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Supplementary material

This note illustrates the convergence of the algorithm used in Section 4 for two

examples: correlated normal target distribution and extreme starting values.

S-1 Correlated normal target distribution

We illustrate adaptive scaling for target distribution with unknown covariance

matrix. We follow the adaptive scheme of Haario et al. (1999, 2001) to adapt

the covariance matrix, in conjunction with our optimization routine to adapt the

scaling parameter parameter. We consider a two-dimensional target distribution

with covariance Σ =

(
100 9

9 1

)
. A choice for the covariance matrix of the initial

Gaussian proposal is the inverse of the Hessian, − 52 log(π), computed at the

maximum of π. Unfortunately, numerical optimization methods can perform very

badly for high dimensions when the starting point of the algorithm is not close

to the maximum. Even for such a simple distribution, starting the optimization

algorithm far from the true mode might not find the global maximum, resulting

in a bad initial proposal covariance matrix Σ0. To represent this possibility, we

start here with an independent proposal Σ0 =

(
25 0

0 1

)
. Figure 1 shows the

performance of our algorithm; approximate convergence is achieved in 20 steps.

We will add this example to the online appendix.
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S-2 Extreme starting values

We have also successfully tested the robustness of our method for extreme starting

values. For faster convergence we recommend using an optimization procedure

(see Brent (1973)).

Figure 2 shows the convergence of the optimized scale parameter

Insert Figure 2 here “Extreme starting points”

The convergence from extreme starting points shows the same pattern of our

initial runs: spurious drops for high starting value and high upward jumps for

the lowest starting values, but still converge in a few steps to the optimal value.
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Figure 1: Convergence of the adaptive optimization procedure that maximizes the ESJD
by scaling and updating the covariance matrix, starting with independent proposal den-
sity

Σ0 =

(
25 0
0 1

)
. with 50 iterations per step. Convergence of the sample covariance

matrix is attained in 20 steps and convergence to optimal scaling in 30 steps.
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Figure 2: Convergence of the adaptive optimization procedure with extreme starting
points (0.01, 50) × optimal value, for dimension d = 25 with multivariate normal target
distribution, for 50 independent paths with 50 steps per iteration plotted on log-scale on
the y-axis.


