the l’Hospital

rule and recalling that zmpk,x(z)ν(z) → 0 for y → ∓∞ and each positive integer m, since

the NEF admits moments of any order. The second addend in (A.5) gives directly the

expression (A.4).

For a discrete ERS with measure νk having support on {a = z1, z2, . . . b} (omitting for

simplicity the possible dependence on k) with b ≤ ∞, from (A.3) and noting hk(x; zi+1) =
d
dx(1− Pk,x(zi)) we have

Qr
k(x) =

∫

(a,b)
zrhk(x; z)dz =

b∑

i=1

∫

(zi,zi+1]
zrhk(x; zi+1)dz =

b∑

i=1

hk(x; zi+1)
zr+1
i+1 − zr+1

i

r + 1

=
1

r + 1

[
zr+1
1

d

dx
Pk,x(z1) +

b∑

i=2

zr+1
i+1

d

dx
(Pk,x(zi+1)− Pk,x(zi))

]

=
1

r + 1

[
b∑

i=1

zr+1
i

d

dx
pk,x(zi)ν(zi)

]
=

k

r + 1
V (x)−1

[
b∑

i=1

zr+1
i (zi − x)pk,x(zi)ν(zi)

]

which gives (A.5).

Consider r = 0. From (A.4), we obtain

Q0
k(x) =

∫

(a,b)
hk(x; z)dz = kV (x)−1

(
E(Z2

k,x)− xE(Zk,x)
)

= 1

thus hk(x; z), which is clearly a positive function, is a density in z.

Consider now point (2). From (A.4), setting r = 1, we have

Q1(x) = E(Z∗k,x) =
k

2
V (x)−1

(
E(Z3

k,x)− xE(Z2
k,x)

)
. (A.6)
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Using the cumulant transform properties of the NEF, it is not difficult to show that

E(Z3
k,x) = V (x)V ′(x)/k2 + E(Z2

k,x)x + 2xV (x)/k. Using this expression in (A.6) gives

(3.12). Setting now r = 2 in (A.4), and arguing similarly, we obtain (3.13).

To prove point (3), consider first a continuous ERS. Because

hk(x; z) = k/V (x)

(∫

[z,x)
(t− x)dPk,θ(x)(t) +

∫

[x,+∞)
(t− x)dPk,θ(x)(t)

)

where the first addend is negative, the result follows easily. The proof is analogous for a

discrete ERS, recalling from that in this case hk(x; z) is piecewise constant. ¦

A.2 Properties of the kernel hk(x; z)

The following lemma studies the behavior of the kernel density hk(x; z) in the tails of

x.

With no loss of generality, we assume that the natural parameter space Θ of the NEF

used in the ERS includes zero. Indeed, let {Pθ, θ ∈ Θ} be a NEF parametrized in the

natural parameter. If 0 /∈ Θ = (α, β), choose q ∈ IR such that 0 ∈ (α− q, β − q) = Θ∗ and

define θ∗ = θ − q. Then we can write the d.f. Pθ(y) as

Pθ(y) =

∫ y
−∞ exp(θt− qt)eqtν(dt)

∫ +∞
−∞ exp(θt− qt)eqtν(dt)

=

∫ y
−∞ exp(θ∗t)ν∗(dt)

∫ +∞
−∞ exp(θ∗t)ν∗(dt)

=
∫ y

−∞
exp(θ∗t−M∗(η))ν∗(dt) = Pθ∗(y),

where ν∗(dt) = eqtν(dt) and M∗ denotes the cumulant transform of ν∗. Consequently the

families {Pθ, θ ∈ Θ} and {Pθ∗ , θ
∗ ∈ Θ∗} are equivalent.

Lemma 3. Let k0 ∈ Λ, and fix d1, d2 ∈ (a, b) such that d1 < d2 and θ(d1) < 0; θ(d2) >

0. Then there exist values c∗, c∗∗ ∈ [a, b], with c∗ < d1, c
∗∗ > d2, νk0([c

∗, d1)) > 0,

νk0([d2, c
∗∗]) > 0, z∗ ∈ (a, b) and δ ≥ 0 such that for any k ∈ [k0 − δ, k0] ⊂ Λ we have

(i) for a < x < d1,

hk0(x; d1)
hk(x; d2)

≤ D1(k, k0) exp{θ(x)(k0d1 − kc∗∗ − z∗(k0 − k))} (A.7)
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(ii) for d2 < x < b,

hk0(x; d2)
hk(x; d1)

≤ D2(k, k0) exp{θ(x)(k0d2 − kc∗ − z∗(k0 − k))} .

The functions D1(·, k0) and D2(·, k0) are bounded for k ∈ [k0 − δ, k0].

Proof. Remind that we assume, with no loss of generality, that 0 ∈ Θ. It follows that

M(0) < ∞ and consequently

νk([a, b]) =
∫ b

a
ek0zνk(dz) = ekM(0) < ∞. (A.8)

(i) a < x < d1.

Note that, from (3.6), we can write

hk0(x; d1)
hk(x; d2)

=
k0

k

E(Zk0,x|Zk0,x ≥ d1)− x

E(Zk,x|Zk,x ≥ d2)− x

Pk0,x([d1,∞))
Pk,x([d2,∞))

. (A.9)

First we show that the second ratio in the right hand side of (A.9) is bounded. Indeed

E(Zk,x|Zk,x > z) is an increasing function of x, since

∂

∂x
E(Zk,x|Zk,x > z) =

k

V (x)
V ar(Zk,x|Zk,x > z) > 0 ∀x ∈ (a, b),

and consequently supx∈(a,d1) E(Zk0,x|Zk0,x > d1) = Bk0,d1 , where Bk0,d1 is a finite constant.

Thus

0 ≤ E(Zk0,x|Zk0,x ≥ d1)− x

E(Zk,x|Zk,x ≥ d2)− x
≤ Bk0,d1 − x

d2 − x
≤ Bk0,d1 − d1

d2 − d1
< ∞

where the last inequality holds since (Bk0,d1 − x)/(d2 − x) is an increasing function of x.

Consider now the ratio Pk0,θ((d1,∞))/Pk,θ((d2,∞)) where, for simplicity, we have

used the natural parameterization. Let c∗∗ > d2 such that νk0([d2, c
∗∗]) > 0. If k0 is not

an isolated point of Λ, fix δ > 0 so that νk([d2, c
∗∗]) > 0 for any k ∈ [k0 − δ, k0]. This is

always possible since νk(·) is continuous in k, as can be easily checked from the continuity

of Pk,θ shown in the proof of the following Lemma 5.
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Recalling that θ(x) is an increasing function of x and, by assumption, θ(d1) < 0, we

have θ(x) < θ(d1) < 0, for a < x < d1, so that, for k ∈ [k0 − δ, k0]

Pk0,θ([d1,∞))
Pk,θ([d2,∞))

≤ e−(k0−k)M(θ)

∫
[d1,∞) ek0θz dνk0(z)∫
[d2,c∗∗) ekθz dνk(z)

≤ e−(k0−k)M(θ) ek0θd1 νk0([d1,∞))
ekθc∗∗ νk([d2, c∗∗])

.

By (A.8) and since νk([d2, c
∗∗]) > 0 for k ∈ [k0 − δ, k0], νk0([d1,∞))/νk([d2, c

∗∗]) is finite.

For k < k0, by inequality (2.4) in Diaconis and Ylvisaker’s (1979), there exists a set G

with ν(G) > 0 and a value z∗ ∈ G such that

exp(−(k0 − k) M(θ)) ≤ e−(k0−k)θ z∗

ν(G)k0−k
.

Therefore (A.7) holds, with

D1(k, k0) =
k0

k

Bk0,d1 − d1

d2 − d1

νk0([d1,∞))
νk([d2, c∗∗])

ν(G)−(k0−k) . (A.10)

Finally, as noticed before, νk is continuous at k0, therefore D1(k, k0) has a finite maximum

for k ∈ [k0 − δ, k0].

(ii) d2 < x < b.

From (3.6) we can write

hk0(x; d2)
hk(x; d1)

=
k0

k

x−E(Zk0,x|Zk0,x < d2)
x−E(Zk,x|Zk,x < d1)

Pk0,x((−∞, d2))
Pk,x((−∞, d1))

,

where E(Zk,x|Zk,x < z)) is an increasing function of x. Setting infx∈(d2,b) E(Zk0,x|Zk0,x <

d2)) = Ak0,d2 , we have

x− E(Zk0,x|Zk0,x < d2)
x−E(Zk,x|Zk,x < d1)

≤ x−A

x− d1
≤ d2 −A

d2 − d1
,

where the last inequality holds since (x − a)/(x − d1) is descreasing in x. Proceeding as

in point (i), it can be shown that there exist c∗ < d1 with νk0([c
∗, d1)) > 0 and z∗ ∈ (a, b)

such that

Pk0,θ((−∞, d2))
Pk,θ((−∞, d1))

≤ νk0((−∞, d2))
νk([c∗, d1))

ν(G)−(k0−k) exp(θ[k0d2 − kc∗ − z∗(k0 − k)])

for any k ∈ [k0−δ, k0], and the thesis follows. ¦



8 SONIA PETRONE AND PIERO VERONESE

Part (i) of the following lemma is of autonomous interest. According with the discus-

sion in Section 3.3, it shows that the fiducial distribution of the natural parameter of a

NEF has finite moments of any order.

Lemma 4. (i) For any z ∈ IR and k ∈ Λ,
∫ | θ(x) |r dHk(x; z) < ∞ for any r > 0.

(ii) If U has support included in (a, b),
∫ | θ(x) |r bk,U (x)dx < ∞ for any r > 0.

Proof. From Theorem 2, for z ≤ a, z > b and {z = b, ν(b) = 0} (with a and b finite),

Hk(x; z) is degenerate and consequently the result holds. Consider now z ∈ (a, b) or

{z = b, ν(b) > 0} and assume, with no loss of generality, k = 1. We have to prove that

for any integer r
∫

(a,b)
|θ(x)|rdH(x; z)

=
∫

{x:θ(x)<0}
(−θ(x))rdH(x; z) +

∫

{x:θ(x)≥0}
θ(x)rdH(x; z) < ∞ . (A.11)

First, reparameterize the d.f. H(x; z), defined by (A.2), in terms of the natural parameter

and let {θ ∈ Θ : θ < 0} = (α, β), with β = min(sup Θ, 0). If (α, β) is non empty, an

integration by parts of the first integral in the right hand side of (A.11) leads to
∫ β

α
(−θ)r d

dθ
Pθ([z,∞))dθ = [(−θ)rPθ([z,∞))]βα + r

∫ β

α
(−θ)r−1Pθ([z,∞))dθ (A.12)

which is clearly finite for α > −∞ (since β is finite). If α = −∞, by the inequality (2.4)

in Diaconis and Ylvisaker (1979) there exists a set A with ν(A) > 0 and tA ∈ A such that

0 ≤ lim
θ→−∞

∫

[z,+∞)
(−θ)r exp(θt−M(θ))dν(t) ≤ lim

θ→−∞
1

ν(A)

∫

[z,+∞)
(−θ)r exp(θ(t−tA))dν(t) .

Choosing tA < z, and applying the Lebesgue dominated convergence theorem we conclude

that the first term on the right hand side of (A.12) is finite. Consider now the last integral

in (A.12). This is obviously finite if α > −∞. If α = −∞, applying again Diaconis and

Ylvisaker’s inequality, is it possible to show that

lim
θ→−∞

θr−1Pθ([z,∞])
1/θ2

= lim
θ→−∞

θr+1Pθ([z,∞)) = 0 ,
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which is a sufficient condition to prove that the integral is finite in this case, too.

A similar argument shows that also the second integral in the right hand side of (A.11) is

finite.

(ii). Let d1, d2 such that a < d1 < c1, c2 < d2 < b. Consider I(a,b) =
∫
(a,b) |θ(x)|rbk,U0(x)dx

and decompose it as the sum I(a,b) = I(a,d1) + I[d1,d2] + I(d2,b). From part 3) of Lemma 2,

for x < d1, hk(x; ·) is decreasing on [c1, c2], therefore

I(a,d1) =
∫

(a,d1)
|θ(x)|r

∫

[c1,c2]
hk(x; z)dU0(z)dx ≤

∫

(a,d1)
|θ(x)|r hk(x; c1)dx ,

which is finite since, as a consequence of Proposition 4,
∫ |θ(x)|rhk(x; z)dx < ∞. Analo-

gously, it can be shown that I(d2,b) < ∞. Finally, I[d1,d2] < ∞ since θ(x)r is bounded on

[d1, d2]. ¦

Lemma 5. Let k0 be in an interval in Λ. The kernel function hk(x; z) is continuous at

k0, i.e. for k → k0, hk(x; z) → hk0(x; z), for any x and z ∈ (a, b).

Proof. First, we write hk(x; z) as

hk(x, z) =
k

V (x)
(x− E(Zk,x|Zk,x < z)) Pk,x((−∞, z))

Let Sk,x = kZk,x ∼ P ∗
k,x (see Section 3.1) and let m∗

k,x = E(etSk,x) = ek[M(t+θ(x))−M(θ(x))]

be the moment generating function of Sk,x, for t in a neighborhood on the origin. Clearly

limk→k0 m∗
k,x(t) = m∗

k0,x(t) for any t and consequently P ∗
k,x converges weakly to P ∗

k0,x as

k → k0.

Now, if ν is dominated by the Lebesgue measure, then P ∗
k0,x is continuous, so that

P ∗
k,x(s) → P ∗

k0,x(s) for any s and, by Slustky theorem, Pk,x(z) → Pk0,x(z) for k → k0 and

any z. If ν is discrete with aritmetic support, then convergence of the moment generating

functions implies pointwise convergence of the probability mass functions. Consequently,

in both cases Pk,x((−∞, z)) → Pk0,x((−∞, z)) as k → k0, for any x and z.

Let now Z̄k,x be the random variable Zk,x truncated at z, i.e. Z̄k,x ∼ Qk,x(·) =

Pk,x(·)/Pk,x((−∞, z)). For the previous results, Z̄k,x converges to Z̄k0,x in distribution
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as k → k0. Furthermore, for k in a neighborhood J of k0, {Z̄k,x, k ∈ J} is uniformly

integrable (since supk∈J E((Z̄k,x)2) ≤ supk∈J E(Z2
k,x) = supk∈J(x2 + V (x)/k) < ∞) and

therefore E(Z̄k,x) → E(Z̄k0,x) (see e.g. Serfling (1980, p.14)). The thesis follows easily. ¦

A.3 Continuity of Bk,U

Here we prove some general properties of Bk,U . The following Lemma shows a bound-

ness property of the density bk,U . Then we give some results of continuity of Bk,U in its

parameters (k, U). We write Un ⇒ U for denoting weak convergence of Un to U and

Un →TV U for convergence in total variation.

Lemma 6. For any U , bk,U (x) is bounded and bounded away from zero for x and k in

compact sets.

Proof. For a known property of a NEF (see e.g. Lehmann (1959, Chap.2, Thm.9)) we can

compute the derivative of Bk,U (x) = E(U(Zk,x)) w.r.t. the natural parameter under the

integral sign, obtaining

bk,U (x) =
d

dx
Bk,U (x) =

dθ

dx

d

dθ
E(U(Zk,x)) =

k

V (x)

∫ ∞

−∞
U(z)(z − x)dPk,x(z)

=
k

V (x)
Cov(Zk,x, U(Zk,x)), (A.13)

where we use dθ/dx = (dM ′(θ)/dθ)−1|θ=θ(x) = V (x)−1.

From the Cauchy - Schwarz inequality and since V ar(U(Zk,x)) ≤ 1, it follows that

bk,U (x) =
k

V (x)
Cov(Zk,x, U(Zk,x)) ≤

(
k

V (x)

)1/2

.

Because V (x) is a continuous function in x, we have

sup
k∈C

sup
x∈[d1,d2]

bk,U (x) ≤ q̄ < ∞,

where C is a closed interval in Λ, so that bk,U is bounded above on compact sets.
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For proving that bk,U (x) is bounded away form zero for x ∈ [d1, d2] and k ∈ C, notice

that

Cov(Zk,x, U(Zk,x))

=
∫

[a,x)
(x− z)(U(x)− U(z))dPk,x(z) +

∫

[x,b]
(z − x)(U(z)− U(x))dPk,x(z)

≥
∫

[a,a∗]
(x− z)(U(x)− U(z))dPk,x(z) +

∫

[b∗,b]
(z − x)(U(z)− U(x))dPk,x(z)

≥ (x− a∗)(U(x)− U(a∗))Pk,x(a∗) + (b∗ − x)(U(b∗)− U(x))Pk,x([b∗, b]) (A.14)

where a∗ = a and b∗ = b if, respectively, Pk,x(a) > 0 or Pk,x({b}) > 0, otherwise choose

a∗ < d1 such that Pk,x(a∗) > 0 and b∗ > d2 such that Pk,x([b∗, b]) > 0 ∀k ∈ C. Letting

min(A,B) = A ∧B and using (A.14), we obtain

bk,U (x) ≥ k

V (x)
[(x− a∗) ∧ (b∗ − x)][Pk,x(a∗) ∧ Pk,x([b∗, b])][U(b∗)− U(a∗)]

= qk[U(b∗)− U(a∗)],

which is positive for any U not degenerate on a. Furthermore, as shown in the proof of

Lemma 5, Pk,x is continuous in k, so that, setting mink∈C q
k

= q, we have

inf
k∈C

inf
x∈[d1,d2]

bk,U (x) = q[U(b∗)− U(a∗)] > 0. (A.15)
¦

Remark. Lemma 6 shows that, for x and k in compact sets, bk,U (x) can be majorated

independently of U . On the contrary, the lower bound in (A.15) depends on U . However,

it is greater or equal to α q for any U in a class of d.f.’s such that U([c1, c2]) > α for

[c1, c2] ⊂ (a∗, b∗).

For brevity, in the following we limit our attention to the case when Un and U0 have

no mass concentrated at the extremes {a} and {b}, so that Bk,Un and Bk,U0 are absolutely

continuous d.f., with densities bk,Un and bk,U0 .

Proposition 4. Let Bk,U denote the completed Feller operator for a d.f. U , with ERS

{Pk,x, k ∈ Λ, x ∈ (a, b)} and let (Un, n ≥ 1) be a sequence of d.f.’s.
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(a) Continuity in U . If Un converges weakly to a continuous d.f. U0, then bk,Un converges

to bk,U0 pointwise and Bk,Un →TV Bk,U0.

(b) Continuity in k. Let k0 be in an interval included in Λ. If k → k0, then bk,U converges

to bk0,U pointwise and Bk,U →TV Bk0,U .

(c) Continuity of Bk,U . Let k0 be in an interval included in Λ. Then

(i) if k → k0, Un ⇒ U0 and U0 is continuous, then Bk,Un ⇒ Bk0,U0 uniformly in x;

(ii) if k → k0 and Un →TV U0, then Bk,Un →TV Bk0,U0.

Proof. (a). We have bk,Un(x) =
∫

hk(x; z)dUn(z). The functions hk(x, ·) and U0 have

no common discontinuity points, since U0 is continuous. Moreover, we have hk(x, z) ≤
hk(x, x) from point 3) of Lemma 2, therefore hk(x, ·) is bounded for any x ∈ (a, b). Thus,

using the Helly-Bray theorem,

lim
n→∞ bk,Un(x) = lim

n→∞

∫
hk(x; z)dUn(z) =

∫
hk(x; z)dU0(z) = bk,U0(x),

for x ∈ (a, b). It follows, by Scheffé theorem, that Bk,Un →TV Bk,U0 for n →∞.

(b). By Lemma 6, bk,U (x) is bounded for k in a compact set, for any fixed x and U . Taking

U degenerate on x it follows that hk(x, x) is bounded for k ∈ (k0 − c, k0 + c) ⊂ Λ, c > 0.

Thus, since hk(x, z) ≤ hk(x, x), the dominated convergence theorem can be applied, and

we have

lim
k→k0

bk,U (x) = lim
k→k0

∫
hk(x; z)dU(z) =

∫
lim

k→k0

hk(x; z)dU(z) = bk0,U (x).

By Scheffé theorem, it follows that Bk,U →TV Bk0,U for k → k0.

(c). For proving (i), notice that

| Bk,Un(x)−Bk0,U0(x) | ≤ | Bk,Un(x)−Bk,U0(x) | + | Bk,U0(x)−Bk0,U0(x) | . (A.16)

The first addend in the right hand side can be made smaller than ε/2 for n > n̄(ε/2),
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independently on k since

| Bk,Un(x)−Bk,U0(x) |≤
∫
| Un(z)− U0(z) | dPk,x(z) ≤ sup

z
| Un(z)− U0(z) |, (A.17)

and Un ⇒ U0 uniformly, because U0 is a continuous d.f.. The second addend in (A.16)

can be made smaller than ε/2 for k sufficiently close to k0, by point (b). Thus Bk,Un(x) →
Bk0,U0(x) for any x. The convergence is uniform in x since Bk0,U0 is a continuous d.f..

For showing (ii), consider

sup
A
| Bk,Un(A)−Bk0,U0(A) |≤ sup

A
| Bk,Un(A)−Bk,U0(A) | +sup

A
| Bk,U0(A)−Bk0,U0(A) | .

(A.18)

For the first addend, notice that

sup
A
|Bk,Un(A)−Bk,U0(A)| = sup

A
|
∫

Hk(A; z)dUn(z)−
∫

Hk(A; z)dU0(z)|

≤ sup
|g|<1

|
∫

gdUn −
∫

gdU0| = dTV (Un, U0), (A.19)

where dTV (Un, U0) denotes the total variation distance between Un and U0. Therefore it

can be made smaller than ε/2 for n > n̄(ε/2), independently on k, since by assumption

Un →TV U0. The second addend of (A.18) can be smaller than ε/2 for | k−k0 |< η(ε/2), by

point (b), and the thesis follows. ¦

Remark. The assumption of continuity of U0 in part (a) of the above proposition is not

necessary if the ERS is continuous. In fact, for (a) it is enough to assume that U0 and Pk,x

have no common discontinuity points and Un(a) → U0(a) = 0 and Un(b) → U0(b) = 1. For

a discrete ERS, the kernel hk(x; z) is piecewise constant, and the result (a) holds providing

that Un(zj,k) → U0(zj,k) for any support point zj,k of Pk,x.

The following result provides an extension of Feller’s Theorem 1 and of Theorem 4.

Proposition 5. (Approximation properties). Let Bk,U and Un be defined as in Proposition

4.
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(i) If k →∞ and Un ⇒ U0, where U0 is a continuous d.f., then Bk,Un ⇒ U0, uniformly

in x.

(ii) If k →∞ and Un →TV U0, where U0 is an absolutely continuous d.f. with continuous

and bounded density u0, then Bk,Un →TV U0.

Proof. (i). We have

|Bk,Un(x)− U0(x)| ≤ |Bk,Un(x)−Bk,U0(x)|+ |Bk,U0(x)− U0(x)|.

The first addend can be made smaller than ε/2 for n > n̄(ε/2), independently on k, as

shown from (A.17). The second addend can be made smaller than ε/2 for k > k̄(ε/2) by

Theorem 1. The convergence is uniform being U0 a continuous d.f..

(ii). Write

sup
A
|Bk,Un(A)− U0(A)| ≤ sup

A
|Bk,Un(A)−Bk,U0(A)|+ sup

A
|Bk,U0(A)− U0(A)|.

The first addend can be made smaller than ε/2 for n > n̄(ε/2), independently on k, as

shown from (A.19). The second addend can be made smaller than ε/2 for k > k̄(ε/2) by

Theorem 4. ¦

Finally, we give a result of continuity in Kullback-Leibler of the density bk,U .

Lemma 7. Let k0 be in an interval contained in Λ. If U0 has support included in (a, b),

then

limk↑k0KL(bk0,U0 , bk,U0) = 0 .

Proof. For brevity, let b0(x) = bk0,U0(x). Denote by [c1, c2] the support of U0. Fix d1 < c1

and d2 > c2 in (a, b) satisfying the assumptions of Lemma 3 , i.e. θ(d1) < 0 < θ(d2). Then

we can write

0 ≤ KL(b0, bk,U0)

=
∫

(a,d1)
log

b0(x)
bk,U0(x)

b0(x)dx +
∫

[d1,d2]
log

b0(x)
bk,U0(x)

b0(x)dx +
∫

(d2,b)
log

b0(x)
bk,U0(x)

b0(x)dx .



FELLER OPERATOR AND MIXTURE PRIORS 15

It suffices to consider the case when the integrals on the right hand side are positive

(otherwise, we can majorize KL(b0, bk,U0) by omitting the negative addends). For a <

x < d1, from part 3) of Lemma 2,

hk(x; d2) ≤ bk,U0(x) =
∫

[c1,c2]
hk(x; z)dU0(z) ≤ hk(x; d1) .

By Lemma 3, there exists a left neighborhood of k0 such that for any k ∈ [k0 − δ, k0],

log
b0(x)

bk,U0(x)
≤ log

hk0(x; d1)
hk(x; d2)

≤ log D1 + |θ(x)|G ,

where D1 = |maxk∈[k0−δ,k0] D1(k, k0)| and G = maxk∈[k0−δ,k0] |k0d1 − kc∗∗ − z∗(k0 − k)|.
Therefore,

∫

(a,d1)
log

b0(x)
bk,U0(x)

b0(x)dx ≤ (log D1 + G)
∫

(a,d1)
max(1, |θ(x)|) b0(x)dx .

By part (ii) of Lemma 4,
∫
(a,b) |θ(x)| b0(x)dx < ∞. So, for any ε > 0, there exists a

value of d1 sufficiently close to a such that
∫
(a,d1) max(1, |θ(x)|)b0(x)dx is smaller than

ε/(3(log D1 + G)), and
∫
(a,d1) log(b0(x)/bk,U0(x)) b0(x)dx < ε/3.

The integral on the right hand tail can be treated analogously, using (ii) of Lemma 3.

Finally, consider x ∈ [d1, d2]. By Lemma 6, | log(b0(x)/bk,U0(x))| is bounded k ∈
[k0 − δ, k0], so we can apply the dominated convergence theorem, obtaining

lim
k→k0

∫

[d1,d2]
log

b0(x)
bk,U0(x)

b0(x)dx =
∫

[d1,d2]
lim

k→k0

log
b0(x)

bk,U0(x)
b0(x)dx = 0 ,

being limk→k0 bk,U (x) = bk0,U (x) by (b) of Proposition 4. Thus the integral on [d1, d2]

can be made smaller than ε/3 for k in a (left)-neighborhood of k0, and this concludes the

proof. ¦

A.4 Support of the mixture prior

Proof of Theorem 5.

(i). By part (i) of Proposition 5, for any ε > 0 we can choose k̄ = k̄(ε/2) and a weak

neighborhood W (F0) = Wε/2(F0) of F0 such that Bk,U is in a weak neighborhood Wε(F0)
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for any k ≥ k̄ and U ∈ W (F0). Therefore

πB(Wε(F0)) ≥
∫

k≥k̄
πU (W (F0) | k)dp(k),

which is positive being πU (W (F0) | k) > 0 for any k and p(k) positive by assumption.

(ii). For any ω ∈ Ω, we have

sup
A
|Bk,Fn(A)− F0(A)| ≤ sup

A
|Bk,Fn(A)−Bk,F0(A)|+ sup

A
|Bk,F0(A)− F0(A)|.

By Theorem 4 we can choose k̄ = k̄ε/2 sufficiently large so that supA |Bk,F0(A) − F0(A)|
is smaller than ε/2 for k > k̄. For any such k, by part (a) of Proposition 4 we can choose

a weak neighborhood Wε/2,k(F0)) such that the first addend is smaller than ε/2 for any

U ∈ Wε/2,k(F0). Therefore

πB(Vε(F0)) ≥
∫

k≥k̄
πU (Wε/2,k(F0) | k)dp(k)

which is positive being πU (Wε/2,k(F0) | k) > 0 for any k and p(k) positive by assumption.

¦

Proof of Theorem 6. Remind that, as shown in Appendix A.2, given a NEF with

natural parameter θ ∈ Θ, we can assume that 0 ∈ Θ with no loss of generality.

Let f0 = bk0,U0 be the density of F0 = Bk0,U0 (by assumption, U0 has support included

in (a, b), so that U0(a) = 0 and U0({b}) = 0 and bk0,U0 is a density). Denote by KL(f, g) =
∫

log(f(x)/g(x)) f(x)dx the Kullback-Leibler divergence between two densities f and g.

We can write

KL(f0, bk,U ) =
∫

(a,b)
log

f0(x)
bk,U0(x)

f0(x)dx +
∫

(a,b)
log

bk,U0(x)
bk,U (x)

f0(x)dx

= KL(f0, bk,U0) + I(k, U) . (A.20)

If k0 is an isolated point of Λ, fix k = k0, so that KL(f0, bk0,U0) = 0. If k0 is in an interval

included in Λ, by Lemma 7 in Appendix A.3, for any ε > 0 there exists δ = δ(ε) such that

KL(f0, bk,U0) < ε/2 for k ∈ [k0 − δ, k0]. If the integral I(k, U) on the right hand side of
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(A.20) is negative, then 0 ≤ KL(f0, bk,U ) ≤ KL(f0, bk,U0) < ε/2. So it remains to consider

the case when I(k, U) > 0, with k ∈ [k0− δ, k0], δ ≥ 0 (with δ = 0 if k0 is an isolated point

of Λ).

Let [c1, c2] be the support of U0. Fix d1 < c1, d2 > c2 in (a, b) satisfying the assump-

tions of Lemma 3. Then, decompose the integral I(k, U) as the sum of the integrals on

(a, d1), [d1, d2], (d2, b).

For the left-tail integral on (a, d1), using part 3) of Lemma 2 and (i) of Lemma 3, we

have
∫

(a,d1)
log

bk,U0(x)
bk,U (x)

f0(x)dx ≤
∫

(a,d1)
log

hk(x; d1)
hk(x; d2) U([c1, c2])

f0(x)dx

≤ {log D1 + G− log U([c1, c2])}
∫

(a,d1)
max(1, |θ(x)|)f0(x)dx

where: D1 = | supk∈[k0−δ,k0] D1(k, k)|, with D1(k, k) defined as in (A.10); note that

D1 < ∞ since νk is continuous in k; and G = maxk∈[k0−δ,k0] k(c∗∗ − d1). Now, log D1 +

G − log U([c1, c2]) < log D1 + G + log 2 for U in a weak neighborhood of U0 such that

U([c1, c2]) > 1
2 . Then, by part (ii) of Lemma 4 we can choose d1 sufficiently close to a so

that
∫ d1

a max(1, |θ(x)|) f0(x)dx is sufficiently small, and the integral
∫

(a,d1)
f0(x) log(bk,U0(x)/bk,U (x))dx

is smaller than ε/6. The right tail can be treated analogously.

Let now consider
∫
[d1,d2] log(bk,U0(x)/bk,U (x)) f0(x)dx. From Lemma 6 and the re-

lated Remark, it follows that, for x ∈ [d1, d2], k ∈ [k0 − δ, k0] and any U such that

U([c1, c2)]) > 1/2, bk,U (x) is bounded and bounded away from zero. Then, if {Un} is a

sequence of d.f.’s converging weakly to U0, with Un([c1, c2)]) > 1/2 for each n, we have

| log(bk,U0(x)/bk,Un(x))| < constant; by dominated convergence

lim
n→∞

∫

[d1,d2]
log

bk,U0(x)
bk,Un(x)

f0(x)dx =
∫

[d1,d2]
lim

n→∞ log
bk,U0(x)
bk,Un(x)

f0(x)dx.

Assume for the moment that U0(·) and hk(x; ·) have no common discontinuity points.

Then, by part (a) of Proposition 4 and the related Remark, bk,Un converges pointwise to
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bk,U0 , so that ∫

[d1,d2]
lim

n→∞ log
bk,U0(x)
bk,Un(x)

f0(x)dx = 0.

Since the weak topology is metrizable, the above result is equivalent to say that for any ε >

0 there exists a weak neighborhood Wε,k(U0) such that
∫
[d1,d2] log(bk,U0(x)/bk,U (x)) f0(x)dx

is smaller than ε/6 for any U ∈ Wε,k(U0). Thus we conclude that, given k ∈ [k0 − δ, k0],

for any ε > 0 we can choose a neighborhood Wk,ε(U0) of U0 such that I(k, U) < ε/2 for

U ∈ Wk,ε(U0).

Finally, from (A.20), if k0 is an isolated point of Λ, the prior probability of a Kullback-

Leibler neighborhood of f0 is

πB({Bk,U : KL(f0, bk,U )) < ε}) ≥ πB({Bk,U : k = k0, U ∈ Wk0,ε(U0)})

= πU (Wk0,ε(U0)|k0) p(k0),

which is positive by the assumptions. If k0 belongs to an interval included in Λ, then

πB({Bk,U : KL(f0, bk,U ) < ε}) ≥
∫

[k0−δ,k0]
πU (Wk,ε(U0)|k) p(k)dk > 0 ,

being the integral of a positive function on an interval with positive length.

The theorem is proved under the restriction that U0 and hk(x; ·) have no common

discontinuities. This is always true if the ERS is continuous, since in this case hk(x; z) is

continuous in z. If the ERS is discrete, the assumptions on the measure ν imply that νk

has a finite number of support points, {zj1,k, . . . , zjm,k} say, in the closed interval [c1, c2],

(see Ramachandran (1967, Chap.1 and 2)).

Let zj0,k < c1 and zjm+1,k ≥ c2, so that U0(zj0,k) = 0 and U0(zjm+1,k) = 1. Then

bk,U0(x) =
m∑

i=0

(
U0(zji+1,k)− U0(zji,k)

)
hk(x; zi,k).

Let U
(k)
0 be a continuous d.f. such that U

(k)
0 (zji,k) = U0(zji,k), i = 0, 1, . . . , m + 1. Then

b
k,U

(k)
0

(x) = bk,U0(x) and, if Un converges weakly to U
(k)
0 as n →∞, bk,Un(x) → b

k,U
(k)
0

(x) =
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bk,U0(x), by (a) of Proposition 4. Therefore the integral
∫
[d1,d2] log(bk,U0(x)/bk,U (x))f0(x)dx

can be made sufficiently small for U in a weak neighborhood Wk,ε(U
(k)
0 ) of U

(k)
0 . It follows

that

πB({Bk,U : KL(f0, bk,U ) < ε}) ≥
∫

(k0−δ,k0]
π(Wk,ε(U

(k)
0 )|k) p(k) dk > 0,

which is positive since by assumption πU (·|k) has full weak support for any k, so that

π(Wk,ε(U
(k)
0 )|k) > 0, and p(k) is positive. ¦

Proof of Theorem 7. Denote with E the finite support of f0 and write

KL(f0, bk,U ) =
∫

E
log

f0(x)
bk,F0(x)

f0(x)dx +
∫

E
log

bk,F0(x)
bk,U (x)

f0(x)dx . (A.21)

Assume first that f0 is bounded away from zero, so that there exist positive constants m

and M such that 0 < m ≤ f0(x) ≤ M < ∞, for x ∈ E. Now, we have

bk,F0(x) = E(f0(Z∗k,x)) = E(f0(Z∗k,x)|Z∗k,x ∈ E)Pr(Z∗k,x ∈ E) ,

where Z∗k,x was defined in Lemma 2, and recalling that f0(z) = 0 for z /∈ E. Then by the

internality of the expected value,

mPr(Z∗k,x ∈ E) ≤ bk,F0(x) ≤ M .

Now, assume that x ∈ E. Then, from Lemma 2, the density of Z∗k,x has a mode in a point

of E and thus Pr(Z∗k,x ∈ E) > 0, for each fixed x and k. Furthermore, from (3.12) and

(3.13), it follows that Pr(Z∗k,x ∈ E) → 1, for k →∞. Thus

| log
f0(x)

bk,F0(x)
| ≤ constant < ∞, ∀x ∈ E, and k > k∗, k∗ ∈ Λ.

Therefore, by dominated convergence and using the fact that bk,F0(x) → f0(x), for

k →∞, by Theorem 4, we have

lim
k→∞

∫

E
log

f0(x)
bk,F0(x)

f0(x)dx = 0 .
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Thus, for any ε > 0 the first integral on the right side of (A.21) can be made < ε/2 for

k > k̄ = k̄(ε/2). Now, if Λ contains an isolated point k0 > k̄, fix k = k0 in the second

integral in the right hand side of (A.21), otherwise fix k0 and δ > 0 such that k0 − δ > k̄

and let k ∈ [k0 − δ, k0]. For each such k’s, the second integral on the right hand side

of (A.21) can be treated as the integral I(k, U) appearing in (A.20), with F0 in place of

U0. Thus, following a similar proof as for Theorem 6, it can be shown that for any fixed

k ∈ [k0 − δ, k0], it can be made smaller than ε/2 for U in a weak neighborhood Wε,k(F0).

It follows that, if k0 is an isolated point in Λ,

πB({Bk,U : KL(f0; bk,U ) < ε}) ≥ πU (Wk0,ε(F0)|k0)p({k0}) ,

which is positive by the assumptions; otherwise

πB({Bk,U : KL(f0; bk,U ) < ε}) ≥
∫

[k0−δ,k0]
πU (Wk,ε(F0)|k) p(k)dk ,

which is also positive. This proves the thesis under the assumption that f0 is bounded

away from zero.

In the general case, we can use Lemma 5.1 in Ghosal, Ghosh and Ramamoorthi (1999),

which shows that, if f0 and f1 are densities such that f0 ≤ Cf1 for a constant C > 0, then

for any density f

KL(f0, f) ≤ (C + 1) log C + C{KL(f1, f) +
√

KL(f1, f)} .

Let α > 0 and fα(x) = max(f0(x), α)/
∫

max(f0(x), α)dx = max(f0(x), α)/Cα. Being

f0 ≤ Cαfα, we have by the above Lemma

KL(f0, bk,U ) ≤ (Cα + 1) log Cα + Cα{KL(fα, bk,U ) +
√

KL(fα, bk,U )}.

Fix α sufficiently small, so that Cα is close to one and (Cα + 1) log Cα is small. Because

the density fα is bounded and bounded away from zero, we can use the result established

above. Therefore, denoting with Fα the d.f. associated to fα, we can find for any ε > 0,
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weak neighborhoods Wε,k(Fα) and a value k0 such that, given k ∈ [k0−δ, k0], KL(fα, bk,U )

is small for every U ∈ Wε,k(Fα). Thus

πB({Bk,F : KL(f0; bk,U ) < ε}) ≥
∫

[k0−δ,k0]
πU (Wk,ε(Fα)|k) dp(k),

which is positive by the assumptions. ¦

Proof of Proposition 3. Observe that Bk,U = Bk,Q implies U(a) = Q(a) and, for all

x ∈ (a, b) ∫
(U(z)−Q(z))dPk,x(z) = 0.

Since the NEF Pk,x is complete, it follows that

Pk,x(U(Zk,x)−Q(Zk,x)) = 1. (A.22)

Therefore, if Pk,x is absolutely continuous, it must be U(z) = Q(z) for all z ∈ (a, b) except

at most on subsets of Lebesgue measure zero. But, being U and Q d.f.’s, this implies that

U(z) = Q(z) for all z ∈ (a, b). If Pk,x is discrete, (A.22) implies that U(zj,k) = Q(zj,k) at

any support point zj,k of Pk,x and therefore the identifiability of the weights wU
j,k. ¦
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