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Abstract: Priors for Bayesian nonparametric inference on a continuous curve are

often defined through approximation techniques, e.g. basis-functions expansions

with random coefficients. Using constructive approximations is particularly attrac-

tive, since it may facilitate the prior elicitation. With this motivation we study

a class of operators, introduced by Feller, for the constructive approximation of a

bounded real function. Feller operators have a simple, probabilistic structure. We

prove that, when the random elements used in their construction are chosen in the

natural exponential family, they have several properties of interest in statistical

applications, and can be represented as mixtures of simple probability distribution

functions. As a by-product, we give some new results on the natural exponential

family. Our construction offers more insights on the role of mixtures in Bayesian

nonparametrics. A fairly general class of mixture priors arises, which includes con-

tinuous, countable, or finite mixtures, with kernels suggested by the approximation

scheme. This allows the study of theoretical properties in a unified setting; in par-

ticular, we give results on the Kullback-Leibler property for the proposed class of

mixture priors, and on the consistency of the corresponding posterior, extending

results known only for specific kernels.
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1. Introduction

Bayesian nonparametric inference is an active research area that has grown
extensively over the last years. A vast literature on discrete nonparametric priors
has been developed, with applications in a large range of fields. For continuous
data, flexible (nonparametric) models are commonly obtained through mixtures
of distributions. The use of mixtures in Bayesian nonparametrics goes back
to Ferguson (1983) and Lo (1984), who introduced mixtures with a Dirichlet
process mixing distribution as priors for continuous data. Mixture models are
widely used for model-based clustering and classification, or as smoothing tech-
niques, with components having the role of kernels. Mixtures are also applied
in shape constrained density estimation: if the constrained set of densities is
convex, Choquet’s theorem provides a representation of the density as a mixture
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of known extreme measures, so that a prior on the constrained density can be
obtained more easily by giving a prior on the unconstrained mixing density (see
Hoff (2003)). When an exact mixture representation is not available, mixture
models are used as approximations of the unknown density of the data for defin-
ing a prior with rich support. Despite the richness of contexts of application,
the theory on mixture-priors does not seem fully developed yet. Properties of
mixtures have been mostly studied for special cases, in particular for Gaussian
kernels (Ghosal and van der Vaart (2007) and references therein), or for beta
kernels (e.g., Petrone and Wasserman (2002)), and many results are confined to
density estimation by mixtures. Extending the analysis to more general kernels
or different estimation contexts does not seem an easy task.

This paper offers a further contribution on the role of mixtures in Bayesian
nonparametric inference. We present a general class of mixture models that orig-
inates from a constructive approximation technique, due to Feller, which is a
generalization of Bernstein polynomials. In fact, another popular approach in
Bayesian nonparametrics is to express a flexible model (in other words, a prior
with large support) for an unknown density, or more generally a random curve,
by using basis-function expansions with random coefficients. However, in many
cases the expansion coefficients do not have a simple interpretation so that a
honest prior elicitation is difficult. It is therefore attractive to use constructive
approximations, where the coefficients are directly related to the function to be
approximated. For bounded functions on the unit interval, a simple, constructive
approximation is provided by Bernstein polynomials. Feller (1971, Chap. VII)
defines a more general approximation scheme for a bounded curve on a possi-
bly unbounded interval. Feller operators have the same probabilistic nature as
Bernstein polynomials, and indeed they are known in the approximation the-
ory literature as Feller’s probabilistic way of constructing positive approximation
processes of Korovkin-type (see Altomare and Campiti (1994)). Besides their at-
tractive constructive nature, Bernstein polynomials have several properties that
are of interest in statistical applications. A first one is monotonicity preservation,
which is a basic requirement for ensuring that the approximation of a probability
distribution function (d.f.) is still a d.f. Also, the derivative of the Bernstein
polynomial turns out to be a mixture of beta densities, and this property nicely
relates polynomial approximation to mixture models and kernel methods. In
Bayesian parametric inference, this property was exploited by Dalal and Hall
(1983) and Diaconis and Ylvisaker (1985) for showing that a honest prior on the
parameter of a Bernoulli model can always be approximated by a mixture of beta
densities, that is, of conjugate priors. They extend this result to more general
models, but they do not refer explicitly to Feller’s operators.
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In Bayesian nonparametric inference, random Bernstein polynomials have
been studied by Petrone (1999) and applied in several contexts (see e.g., Choud-
huri, Ghosal and Roy (2004)). Here, the curve to be approximated is no more
deterministic, but random. The so-called Bernstein prior can be extended to
inference on a random curve on a possibly unbounded interval (see e.g. the im-
plementation in the function BDPdensity of the R-package “DPpackage”, Jarra
(2007)). However, this requires a preliminary transformation of the sample space
into the unit interval.

We use the extension of Bernstein polynomials, provided by Feller operators,
to define a class of priors for Bayesian nonparametric inference on an unknown
bounded curve on a general interval in R. Moreover, we want to maintain some
desirable properties of Bernstein polynomials, in particular their connection with
mixture models. We show that this is possible if the probabilistic elements used
in their construction (the random scheme, see Section 2) are chosen in the nat-
ural exponential family (NEF). As a by-product, we give some new results for
the NEF, that are of independent interest. In inference on a random d.f., our
construction leads to a class of mixture models where the choice of the kernel
is automatically provided by the approximation scheme, which is appropriately
chosen according to the sample space. This avoids difficulties such as the so-called
boundary bias effect in density estimation. The proposed class of mixture mod-
els is fairly general, including continuous, countable, or finite mixtures; thus, we
have a unified framework for studying theoretical properties of mixture models
in Bayesian nonparametric inference. Since we show that any d.f. can be (con-
structively) approximated by Feller operators, we can define a class of “mixture
priors” with rich support. In particular, we discuss the Kullback-Leibler support
of the proposed priors. The Kullback-Leibler property is a sufficient condition
for weak consistency in Bayesian density estimation, and it is usually maintained
in more refined sets of conditions for stronger asymptotic results; see for example
Walker, Lijoi and Prünster (2005). Our results are a first extension to a gen-
eral class of mixture models of asymptotic properties usually proved for specific
(Gaussian) kernels. We focus on Bayesian nonparametric inference on a random
d.f. or density in the basic framework of exchangeable data, but our construction
of the prior is attractive in more general statistical applications such as multiple
shrinkage estimation, or inference on a bounded random curve, e.g. a regression
function.

The paper is organized in two parts. In the first part (Sections 2 and 3)
we define Feller operators with exponential random scheme and we study their
properties, focussing on the approximation of a d.f.. In the second part, we
discuss applications in Bayesian nonparametric inference. The proposed class of
nonparametric priors based on Feller operators is in Section 4. In particular,
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Kullback-Leibler properties are provided in Subsection 4.2. Further statistical
applications and extensions are discussed in Section 5. More technical results
and all the proofs are provided in the Appendix, available on line at http://
www.stat.sinica.edu.tw/statistica. The Appendix is organized as follows.
Section A.1 contains the proofs of the results stated in Section 3. Section A.2
shows some analytical properties of the mixture kernels arising in our scheme.
These properties, together with continuity properties of Feller operators provided
in Section A.3, are used in Section A.4 for proving the results on the Kullback-
Leibler property for mixture priors.

2. Feller Operators for a Bounded Function

Feller (1971, Chap. VII) presents the following constructive approximation
procedure for real bounded functions.

Let U : R → R be a bounded function. Consider a family of random variables
(r.v.’s) {Zk,x, x ∈ (a, b) ⊆ R, k = 1, 2, . . .} with Zk,x having distribution function
Pk,x, expected value E(Zk,x) = µk(x) and finite variance V ar(Zk,x) = σ2

k(x).
Define

Bk,U (x) = E(U(Zk,x)) =
∫ ∞

−∞
U(z)dPk,x(z) , x ∈ (a, b) . (2.1)

The following theorem, which is a slight generalization of the result of Feller
(1971, Chap. VII, Lemma 1), shows that Bk,U provides an approximation of U

on the interval (a, b).

Theorem 1. If {Zk,x, x ∈ (a, b), k = 1, 2, . . .} is such that, for k → ∞, µk(x) →
x and σ2

k(x) → 0, then limk→∞ Bk,U (x) = U(x) at any continuity point x of U ,
x ∈ (a, b). If U is continuous, the convergence is uniform in every closed interval
in which µk(x) → x and σ2

k(x) → 0 uniformly.

Roughly speaking, the value of U(x) at x is approximated by a weighted
average of the values U(z), with weights that are more and more concentrated
around x as k increases. Despite its simplicity, Theorem 1 proves useful in a vari-
ety of problems. For example, from a statistical view point, if {Zk,x} is a sequence
of statistics, then it says that U(Zk,x) is an asymptotically unbiased estimator
of U(x). In the approximation theory literature, it is referred as Feller’s proba-
bilistic way of constructing Korovkin-type approximations of bounded functions
(see Altomare and Campiti (1994, Sec. 5.2.)). The sequence of random variables
{Zk,x} (or equivalently of d.f.’s {Pk,x}) satisfying the conditions of Theorem 1
is called a random scheme for the approximation. We call Bk,U a Feller oper-
ator of order k for U , with random scheme {Pk,x}. A simple way for defining
a random scheme is to consider independent and identically distributed (i.i.d.)

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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r.v.’s Yi, i = 1, 2, . . ., with mean E(Yi) = x and variance σ2(x). Then the ran-
dom variables {Zk,x =

∑k
i=1 Yi/k, k = 1, 2, . . .} provide a random scheme since

E(Zk,x) = x and V (Zk,x) = σ2(x)/k converges to zero.
Bernstein polynomials are a special case of this construction with Yi ∼

Bernoulli with parameter x, and kZk,x having a binomial distribution with pa-
rameters k and x, so that

Bk,U (x) =
k∑

j=0

U(
j

k
)
(

k

j

)
xj(1 − x)k−j , x ∈ (0, 1). (2.2)

It is natural to study the more general case where Pk,x belongs to the natural ex-
ponential family. In particular, we want to explore if this generalization preserves
the desirable properties of Bernstein polynomials discussed in the Introduction.

3. Feller Operators with Exponential Random Scheme

To introduce the notation, we recall some basic notions about the natural
exponential family; for a more complete reference, see e.g., Brown (1986). The
proofs of the results contained in this section are provided in Appendix A.1.

3.1 Preliminaries on the natural exponential family

Given a non degenerate σ-finite measure ν on the Borel sets of R, denote
with M(θ) = ln

∫
exp{θ x}ν(dx) the cumulant transform of ν, and let N =

{θ ∈ R : M(θ) < ∞}. The real Natural Exponential Family (NEF), with natural
parameter θ, is the family of probability measures F on R whose densities, with
respect to (w.r.t.) ν, are of the form

pθ(y) = exp{θ y − M(θ)}, θ ∈ Θ, (3.1)

where Θ is the interior of N . The set Θ is supposed non-empty and open. The
family is regular if N is open, i.e., N = Θ. In the sequel we only consider
regular NEF’s. A NEF can be alternatively parametrized in the mean parameter
µ = µ(θ) = dM(θ)/dθ, since µ(·) is a one-to-one transformation from Θ onto
Ω = µ(Θ). Notice that if a NEF is regular, then Ω = (a, b), where (a, b) is the
interior of the convex support of ν (by convex support we mean the smallest
closed interval containing the support of the measure ν). The variance of a NEF
is given by d2M(θ)/dθ2. As a function of µ, it is called variance function and
is denoted by V (µ). It is convenient to work with a NEF parametrized by the
mean parameter µ, denoted as Pµ.

A NEF is closed under the sum operation: if Y1, . . . , Yk are random variables
i.i.d. according to the density (3.1), then Sk,µ =

∑k
i=1 Yi is distributed according



384 SONIA PETRONE AND PIERO VERONESE

to a NEF with density, w.r.t. the convolution measure ν∗
k , given by

p∗k,µ(s) = exp{θ(µ) s − kM(θ(µ))}, θ ∈ Θ. (3.2)

The average Zk,µ = Sk,µ/k has density belonging to a NEF, w.r.t. the appropriate
measure, with mean parameter E(Zk,µ) = µ and variance V ar(Zk,µ) = V (µ)/k.
In fact, a NEF is closed under the more general operation of power convolution.
More precisely, given a NEF F , let k be a positive real number and suppose
there exists a non degenerate measure ν∗

k such that its cumulant transform is
given by kM(θ) for each θ ∈ Θ. Then the NEF generated by ν∗

k is called the k-th
convolution power of F and is denoted by F∗k. The set Λ of all real positive k

for which one can construct a convolution power of F is called a Jorgensen set
(Jorgensen (1987)); clearly it always contains all positive integers. The density
of a NEF F∗k, with k ∈ Λ, is formally equivalent to (3.2). If Sk,µ has distribution
in F∗k, then Zk,µ = Sk,µ/k is still distributed according to a NEF, with density
given by pk, µ(z) = exp{k[θ(µ)z − M(θ(µ))]} w.r.t. the appropriate measure νk.
Clearly, E(Zk,µ) = µ and V ar(Zk,µ) = V (µ)/k. Notice that the convex support
of Zk,µ concides with that of the NEF F .

3.2. Feller operators with ERS

We exploit the property of closeness under power convolution of a NEF to
define a general exponential random scheme (ERS) for Feller operators. Let U be
a real bounded function defined on R. For the approximation of U on an interval
(a, b), one can take a NEF F having mean x defined on the same interval (a, b),
and consider the r.v.’s k Zk,x distributed according to the convolution power F∗k

of F , k ∈ Λ. The family {Zk,x, x ∈ (a, b), k ∈ Λ} provides a random scheme,
since E(Zk,x) = x and V ar(Zk,x) = V (x)/k converges to zero as k → ∞.

Definition 1. Given a NEF F with mean parameter x ∈ (a, b), let kZk,x be a
r.v. with distribution in the k-convolution power of F , for k ∈ Λ. We call

Bk,U (x) = E(U(Zk,x)), x ∈ (a, b)

a Feller operator with ERS {Zk,x, x ∈ (a, b), k ∈ Λ}, for the approximation of
the function U on the interval (a, b). The ERS is said to be continuous if the
r.v.’s Zk,x are absolutely continuous, and discrete if the Zk,x’s are discrete.

If Zk,x ∼ Pk,x, we will also denote the ERS by {Pk,x, x ∈ (a, b), k ∈ Λ}.
Example 1 (discrete ERS).
Binomial random scheme (Bernstein polynomials). If U is a bounded function on
the unit interval [0, 1], the Feller operator with ERS for U may be based on a NEF
with mean parameter space (0, 1). A natural choice is a Bernoulli distribution
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with parameter x. In this case Λ = {1, 2, . . .} and F∗k is the binomial family with
parameters (k, x), bi(k, x). As already noted, the Feller operator with Binomial
random scheme {Zk,x, x ∈ (0, 1), k = 0, 1, 2 . . .}, where kZk,x ∼ bi(k, x), is the
Bernstein polynomial (2.2) of order k for U .
Poisson random scheme. If the function U to be approximated is defined on
(0,∞), the ERS may be based on a NEF with mean parameter space (0,∞). One
possible choice is a Poisson family with mean x, Po(x). In this case, Λ = (0,∞)
and F∗k is the Poisson family with mean kx. Therefore a Feller operator with
Poisson random scheme {Zk,x, x ∈ (0,∞), k > 0}, where kZk,x ∼ Po(kx), is
defined as

Bk,U (x) = E(U(Zk,x)) =
∞∑

j=0

U(
j

k
) (kx)j e−kx

j!
, x > 0.

Example 2 (continuous ERS).
Gaussian random scheme. A bounded function U on (−∞,∞) can be approxi-
mated by a Feller operator with ERS having mean in (−∞,∞). A natural choice
is a Gaussian family with mean x and fixed variance σ2, N(x, σ2). In this case,
Λ = (0,∞) and F∗k is the family N(kx, kσ2) with k > 0. We obtain a Gaussian
random scheme {Zk,x ∼ N(x, σ2/k), x ∈ R, k > 0}, which gives

Bk,U (x) = E(U(Zk,x)) =
∫ ∞

−∞
U(z) N(z; x,

σ2

k
) dz, (3.3)

where N(·;µ, σ2) denotes the density function of a N(µ, σ2).
Gamma random scheme. For a bounded function U on (0,∞), we used in Exam-
ple 1 a discrete ERS, based on the Poisson distribution. A continuous ERS can
be obtained by considering the (negative) exponential distribution with mean x.
Then Λ = (0,∞) and the convolution power is the gamma family with shape
parameter k > 0 and mean kx, Ga(k, 1/x). Thus, we have a Gamma random
scheme {Zk,x ∼ Ga(k, k/x), x ∈ (0,∞), k > 0} and

Bk,U (x) = E(U(Zk,x)) =
∫ ∞

0
U(z)Ga(z; k,

k

x
)dz, x > 0,

where Ga(·; α, β) denotes the density function of a Ga(α, β).

An attractive aspect of Feller operators with ERS is that they preserve some
desirable properties of Bernstein polynomials, such as monotonicity and their
connection with kernel or mixture approximation. For a NEF, Pk,x(t) is a non-
increasing function in x for any fixed t (see Lehmann (1959, Chap. 3, Lemma
2)), therefore Zk,x′ stochastically dominates Zk,x if x′ > x. It follows that, if U
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is monotone (non-decreasing), E(U(Zk,x′) ≥ E(U(Zk,x)), i.e., Bk,x is monotone
non-decreasing. Thus we have the following

Proposition 1. A Feller operator with ERS for a monotone (not constant)
bounded function U is monotone.

Note that if U is monotone (non-decreasing), it can be written as U(x) =∫ x
−∞ dU(t), for a < x < b, and we can re-express the Feller operator Bk,U (x) in

Theorem 1, interchanging the role of Pk,x and U , as

Bk,U (x) =
∫ ∞

−∞
U(z)dPk,x(z) =

∫ ∞

−∞

∫
(−∞,z]

dU(t)dPk,x(z)

=
∫ ∞

−∞
Pk,x([t,∞))dU(t). (3.4)

Roughly speaking, the right side of (3.4) gives a representation of Feller opera-
tors in terms of “kernels” Hk(x; t) = Pk,x([t,∞)), weighted by the function U .
However, if we do not impose restrictions on Pk,x, the functions Hk(·; t) are too
general and not easily interpretable; moreover, monotonicity preservation may
fail. Instead, if Pk,x is chosen in the NEF, it can be shown that Hk(·; t) has
several attractive properties. In particular, we will show that it can be seen as
a probability distribution function. Therefore, when the function U of interest
is a d.f., Feller operators with ERS have a representation as mixtures of d.f.’s,
related to the NEF used in the ERS. Thus, properties proved for Feller operators
with ERS hold for a fairly general class of mixture models, which is of particular
interest in statistical applications. To these aims, we need some technical results
on the NEF, that are given in the following subsections.

3.3. Some new results for the NEF

The properties of the NEF presented in this section, besides being useful
for studying Feller operators with ERS, are of independent interest. To our
knowledge, the following lemma is only partially known.

Lemma 1. Let Pµ be the d.f. of a real NEF with mean parameter µ ∈ (a, b),
−∞ ≤ a < b ≤ ∞, and dominating measure ν. Then
(i) limµ→a+ Pµ(y) = 1 and limµ→b− Pµ(y) = 0, ∀y ∈ (a, b);
(ii) if a > −∞ and ν{a} > 0, then

limµ→a+ pµ(a)ν{a} = 1 and limµ→b− pµ(a)ν{a} = 0;
(iii) if b < ∞ and ν{b} > 0 then

limµ→a+ pµ(b)ν{b} = 0 and limµ→b− pµ(b)ν{b} = 1.
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Although the lemma is stated in terms of the mean parameter of the NEF, it
can be rephrased for the natural parameter, since there is a one-to-one positive
monotone correspondence between the two parametrizations.

As shown in Subsection 3.1, if Pµ belongs to a NEF, so does its convolution
power Pk,µ. Motivated by (3.4), we study the properties of Pk,µ([z,∞)). The next
theorem shows that Pk,µ([z,∞)), as a function of µ and appropriately completed
on the real line, is a d.f.. Since we study the function Pk,(·)([z,∞)) on the real
line and not only on the interval (a, b), we denote its argument with a generic
symbol x rather than with µ. For z ∈ R and k ∈ Λ, define

Hk(x; z) =


0 x < a

limx→a+ Pk,x([z,∞)) x = a

Pk,x([z,∞)) a < x < b

1 x ≥ b.

(3.5)

Theorem 2. For any z ∈ R and k ∈ Λ, the function Hk(·; z) defined in (3.5) is
a d.f.. In particular:

for a < z < b, Hk(·; z) is an absolutely continuous d.f. with density

hk(x; z) =
k

V (x)

(∫
[z,∞)

(t − x)dPk,x(t)

)
I(a,b)(x), (3.6)

where I(a,b)(x) is the indicator function of (a, b);

for z ≤ a (with a finite), Hk(·; z) is a d.f. degenerate on a;

for z = b (with b finite), Hk(·; z) is an absolutely continuous d.f. with support
[a, b] and density (k/V (x))(b−x)pk,x(b)νk(b) if the d.f. Pk,x is discrete, and
it is degenerate on b if Pk,x is continuous;

for z > b, Hk(·; z) is a d.f. degenerate on b.

The proof is based on the property of monotonicity of Pk,(·)(t); furthermore,
it uses Lemma 1 to establish the appropriate behavior of Hk(·; z) at the extremes
of the interval (a, b).

Remark. (Fiducial distributions). In our context, Theorem 2 is a technical
result, but it is interesting in itself since the density hk(·; z) is related to the
fiducial density (Fisher (1973)) of the mean parameter of the NEF. The fiducial
density for the parameter µ of a continuous family Pµ is

f(µ; z) = − d

dµ
Pµ((−∞, z]), (3.7)
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provided f(µ; z) has the properties of a probability density function. If Pµ belongs
to a continuous NEF,

f(µ; z) =
d

dµ
(1 − Pµ((−∞, z])) =

d

dµ
Pµ((z,∞)) =

d

dµ
Pµ([z,∞)) = h(µ; z),

and Theorem 2 shows that h(·; z) is a density for any z ∈ (a, b). Therefore, h(·; z)
is interpretable as the fiducial density for µ. The notion of fiducial probability has
generated a long controversy about its interpretation and possible extensions to
discrete models; see e.g., Zabell (1992). Here we simply note that, using Theorem
2, f at (3.7) is still the fiducial density for a discrete NEF. In fact, for a discrete
Pµ with support points {a = z1 < z2 < · · · < zN = b}, N ≤ ∞, we have

f(µ; zi) =
d

dµ
Pµ((zi,∞)) =

d

dµ
Pµ([zi+1,∞)) = h(µ; zi+1), i = 1, . . . , N − 1,

where h(µ; zi+1) is a probability density function for i = 1, . . . , N − 2. Clearly,
since Pµ(b) = 1 for all µ, a fiducial density cannot be defined for z = b. Notice
that we can derive a fiducial density also for the natural parameter of the NEF,
by simply restating Theorem 2 in terms of the natural parameter.

Example 1 ctd.
Binomial random scheme. If kZk,x ∼ bi(k, x), k = 1, 2, . . ., by the known relation-
ship between the retro-cumulative sum of binomial weights and the incomplete
beta function, we have

Pk,x([z,∞))=
∫ x

0

k!
(j − 1)!(k − j)!

tj−1(1 − t)k−jdt,
j − 1

k
< z≤ j

k
, j =1, . . . , k.

Thus, hk(x; z) is a beta density with parameters (j, k − j + 1) for (j − 1)/k <

z ≤ j/k. It can be interpreted as a fiducial density for the mean parameter of
a Bernoulli distribution, when kz = j − 1 “successes” have been observed, j =
1, . . . , k. Interestingly, this density was found by Heike, Târcolea, Demetrescu
and Târcolea (2003) from a completely different approach.
Poisson random scheme. If kZk,x ∼ Po(kx), k > 0, then (3.6) gives

hk(x; z) =
k

x

∞∑
t=(j+1)/k

(t − x)
(kx)kt exp{−kx}

kt!
=

1
x

j∑
u=0

(kx − u)
(kx)u exp{−kx}

u!

= kj+1xj exp{−kx}
j!

j

k
< z ≤ j + 1

k
, j = 0, 1, . . . .

Thus, hk(x; z) is a Gamma density with parameters (j + 1, k) for j/k < z ≤
(j + 1)/k. It can be regarded as a fiducial density for the mean of the Poisson
distribution given kz = j events.
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Example 2 ctd.
Gaussian random scheme. In this case Zk,x ∼ N(x, σ2/k), k > 0. Then
Hk(x; z) = 1 − Pk,x(z) = 1 − Φ(

√
k(z − x)/σ) = Φ(

√
k(x − z)/σ), where Φ

denotes the standard normal d.f.. Thus hk(x; z) is N(x; z, σ2/k), which is the
well-known fiducial density for the mean parameter of the Gaussian distribution.
Gamma random scheme. For Zk,x ∼ Ga(k, k/x), k > 0 we have

Hk,x(z) = 1 − Pk,x(z) = 1 − (
k

x
)k 1

Γ(k)

∫ z

0
tk−1 exp{−(

k

x
)t}dt .

Deriving Hk,x w.r.t. x we obtain

hk(x; z) =
d

dx
Hk(x; z) =

(kz)k

Γ(k)
x−k−1 exp

{
−kz

1
x

}
, (3.8)

an inverse-gamma density with parameters (k, kz). This is the fiducial density
for the mean parameter of the Gamma distribution.

In the above examples, the density hk(x; z) (i.e., the fiducial density) be-
longs to the conjugate family of the NEF used in the ERS. However, this is not
always the case. A counter example is obtained starting from the regular NEF
in Example 1.1 of Consonni and Veronese (1992).

3.4. Approximation of a distribution function

An interesting case in statistical applications occurs when the function to be
approximated is a probability distribution function. Let U be a d.f. with convex
support E ⊆ R. Even if U is defined on the whole real line, the interval on which
it is interesting to study its approximation is clearly E. Therefore, it seems
natural to consider Feller operators Bk,U based on a random scheme Pk,x with
parameter x ∈ (a, b) = E. The choice (a, b) ⊃ E will not be treated explicitly,
but the following results can be extended to that case, too.

Complete Bk,U on the whole real line as

Bk,U (x) =


0 x < a

U(a) x = a∫
U(z) dPk,x(z) a < x < b

1 x ≥ b,

(3.9)

with the obvious changes when a = −∞, with U(−∞) = limx→−∞ U(x), and
when b = ∞. For a general random scheme, Bk,U does not preserve the shape
properties of a d.f.. However, with an ERS, monotonicity is preserved by Propo-
sition 1; furthermore, Bk,U becomes a mixture of d.f.’s with kernel related to the
ERS, as shown in the following theorem.



390 SONIA PETRONE AND PIERO VERONESE

Theorem 3. If U is a d.f. with convex support [a, b], the Feller operator Bk,U

defined by (3.9) is still a d.f. with support [a, b]. More precisely, it is a mixture
of the d.f.’s {Hk(·; z),−∞ < z < ∞}, with mixing distribution U , i.e.,

Bk,U (x) =
∫ ∞

−∞
Hk(x; z)dU(z). (3.10)

The d.f. Bk,U has mass U(a) concentrated on a (if a is finite) and it has mass
U({b}) = 1− limt→b− U(t) concentrated on b (if b is finite) only if ν{b} = 0. For
x ∈ (a, b), Bk,U (x) is continuous, with derivative

bk,U (x) =
∫

hk(x; z)dU(z), (3.11)

where the function hk(x; z) is defined in (3.6).

By Theorem 1, the d.f. Bk,U converges weakly to the d.f. U as k → ∞. Thus,
we have shown that any d.f. on R can be constructively weakly approximated by
mixtures of d.f.’s, arising as Feller operators with ERS. If U(a) = 0 and U({b}) =
0, the derivative bk,U of Bk,U is a probability density function, represented as
a mixture of the kernels hk(x; z). As a function of z, the kernel hk(x; z) is
continuous if the ERS is continuous, while it is piecewise constant for a discrete
ERS (see Example 1). Thus, when the ERS is discrete with support points
{z1,k, z2,k, . . . , zNk,k}, bk,U reduces to a finite or countable mixture

bk,U (x) =
Nk−1∑
i=1

wi,k hk(x; zi,k),

with simple components having k as the only unknown parameter, and mixing
weights wi,k = U(zi+1,k) − U(zi,k). In this case one can construct the approxi-
mation Bk,U even if U is known only at the points U(zj,k).

3.5. Approximation of a density

We have shown that any d.f. U can be constructively approximated, in
the sense of weak convergence, by Feller operators. With further assumptions,
stronger convergence results can be proved. Interestingly, if U is absolutely con-
tinuous with a continuous and bounded derivative u, the density bk,U of Bk,U

turns out to be a Feller-type approximation of the density u. This result makes
use of the following lemma.

Lemma 2. Let {Pk,x, x ∈ (a, b), k ∈ Λ} be a continuous or discrete ERS. Then,
for each x ∈ (a, b), the following hold.
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1. The function hk(x; z) defined by (3.6) is a probability density in z w.r.t. Lebesgue
measure, with support [a, b].

2. If Z∗
k,x has density hk(x; ·), then

E(Z∗
k,x) =

1
2k

V ′(x) + x (3.12)

V ar(Z∗
k,x) =

1
12 k2

V ′(x)2 +
1

3 k2
V ′′(x)V (x) +

1
k
V (x). (3.13)

3. If the ERS is continuous, then hk(x; z) is a unimodal continuous density in
z, with a maximum at z = x. If the ERS is discrete, with support points
{z1,k, z2,k, . . . , zNk,k}, then hk(x; z) is a piecewise constant density function in
z, with modal interval (zi,k, zi+1,k] if x ∈ (zi,k, zi+1,k].

Lemma 2 shows that hk(x; ·) is a probability density function, and that the
sequence of r.v.’s Z∗

k,x ∼ hk(x; ·) has the properties of a random scheme, since
E(Z∗

k,x) → x and V ar(Z∗
k,x) → 0 as k → ∞. Therefore, bk,U can be written as

bk,U (x) =
∫ ∞

−∞
u(z) hk(x; z)dz = E(u(Z∗

k,x)),

that is, as a Feller-type approximation of the density u of U . Thus, if u is
continuous and bounded, bk,U converges pointwise to u by Theorem 1. By Scheffé
Theorem, this implies that Bk,U converges to U in total variation. Thus we have
proved the following.

Theorem 4. Let Bk,U be a Feller operator with continuous or discrete ERS for
an absolutely continuous d.f. U with support [a, b], having bounded and continuous
density u. Then, as k → ∞, bk,U (x) converges pointwise to u(x) and Bk,U

converges to U in total variation.

Example 1 ctd.
Mixture of Beta distributions. For approximating a d.f. U on [0, 1], one can use
a completed Bernstein polynomial of order k, (k = 1, 2, . . .)

Bk,U (x) =


0 x ≤ 0

U(0) x = 0

E(U(Zk,x)) =
∑k

j=0 U( j
k )

(
k
j

)
xj(1 − x)k−j 0 < x < 1

1 x ≥ 1.

The d.f. Bk,U has mass U(0) concentrated on zero, and it is continuous for 0 <
x < 1, with derivative

bk,U (x) =
∫

hk(x; z)dU(z) =
k∑

j=1

wj,k be(x; j, k − j + 1),
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a linear combination of beta densities with parameters (j, k − j + 1) and weights
wj,k = U(j/k) − U((j − 1)/k). If U(0) = 0, then

∑k
j=1 wj,k = 1 and bk,U is

a mixture of beta densities. Note that hk(x; z) can also be read as a piecewise
constant density in z, according to Lemma 2.
Mixture of Gamma distributions. For approximating a d.f. U with support [0,∞),
one can use a completed Feller operator with Poisson random scheme

Bk,U (x) =


0 x ≤ 0

U(0) x = 0

E(U(Zk,x)) =
∑∞

j=0 U( j
k )(kx)j e−kx

j! x > 0.

The d.f. Bk,U has mass U(0) concentrated on zero, and it is continuous for x > 0,
with derivative

bk,U (x) =
∞∑

j=1

wj,kGa(x; j, k),

a countable linear combination of gamma densities with parameters (j, k) and
mixing weights wj,k = U(j/k) − U((j − 1)/k).

Example 2 ctd.
Mixtures of Gaussians. If U is a d.f. with support (−∞,∞), the Feller operator
with Gaussian random scheme (3.3) is an absolutely continuous d.f. with density

bk,U (x) =
∫ ∞

−∞
hk(x; z)dU(z) =

∫
N(x; z,

σ2

k
)dU(z),

a location mixture of Gaussian densities. In this case it is immediate to see
(according to Lemma 2) that hk(x; z) is a density in z, namely a N(z;x, σ2/k).
If U has a continuous and bounded density u, then

bk,U (x) = E(u(Z∗
k,x)) =

∫ ∞

−∞
u(z) N(z; x,

σ2

k
)dz

converges to u(x) for k → ∞.
Mixtures of Inverse-gamma. If U is a d.f. with support [0,∞), we can use a
completed Feller operator with Gamma random scheme

Bk,U (x) =

{
0 x ≤ 0

E(U(Zk,x)) =
∫ ∞
0 U(z)Ga(z; k, k

x)dz, x > 0

The derivative of Bk,U is

bk,U (x) =
∫ ∞

0

(kz)k

Γ(k)
x−k−1e−kz/xdU(z) , (3.14)



FELLER OPERATORS AND MIXTURE PRIORS 393

a mixture of Inverse-gamma densities. Notice that hk(x, z), as a function of z, is
a Ga(z; k + 1, k/x) density. If U has continuous and bounded density u, then

bk,U (x) = E(Z∗
k,x) =

∫ ∞

0
u(z)

(k/x)k+1

Γ(k + 1)
zke−(k/x)zdz , x > 0,

converges to u(x) for k → ∞.

Remark. (Kernel interpretation). One of the advantages of our procedure stems
from the automatic choice of the kernel which is suitable for the specific problem
under study. In statistical applications of kernel methods, typical kernels are in
fact Gaussian densities or, more generally, densities of the form qk(x− `), where
` is a location parameter and k a dispersion or smoothing parameter. However,
if the support of the density to be approximated is restricted to a subset (a, b)
of R, the choice of a kernel defined on R requires boundary correction methods,
such as “reflection techniques”, for improving the quality of the approximation
at the frontier (see e.g., Jones and Foster (1996)). Clearly, these difficulties
are attenuated if k is large, since the kernels become very concentrated. Our
kernel hk(x; z) does not suffer from boundary bias since, by construction, it has
the same support of the density to be approximated. In fact, it is quite close
to a Gaussian density for large values of k. Roughly speaking, hk(x; z) is the
density corresponding to the d.f. Hk(x; z) = 1 − Pk,x(z) (see Theorem 2). Since
Pk,x is the distribution of the “average” Zk,x of i.i.d. random variables with
mean x, the Central Limit Theorem implies that Pk,x(z) is close, for large k,
to the Gaussian d.f. Φ((z − x)/

√
V (x)/k), which in turn can be approximated

by Φ((z − x)/
√

V (z)/k), being Zk,x ≈ x when k is large. Therefore Hk(x; z) =
1−Pk,x(z) ≈ Φ((x−z)/

√
V (z)/k). As k → ∞, the kernel hk(x; z) becomes more

and more concentrated around x and, in this sense k has the role of a smoothing
parameter. In fact, hk(x; z) can be quite different from a Gaussian density for
small values of k. Consider for example the approximation of a density on (0,∞).
In Example 2, we used Feller operators with a Gamma random scheme, leading
to the Inverse-gamma kernel Inv-Ga(k, kz) expressed by (3.8). In this case, z
represents a scale parameter and the Feller operator (3.14) is a scale mixture of
Inverse-gamma densities. However, if we make the usual logarithmic change of
variables to transform the kernel from R+ to R, it becomes a location density.
More specifically, let X ∼ Inv-Ga(k, kz) and consider W = log(X). Letting
` = log(z), we obtain

qk(w − `) =
kk

Γ(k)
exp

{
−k

[
(w − `) + e−(w−`)

]}
, w ∈ R, ` ∈ R.

The kernel qk(t) is plotted in Figure 3.1. for various choices of k. It shows a slight
asymmetry (with a longer right tail) which rapidly disappears as k increases, as
expected.
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Figure 3.1. Kernels (transformed on R) for the Gamma random scheme, for
varying choices of the smoothing parameter k (k = 1: solid thick line, k = 2:
solid thin line, k = 3: dotted thick line, k = 10: dotted thick line).

4. Applications in Bayesian Nonparametric Inference

In the previous sections, the curve U to be approximated was deterministic.
A natural extension is to consider the approximation of a random curve by Feller
operators. If U is random, then Bk,U will be a random curve whose probability
law can be of interest as a prior in Bayesian nonparametric inference. Again,
even if Feller operators can be used for Bayesian inference on a general bounded
random curve (a regression curve, a hazard function etc.), we focus on inference
on a random d.f..

More precisely, let U be a random d.f. defined on a measurable space (Ω, σ(Ω))
with values in the space ∆ = ∆(E) of all the d.f.’s with convex support E ⊆ R,
equipped with the σ-field F generated by the topology of weak convergence. Con-
sider the completed Feller operator Bk,U with ERS {Pk,x, x ∈ (a, b) ⊇ E, k ∈ Λ}.
By Theorem 3, Bk,U is a d.f. in ∆, and one can easily show that the map
: U 7→ Bk,U =

∫
Hk(x; z)dU(z) is F-measurable. Therefore, Bk,U is a random

d.f., with probability law induced by the probability law of U . An extension of
Feller’s Theorem 1 to random d.f.’s shows that any random d.f. can be construc-
tively weakly approximated by random Feller operators with ERS. The proof is
similar to that of Theorem 5 in Petrone (1999).

Proposition 2. If U is a random d.f., (Bk,U ) provides a sequence of random
d.f.’s that converges in distribution to U for k → ∞.

This construction can be extended to the case of a random order k of the
approximation. Then Bk,U has a probability law, which we denote by πB, induced
by the joint distribution π of (k, U). Since, as shown in the previous section, Bk,U
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Figure 4.2. Left panels: one realization U (dark) from a DP (αU0), with
U0=Gamma(2, 0.5) and α = 0.05 (in the first row) or α = 2 (second row),
together with its approximation Bk,U with Poisson random scheme, plotted
for varying values of k (k = 2 (solid line) and k = 10 (dashed)). The right
panels show the corresponding densities bk,U .

can be represented as a mixture, we refer to πB as a “Feller prior”, or “mixture
prior”, with ERS {Pk,x, x ∈ (a, b), k ∈ Λ} and parameters (k, U).

4.1. Inference for exchangeable sequences

The probability law of Bk,U can play the role of prior in Bayesian nonpara-
metric inference on a bounded random function. We focus on the basic case of
inference for exchangeable data, but the proposed class of priors is attractive in
more general contexts, as we will discuss in Section 5.

A Feller prior may be used as a constructive smoothing of a discrete, nonpara-
metric prior. Consider a sequence of continuous, exchangeable r.v.’s (Xi, i ≥ 1),
and suppose we choose a Feller prior as their de Finetti measure. This is equiva-
lent to assuming that, given k and U , the Xi’s are i.i.d. according to Bk,U , with
a prior on (k, U). That is, the prior is assigned hierarchically, by first giving
a prior on U and then modeling the distribution of the data as Bk,U , with the
prior on k controlling how close the shape of Bk,U is to that of U . This “two
stage” specification should simplify prior elicitation. One may find it easier to
start with a simple, discrete sketch U of the unknown d.f. (using on U one of
the familiar discrete nonparametric priors available in the literature), and subse-
quently transform it into a prior on the continuous d.f. of the data, using some
form of smoothing of U . A smoothing via Feller operators is attractive since
their constructive nature allows one to directly relate the shape of U to that of
the model Bk,U . Suppose for example that U is given a Dirichlet process prior
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with parameters α,U0, denoted as U ∼ DP (αU0). Then jumps of U reflect into
modes of Bk,U , unless k is so small to smooth them. The joint effects of k and of
discontinuities in U are illustrated in Figure 1. We plot one realization of U and
its approximation Bk,U with the corresponding density, for varying values of α

and k; U0 is Gamma(2, 0.5) and Bk,U is based on a Poisson random scheme. For
the Dirichlet process, the parameter α regulates both the prior uncertainty and
the number of support points with non-negligible probability mass. If α is close
to zero (α = 0.05 in the first row), U concentrates most of the unit mass on a
single point, and consequently its smoothing Bk,U is unimodal. The smoothing
parameter k gives a further degree of freedom. A more vague prior belief on a
unimodal density can be expressed by choosing a less extreme value of α (α = 2
in the second row) with a prior on k concentrated on small values; while large
values of k imply a multimodal density.

A further motivation for the two-stage prior specification arises from a pre-
dictive approach. We illustrate this issue for the Dirichlet process, but simi-
lar remarks hold for more general discrete priors. The Dirichlet process prior
DP (αU0) is characterized by the predictive rules: P (X1 ≤ x) = U0(x) and

P (Xn+1 ≤ x | x1, . . . , xn) =
α

α + n
U0(x) +

n

α + n
Fn(x), n > 1, (4.1)

where Fn(·) =
∑n

i=1 δxi(·)/n is the empirical d.f. of x1, . . . , xn. Therefore, for
any measurable set A, P (Xn+1 ∈ A | x1, . . . , xn) depends on the data only
through n and the number of observations in A. However, with continuous data,
it is natural to also exploit the information provided by the observations in sets
close to A, thus looking at some form of smoothing of (4.1); in other words,
to spread the mass concentrated by the empirical d.f. at a data point xi to the
neighborhood sets. A smooth version on (4.1) can be obtained by starting from a
Feller smoothing of the DP. Let Xi, i = 1, 2, . . . be i.i.d., conditionally on (k, U),
with distribution Bk,U , and assume for simplicity that k and U are independent
with k ∼ p(k) and U ∼ DP (αU0). Then we easily get that Xi | k ∼ bk,U0 .
Furthermore, exploiting the mixture representation of Bk,U given in Theorem 3,
i.e., Bk,U (x) =

∫
Hk(x; z)dU(z), one can reformulate the model hierarchically by

means of hidden variables Zi,

Xi | zi, k, U
ind∼ Hk(·; zi); Zi | k, U

i.i.d.∼ U,

with k and U as before. It follows that

Pr(Xn+1 ≤ x | k, x1, . . . , xn, z1, . . . , zn) = E(Bk,U (x) | k, z1, . . . , zn)

= Bk,E(U |k,z1,...,zn)(x) =
α

α + n
Bk,U0(x) +

1
α + n

Bk,F̃n
(x),
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since U | k, z1, . . . , zn, x1, . . . , xn ∼ DP (αU0 + nF̃n), where F̃n is the empirical
d.f. of the latent variables Z1, . . . , Zn. Therefore,

P (Xn+1 ≤ x | x1, . . . , xn, k) =
α

α + n
Bk,U0(x) +

1
α + n

E(Bk,F̃n
(x) | x1, . . . , xn, k)

which is a smooth version of (4.1) where, however, the empirical d.f. of the data
is replaced by F̃n. Since Bk,F̃n

(x) = (1/n)
∑n

i=1 Hk(x; zi), the predictive density
(conditionally on k) is

fn(x | k) =
α

α + n
bk,U0(x) +

n

α + n
E

(
n∑

i=1

1
n

hk(x;Zi) | x1, . . . , xn, k

)
, (4.2)

a weighted average between the prior guess bk,U0 and the conditional expectation
of a “Bayesian kernel estimate”

∑n
i=1 hk(x;Zi)/n. The choice of the smoothing

parameter k is guided by the data through its posterior distribution. The pre-
dictive density is the Bayesian density estimate with quadratic loss. Note that
in the second term of (4.2), the kernels are centered on the latent variables Zi,
while in a frequentist density estimate we would have

∑n
i=1 hk(x; xi)/n. Roughly

speaking, this operates a form of shrinkage of the estimates xi of the Zi through
the posterior of (Z1, . . . , Zn). Therefore, one can expect that (4.2) has better
small sample properties (e.g. admissibility) than a frequentist kernel estimate
centered on the sample points xi. Furthermore, from the properties of the DP,
ties may appear in the sample (Z1, . . . , Zn) with positive probability, so that the
kernels are centered on the distinct values of the latent variables, inducing a kind
of multiple shrinkage and dimension reduction; a number of kernels much fewer
than n is used for reconstructing the unknown density of the data.

The form (4.2) of the predictive density (given k) arises from the repre-
sentation of the model as a DP-mixture, and in this sense it is well known.
DP-mixtures are indeed popular priors in Bayesian nonparametric inference for
continuous data. The novelty of our approach is in starting from the Feller
smoothing of the DP, then obtaining the connection with mixtures from the re-
sults in Section 3. Our construction also underlines one aspect of DP-mixtures
that is sometimes understated in applications. DP-mixtures are widely used for
their capability of modeling the clustering structure of the data; however, they
often suggest more clusters than expected. The nature of the mixture model,
as a smoothing of the discrete d.f., is one possible explanation; in this case the
components play the role of building kernels, and population clusters are rather
described by the modes of the predictive density.

Computation of the posterior distribution of the quantities of interest, namely
(k, U, Y1, . . . , Yn), can be carried over fairly easily using MCMC algorithms that
are now quite standard for mixture models. For the specific case of mixture
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models arising from Feller operators, we refer to Petrone and Veronese (2002),
who illustrate MCMC computations for both the cases of discrete and continuous
ERS.

4.2. Support of mixture priors

In the previous section, we have referred to the mixture prior πB as nonpara-
metric since it selects d.f.’s in a class (the class of Feller d.f.’s {Bk,U , k ∈ Λ, U ∈
∆}) that is dense in ∆ so that, roughly speaking, πB has large support. In this
section we state more formal results, that are proved in Appendix A.4. We say
that a d.f. F0 is in the support of πB w.r.t. some topology if πB(Wε(F0)) > 0
for any neighborhood Wε(F0) of F0 in that topology. In particular, we consider
neighborhoods in the topology of weak convergence (weak support), in total vari-
ation (strong support), and in Kullback-Leibler.

Clearly, the support of πB depends on the prior on (k, U). We say that the
marginal distribution p of k is “positive” if it gives positive probability to any
isolated point in Λ and is diffuse with a strictly positive density on the intervals
in Λ. We say that the conditional probability law πU (· | k) of U , given k, has full
weak support if for any U ∈ ∆, πU (Wε(U) | k) > 0 for any weak neighborhood
Wε(U) of U .

Theorem 5. Suppose that p(k) is positive.

(i) If F0 is a continuous d.f. in the weak support of πU (· | k) for any k, then F0

is in the weak support of πB.

(ii) If F0 is an absolutely continuous d.f. with continuous and bounded density
f0 and F0 is in the strong support of πU (· | k) for any k, then F0 is in the
strong support of πB.

It is easy to verify that if the prior πB is based on a continuous ERS, then
the assumption of continuity of F0 in part (i) of the above theorem is not needed.

We now provide some results on the Kullback-Leibler support of the prior
πB. Since πB can be regarded as a measure on the space (∆c,Fc) of absolutely
continuous d.f.’s, the so-called Kullback-Leibler property is sufficient, under reg-
ularity conditions, for weak consistency of the corresponding posterior (Schwartz
(1965) and Ghosh and Ramamoorthi (2003)). Schwartz’s regularity conditions
can be shown to hold in our case; note that the parameter space here is (∆c,Fc).

Many results have been recently established on frequentist consistency and
convergence rates of Bayesian density estimators (Ghosal and van der Vaart
(2007), Walker, Lijoi and Prünster (2007), and references therein). However,
they are mainly focussed on convolutions of a discrete prior with specific kernels,
often Gaussian kernels. Extending these results to more general classes of kernels
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seems a difficult task. Our aim is to provide some results in this direction, showing
Kullback-Leibler properties for the fairly general class of mixtures arising from
Feller operators with ERS.

The first case to consider is when the true d.f. F0 of the data is itself a mix-
ture, F0 = Bk0,U0 . The following theorem extends an analogous result obtained
for location mixtures of Gaussian distributions by Ghosal, Ghosh and Ramamoor-
thi (1999). From Schwartz’s theorem, it implies that the mixture prior πB on
(∆c,Fc) is weakly consistent at F0 = Bk0,U0 if U0 has support included in (a, b).

In the sequel we consider Feller operators with an ERS that is either contin-
uous or discrete. In particular, for the discrete case, we assume that the carrier
measure ν of the NEF in the random scheme has support {0,±h,±2h, . . .} or
{q+mh, q+(m+1)h, q+(m+2)h, . . .}, where h and q are positive real constants
and m a positive integer.

Theorem 6. Let πB be a mixture prior on ∆([a, b]), with a continuous or discrete
ERS and parameters (k, U) such that U({a}) = U({b}) = 0 a.s.. Suppose that
p(k) is positive and that for any k, πU (· | k) has full weak support. Then F0 =
Bk0,U0, with U0 having support strictly included in (a, b), is in the Kullback-Leibler
support of πB.

The theorem relates the Kullback-Leibler support of πB to the weak support
of the prior of U given k. Often, k and U are assumed to be independent, with
U ∼ DP (αU0). In fact, the theorem holds for more general priors on U as long as
they have full weak support. This is the case for many nonparametric priors in the
Bayesian literature, under mild conditions; for example, Ongaro and Cattaneo
(2004, Corollary 2) study the weak support of a fairly general class of discrete
priors on ∆, that includes the Dirichlet process, the Poisson-Dirichlet process,
the beta two-parameter process, stick-breaking priors, and other generalizations
of the Dirichlet process.

The basic steps of the proof of Theorem 6 are as follows. First, we write the
Kullback-Leibler divergence between f0 = bk0,U0 and bk,U as

KL(f0, bk,U ) =
∫

log
f0(x)

bk,U0(x)
f0(x)dx +

∫
log

bk,U0(x)
bk,U (x)

f0(x)dx. (4.3)

Then, we prove some properties of the kernel hk(x; z) which are useful for showing
that the integrals on the right hand side can be made arbitrarily small for (k, U)
in a set with positive prior probability πB. Properties of the kernel include
unimodality of hk(x; ·), as shown in part 3) of Lemma 2 in Section 3.5; the other
properties are collected in Lemmas 3, 4, and 5 in Appendix A.2. In particular,
Lemma 3 in A.2 shows that the kernels hk(x; z) have a tail behavior which extends
some tail properties of Gaussian kernels. Furthermore, we need some continuity
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results of Bk,U in k and U , that are provided in Section A.3 of the Appendix.
These results exploit the properties of the kernels hk(x; z) and the construction
of Bk,U as a Feller operator with ERS, Bk,U (x) = E(U(Zk,x)). Note that the first
addend in (4.3) is the Kullback-Leibler divergence KL(bk0,U0 , bk,U0); its continuity
in k is included as Lemma 7 in Appendix A.3.

Theorem 6 requires that F0 is itself a mixture, F0 = Bk0,U0 . This assumption
can be avoided if F0 has finite support included in (a, b).

Theorem 7. Let πB be a mixture prior on ∆([a, b]) with a continuous or discrete
ERS, and parameters (k, U) satisfying the assumptions in Theorem 6. Let F0 be
a d.f. with a continuous and bounded density f0 and finite support included in
[a, b]. Then F0 is in the Kullback-Leibler support of πB.

Theorems 6 and 7 give sufficient conditions for weak consistency of the mix-
ture prior πB for some classes of d.f.’s F0. For stronger forms of consistency,
or for establishing rates of convergence, further conditions are required which,
however, usually include the Kullback-Leibler property. Therefore, results like
those provided in the previous theorems are a basic step also for stronger re-
sults. A discussion about the reasons why a weakly consistent posterior might
fail to cumulate on Hellinger or total variation neighborhoods of the true density
is given by Walker, Lijoi and Prünster (2005). Roughly speaking, this might
happen if there are d.f.’s which are weakly close to F0 but far away from F0 in
strong sense. This behavior is related to the identifiability of the mixture model
and the possibility of characterizing weak neighborhoods of Bk,U in terms of the
mixing distribution and the smoothing parameter. We do not pursue this issue
here; the special case considered below, where k is fixed, illustrates some basic
points and difficulties.

Let Bk the class of mixtures {Bk,U =
∫

Hk(x; z)dU(z), U ∈ ∆([a, b])}, for
a fixed k ∈ Λ. Note that if Bk,U is based on a discrete ERS with support
points {z1,k, z2,k, . . . , zNk,k}, Nk, k ≤ ∞, then Bk,U =

∑Nk
j=1 wU

j,kHk(x; zj,k) is
a finite or countable mixture, with wU

j,k = U((zj,k, zj+1,k]), j = 1, . . . , Nk − 1.
We say that the class of mixtures Bk is identifiable (or, equivalently, the mixing
distribution U is identifiable in Bk) if Bk,U (x) = Bk,Q(x) for any x implies: i)
U(z) = Q(z) for any z and any Q ∈ ∆, if the ERS is continuous; ii) wU

j,k = wQ
j,k

for j = 1, . . . , Nk − 1 and any Q ∈ ∆, if the ERS is discrete.

Proposition 3. The class of mixtures Bk is identifiable.

From the continuity of Bk,U in U (Proposition 4 in Appendix A.3), it follows
that Un converges weakly to U0 if and only if Bk,Un converges weakly to Bk,U0 .
Therefore, if the posterior on the random d.f. cumulates on weak neighborhoods
of F0 = Bk,U0 , the posterior on U cumulates on weak neighborhoods of U0 (it is
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weakly consistent at U0). In turn, by part (a) of Proposition 4 in Appendix A.3,
this implies strong consistency of the posterior of the d.f. at F0.

5. Extensions and Final Remarks

In the paper we have studied a fairly general class of mixture models aris-
ing from Feller operators with ERS, focussing on applications in Bayesian non-
parametric inference for exchangeable, continuous data. However, the proposed
construction is attractive in more general contexts. Consider a sequence of in-
dependent r.v.’s (Xi, i ≥ 1) such that Xi | µi ∼ pµi(x), with pµi belonging to
a NEF with mean parameter µi. In this context, shrinkage estimators of the
individual parameters µ1, . . . , µn are obtained, in a Bayesian nonparametric ap-
proach, by assuming that they are a sample from a random d.f. G (i.e., they
are i.i.d. conditionally on G). The popular choice of a Dirichlet process prior
on the latent distribution G implies that G is a.s. discrete, so that ties can be
observed with positive probability among the µi’s. This property is attractive
as a clustering procedure of the individual parameters, but it is not appropriate
if, for example, one wants to model random effects inside clusters. In this case
the µi’s are a.s. distinct, i.e., G is absolutely continuous, and clusters in the
µi’s are rather individuated by the modes of the latent distribution G. Using a
Feller prior on G is particularly attractive in this context, since not only does it
allow one to model G as a.s. absolutely continuous with a flexible multimodal
form, but it also gives a representation of G as a mixture of kernel distributions
that can be chosen quite naturally according to the distribution pµi(x) of the
data. That is, if pµi belongs to a NEF (e.g. Poisson), it is natural to choose a
Feller prior with ERS based on the same NEF (a Poisson random scheme). This
implies that the kernel of the resulting mixture model has, in many cases, the
form of a conjugate prior, as illustrated in the examples of Section 3.3, resulting
in a fairly simple structure that facilitates posterior computations. For example,
it allows one to obtain a fairly natural expression for the posterior expectation
E(µi | x1, . . . , xn) that represents the Bayesian multiple shrinkage estimator of
µi, with an automatic choice of the shrinking guided by the estimated modes
of the latent distribution G. Results of this kind were obtained by Petrone and
Veronese (2002) in the case where Xi | µi are Binomial with mean parameter µi,
using a Bernstein prior on the latent distribution G on (0, 1). We do not enter in
further details here, but since the Bernstein prior is a special case of a Feller prior
based on a Binomial random scheme, one can easily envisage that their results
can be extended to more general problems of combining several experiments.

The properties of Feller operators have been used for extending theoretical
properties of nonparametric mixture priors, usually discussed for specific kernels.
In particular, we have extended results on weak consistency of Bayesian density
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estimators to fairly general, non Gaussian kernels. While completing a revision
on this paper, we became aware of a recent work by Wu and Ghosal (2008) that
addresses the latter problem. They give sufficient conditions on the kernels for
weak consistency in mixture models, under some assumptions on f0. Their results
move from a decomposition of the Kullback-Leibler divergence, as in (4.3). The
interesting aspect is that they allow a general form of f0 by introducing a further
condition that would control, in our case, the extra addend

∫
log(f0/bk0,U0)f0

in (4.3). However, Wu and Ghosal (2008) also need properties of the mixture
kernel for ensuring that the steps in their general Theorem 1 are satisfied. These
properties have to be checked for the specific kernels of interest; giving results for
general classes of kernels requires considerable additional work, and restrictions
on f0; see the discussion of location-scale kernels in their Section 3. We also give
properties of the mixture kernel for weak consistency; furthermore, we verify that
these properties actually hold for the fairly general family of kernels arising from
Feller operators with ERS. The restriction on f0 in our Theorem 6 is partially
removed in Theorem 7, and further extensions could be possible through their
approach.

The mixture-kernels arising from Feller operators with ERS are quite simple,
having no unknown parameter besides the smoothing parameter k. This has com-
putational advantages, for example in avoiding identifiability or label-switching
difficulties, but many components might be needed for approximating irregular
curves. When prior information is available on the mixture components, one
might prefer to use kernels having a physical interpretation and free parameters.
Our scheme could be generalized to this case.

We did not study the approximation rates of Feller operators (results can be
obtained by Theorem 5.2.4 in Altomare and Campiti (1994)) but, in some cases,
they are known to be slow. Thus, in applications to Bayesian density estimation,
further extensions to achieve faster convergence rates for the posterior on the
unknown density might be needed, as shown for Bernstein polynomials e.g. by
Ghosal (2001) and Kruijer and van der Vaart (2008). In particular, one might
expect that, being constructed in order to preserve specific properties of the den-
sity to be estimated, Bayesian density estimators via Feller’s operators may give
better rates than estimators based on Gaussian kernels. However, a comparison
is not easy; for large k, the kernel resulting from Feller’s operators is close to
a Gaussian kernel, but this is not true for small values of k and rates remain a
delicate issue. However, density estimation is only one possible application of the
scheme presented here. It can be used more generally for Bayesian nonparametric
inference on a random, bounded curve, and it looks particularly attractive when
prior information is available on some general properties of the curve. This could
be fairly naturally incorporated in the model due to the simple, constructive na-
ture of the approximation. An example, on which we plan to return in further
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research, is discussed in Petrone and Corielli (2005), where Bernstein polynomi-
als are used in nonparametric dynamic regression for including prior information
on the temporal evolution of the regression curve. Extensions to multivariate
data are also of interest.
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