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Abstract: Count data often exhibit overdispersion and/or require an adjustment

for zero outcomes with respect to a Poisson model. Zero-modified Poisson (ZMP)

and zero-modified generalized Poisson (ZMGP) regression models are useful model

classes for such data. In the literature so far only score tests are used for testing

the necessity of this adjustment. We address this problem by using Wald and

likelihood ratio tests. We show how poor the performance of the score tests can be

in comparison to the performance of Wald and likelihood ratio (LR) tests through

a simulation study. In particular, the score test in the ZMP case results in a power

loss of 47% compared to the Wald test in the worst case, while in the ZMGP case

the worst loss is 87%. Therefore, regardless of the computational advantage of

score tests, the loss in power compared to the Wald and LR tests should not be

neglected and these much more powerful alternatives should be used instead. We

prove consistency and asymptotic normality of the maximum likelihood estimates

in ZGMP regression models, which form the basics of Wald and likelihood ratio

tests. The usefulness of ZGMP models is illustrated in a data example.
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1. Introduction

Poisson regression models are plain-vanilla models for count data. However
they are often too simple to capture such complex structures of count data as
overdispersion. Overdispersion is present if the count regression data has a higher
variability than it is allowed by the model. In particular, the equality of mean and
variance for the count data analyzed under Poisson assumption is often violated.
Various sources such as missing covariates, correlation among measurements,
and excess of zero-outcomes with respect to standard Poisson regression models
make counts overdispersed. Excellent surveys on overdispersion and its treatment
can be found in Cameron and Trivedi (1998, Chap. 4) and Winkelmann (2008,
Chap. 3 and 4).

Since positive counts may still be overdispersed with respect to the zero-
truncated Poisson distribution, in the last decade zero-inflated generalized Pois-
son (ZIGP) regression models have been found useful for the analysis of count
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data with a large amount of zero-outcomes (see e.g., Famoye and Singh (2003),
Gupta, Gupta and Tripathi (2004), Joe and Zhu (2005), Bae, Famoye, Wulu,
Bartolucci and Singh (2005), and Famoye and Singh (2006)). It is a large class of
regression models that contains zero-inflated Poisson (ZIP), generalized Poisson
(GP), and Poisson regressions (see Mullahy (1986), Lambert (1992), Consul and
Famoye (1992), and Famoye (1993)). Recently Czado, Erhardt, Min and Wag-
ner (2007) introduced flexible ZIGP models with regression effects on the mean,
dispersion, and zero-inflation (ZI) level, and applied them to patent outsourcing
rates. Their findings showed the superiority with regard to data fit of their ZIGP
models over Poisson, GP, ZIP, and even over ZIGP with constant overdispersion
and/or constant ZI based on the Vuong’s test (see Vuong (1989)).

Score tests are widely used for testing misspecifications in count regression
models because they require one to fit the model only under the null hypothesis.
For regression models with constant ZI and/or constant overdispersion they have
been developed by Dean and Lawless (1989), Dean (1992), van den Broek (1995),
Deng and Paul (2000, 2005), Ridout, Hinde and Demétrio (2001), Gupta et al.
(2004). Considering only score tests for ZI, we observe that there is a confusion
with regard to the limiting distribution of score test statistics or the interpretation
of rejecting the null hypothesis in the literature. To discuss this point in more
detail, first note that zero-inflated count regression models are based on mixtures
of the Bernoulli distribution and a count distribution, i.e., so-called zero-inflated
count distributions. Now the ZI parameter ω is interpreted as the probability of
obtaining a zero-outcome from the Bernoulli distribution. However zero-inflated
distributions are also well-defined for small negative values of the ZI parameter
ω, which indicates that the probability of zero outcomes is smaller than the
probability of zero outcomes for the count distribution used in the mixture. The
negative lower bound for ω is derived from the necessity that the probability
of zero-outcome for zero-inflated distributions is nonnegative (see e.g., van den
Broek (1995)). Thus, negative values of the parameter ω are acceptable and
correspond to zero-deflation. Further, score tests do not require an estimation of
the ZI parameter and therefore the score tests for ZI have, in fact, a two-sided
alternative hypothesis, i.e., the null and alternative hypotheses are given by

H0 : ω = 0 versus H1 : ω 6= 0. (1.1)

The null hypothesis might now be rejected in favor of zero-modification (ZM),
i.e., ZI or zero-deflation and not of only ZI. Therefore score tests for ZI known
in the literature are mostly score tests for ZM. Zero-modified Poisson (ZMP)
regression models have explicitly been introduced by Dietz and Böhning (2000)
and we extend these models to more general count regression models. In order to
derive a score test only for ZI, the problem of testing parameters on the boundary
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of the parameter space needs to be addressed. Consequently, the limiting dis-
tribution of the score statistic differs from a standard χ2−distribution with one
degree of freedom and should be corrected, according to Silvapulle and Silvapulle
(1995). Under regularity assumptions they have shown, for tests with one sided
alternative, that likelihood ratio and score test statistics have the same limiting
distribution. One crucial point of their assumptions is that a score vector is
well-defined in a small neighborhood of the null hypothesis H0. We will see that
this requirement is satisfied for H0 : ω = 0. For insightful discussions on this
problem, we refer to Verbeke and Molenberghs (2003).

Nowadays, given modern computing power, the computational advantage
of score tests has lost some of its original attraction. We think more attention
should be paid to Wald and likelihood ratio (LR) tests for ZM though they have
not been utilized for the testing problem (1.1) so far. In addition to numerical
difficulties related to estimation of the ZM parameter ω, these tests also require
the knowledge of the asymptotic distribution of the maximum likelihood esti-
mates (MLE’s) including the Fisher information matrix. We show that these
additional theoretical and numerical efforts related to Wald and LR tests bring
a gain in test power.

In this paper we introduce zero-modified generalized Poisson (ZMGP) re-
gression models and consider the testing problem (1.1) for them. We show that
MLE’s in ZMGP regression models, on which the Wald and LR tests are based,
are consistent and asymptotically normal. We investigate the performance of
Wald, LR, and score tests for testing ZM. It should be noted that our theoretical
results remain valid for GP and ZMP regression models subject to appropriate
changes in assumptions.

There exists an alternative count regression model for overdispersed and zero-
inflated data: a zero-inflated negative binomial (ZINB) regression (see Ridout
et al. (2001) and Hall and Berenhaut (2002)). It is not a subject of this paper
to compare ZIGP and ZINB models but we list most important differences, from
our point of view, between these regression models.

The paper is organized as follows. In Section 2 we introduce the GP dis-
tribution and discuss its basic forms and properties. A ZMGP regression model
with constant ZM and overdispersion is defined in Section 3. Section 4 gives the
asymptotic existence, the consistency and the asymptotic normality of the MLE
in a ZMGP regression model. In contrast to Czado et al. (2007), we provide a rig-
orous detailed proof of our asymptotic results contained in the appendices of the
accompanying on-line supplement. In Section 5 we compare the performance of
the score test, for detecting ZM in ZMP and ZMGP models, to the performance
of the Wald and LR tests in a simulation study. In particular it is discovered
that, using the score test, one may lose in power compared to the Wald test, up
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to 47% for the ZMP case and up to 87% for the ZMGP case. We also show that
the score test for ZM in the analysis of the apple propagation data (see Ridout
and Demétrio (1992)) does not always detect ZM, while the Wald and LR tests
give strong evidence for ZM. The paper closes with a conclusion and discussion
section. For brevity the Fisher information matrix of the ZMGP regression and
the proof of Theorem 1 are given in the appendices of an on-line supplement at
http://www.stat.sinica.edu.tw/statistica.

2. The GP Distribution

A random variable Ỹ has a GP distribution with parameters µ and ϕ, which
we denote by GP (µ, ϕ), if its probability mass function is

Pµ,ϕ(y) :=


µ(µ + y(ϕ − 1))y−1ϕ−ye−(µ+y(ϕ−1))/ϕ

y!
for y = 0, 1, . . .

0 for y > m, when ϕ < 1.
(2.1)

The real-valued parameters µ and ϕ satisfy the two constraints:

(i) µ > 0;

(ii) ϕ ≥ max{1/2, 1 − µ/m}, where m (m ≥ 4) is the largest natural number
such that µ + m(ϕ − 1) > 0 when ϕ < 1.

If ϕ < 1, then (2.1) does not correspond to a probability distribution. How-
ever the lower limit, imposed on ϕ in this case, guarantees that the total error
of truncation is less than 0.5% (see Consul and Shoukri (1985)). Since all dis-
crete distributions are truncated under sampling procedures, this is a reasonable
condition.

The GP distribution was first introduced by Consul and Jain (1970) and
subsequently studied in detail by Consul (1989). One particular property of the
GP distribution is that the variance is greater than, equal to, or less than the
mean according to whether the second parameter ϕ is greater than, equal to, or
less than 1. More precisely (for details see Consul (1989, p. 12)), if Ỹ ∼ GP (µ, ϕ)
then the mean and variance of Y are

E(Ỹ ) = µ and V ar(Ỹ ) = ϕ2µ. (2.2)

A NB distribution with mean µ and overdispersion parameter a > 0 (see
Lawless (1987) for precise definition) also has a flexible variance function, µ(1 +
aµ). Thus the overdispersion in the GP case is independent of the mean while this
is not the case for the NB distribution. This implies that overdispersion in the
NB case might be present over and above that accounted for by a. This point was
first discussed by Lawless (1987). Czado and Sikora (2002) also noted this and

http://www.stat.sinica.edu.tw/statistica
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developed an approach based on p−value-curves to quantify overdispersion effects
more precisely. Another significant difference between these two distributions is
that the NB distribution belongs to the exponential family if the overdispersion
parameter a is known, while this does not hold for the GP distribution. A
comparison of GP and NB probability functions can be found in Joe and Zhu
(2005) and Gschlößl and Czado (2008).

There is a form of the GP distribution obtained by assuming that ϕ−1 = αµ
for α > 0. In the literature it is known as a restricted generalized Poisson (RGP)
distribution (see Consul (1989, p. 5)) and the relation between its mean and
variance is given by V ar(Ỹ ) = (1 + αE(Ỹ ))2E(Ỹ ). Thus overdispersion in the
RGP case is not independent of the mean. We deal here only with an unrestricted
form (2.1) of the GP distribution.

3. ZMGP Regression

A ZMGP distribution is defined analogous to a ZMP distribution (see Dietz
and Böhning (2000)) and its probability mass function is

Pµ,ϕ,ω(y) := P (Y = y) =

{
ω + (1 − ω)P (Ỹ = 0) y = 0,

(1 − ω)P (Ỹ = y) y = 1, . . . ,
(3.1)

where Ỹ is distributed according to the GP distribution with parameters ϕ and
µ, and the parameter ω satisfies

− exp(−µ/ϕ)
1 − exp(−µ/ϕ)

≤ ω ≤ 1. (3.2)

Thus, this distribution has 3 parameters µ, ϕ and ω, and is further denoted by
ZMGP (µ, ϕ, ω). Condition (3.2) ensures that (3.1) defines a probability mass
function for negative values of ω corresponding to zero-deflation. Positive values
of the parameter ω correspond to ZI which mostly occurs in practice.

A simple calculation using (2.2) implies that the mean and variance of the
ZMGP distribution are

E(Y ) = (1 − ω)µ and V ar(Y ) = E(Y )(ϕ2 + µω). (3.3)

One of the main benefits of considering a regression model based on the ZMGP
distribution is that it gives a large class of regression models for count response
data. In particular, it reduces to Poisson regression when ϕ = 1 and ω = 0, to
GP regression when ω = 0, and to ZMP regression when ϕ = 1. Moreover, by
virtue of (3.3), this regression can be used to fit zero-modified count regression
data exhibiting overdispersion or underdispersion.

Analogous to the generalized linear models (GLM) framework, we now in-
troduce a regression model with response Yi and (known) explanatory variables
xi = (xi0, . . . , xip)t with xi0 = 1 for i = 1, . . . , n.
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1. Random components: {Yi, 1 ≤ i ≤ n} are independent with Yi ∼ ZMGP (µi,
ϕ, ω).

2. Systematic components: The linear predictors ηi(β) = xt
iβ for i = 1, . . . , n,

influence the response Yi. Here β = (β0, . . . , βp)t is a vector of unknown
regression parameters. The matrix X = (x1, . . . ,xn)t is called the design
matrix.

3. Parametric link components: The linear predictors ηi(β) are related to the
parameter µi of Yi by µi = exp(ηi(β)) for i = 1, . . . , n.

Here At and at denote the transpose of a matrix A and a vector a, respectively.
We call this the ZMGP regression model. The parameters ϕ and ω are fixed and
(3.2) holds for all µi, i = 1, . . . , n. We denote the joint vector of the regression
parameters β and the parameters ϕ and ω of the ZMGP distribution by δ and
its MLE by δ̂.

The following abbreviations, i = 1, . . . , n, are used: µi(β) := exp(xt
iβ),

fi(β, ϕ) := exp(−µi(β)/ϕ), gi(δ) := ω + (1 − ω)fi(β, ϕ) = Pµi(β),ϕ,ω(0). For
observations y1, . . . , yn, the log-likelihood l(δ) derived from the ZMGP regression
can be written as

ln(δ) =
n∑

i=1

1l{yi=0} log(gi(δ)) +
n∑

i=1

1l{yi>0}

(
log(1 − ω) + xt

iβ − 1
ϕ

µi(β)

+(yi − 1) log
[
µi(β) + yi(ϕ − 1)

]
− yi log ϕ − yi

1
ϕ

(ϕ − 1) − log(yi!)
)

.

The score vector can be written as sn(δ) = (s0(δ), . . . , sp(δ), sp+1(δ),
sp+2(δ))t, where

sr(δ):=
∂ln(δ)
∂βr

=
n∑

i=1

sr,i(δ),

sr,i(δ):=−xir

[
1l{yi=0}

(1−ω)fi(β, ϕ)µi(β)
ϕgi(δ)

−1l{yi>0}

(
1+

µi(β)(yi−1)
µi(β)+(ϕ−1)yi

−µi(β)
ϕ

)]
,

for r = 0, . . . , p and i = 1, . . . , n;

sp+1(δ) :=
∂ln(δ)

∂ϕ
=

n∑
i=1

sp+1,i(δ),
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sp+1,i(δ) := 1l{yi=0}
(1 − ω)fi(β, ϕ)µi(β)

ϕ2gi(δ)

+1l{yi>0}

(
yi(yi − 1)

µi(β) + (ϕ − 1)yi
− yi

ϕ
+

µi(β) − yi

ϕ2

)
;

sp+2(δ) :=
∂ln(δ)

∂ω
=

n∑
i=1

sp+2,i(δ),

sp+2,i(δ) := 1l{yi=0}
1 − fi(β, ϕ)

gi(δ)
− 1l{yi>0}

1
1 − ω

for i = 1, . . . , n.

The score vector sn(δ) is well-defined in a small neighborhood of ω = 0.
This indicates that, for testing against ZI, the general theory of Silvapulle and
Silvapulle (1995) on one-sided score tests is applicable and, therefore, the lim-
iting distribution of the corresponding score statistic differs from a standard
χ2−distribution with one degree of freedom.

4. Asymptotic Theory

Fahrmeir and Kaufmann (1985) proved consistency and asymptotic normal-
ity of the MLE in GLM’s for canonical as well as noncanonical link functions,
under mild assumptions. In fact, they presented a general tool for deriving an
asymptotic distribution of MLE’s in any regression model. The validity of their
general assumptions can easily be verified in GLM’s with compact regressors,
stochastic regressors, and bounded responses, respectively. However, it is not
easy to derive the asymptotic distribution of the MLE in a regression model
under such easily verified assumptions. We show in the on-line supplementary
version of the paper that the MLE in ZMGP regression models with compact
regressors possesses similar asymptotic properties as in GLM’s with compact
regressors.

As in Fahrmeir and Kaufmann (1985), we use the Cholesky square root ma-
trix for normalizing the MLE. The left Cholesky square root matrix A1/2 of a
positive definite matrix A is the unique lower triangular matrix with positive
diagonal elements such that A1/2(A1/2)t = A (see Stewart (1998, p. 188)). For
convenience, set At/2 := (A1/2)t, A−1/2 := (A1/2)−1 and A−t/2 := (At/2)−1.
We deal only with the spectral norm of square matrices A is given by ‖A‖ :=
(maximum eigenvalue of AtA)1/2 = sup‖u‖2=1 ‖Au‖2, where ‖ · ‖2 denotes the
L2– norm of vectors. We drop the subindex 2 in ‖ · ‖2 since the spectral norm
is generated by the L2–norm of vectors, and arguments of considered norms are
always clearly defined. The minimal eigenvalue of a square matrix A is further
denoted by λmin(A), and the vector of true parameter values of the ZMGP regres-
sion is denoted as δ0. Further, Fn(δ) is used for the Fisher information matrix
in a ZMGP regression evaluated at δ. We note that the entries of the Fisher
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information matrix in a ZMGP regression have a closed form (see Appendix 1 of
the on-line supplement), while this is not the case in regression models associated
with a NB distribution (see e.g., Lawless (1987)).

Now for ε > 0 denote a neighborhood of δ0 by

Nn(ε) =
{

δ : ‖Ft/2
n (δ0)(δ − δ0)‖ ≤ ε

}
. (4.1)

For convenience, we drop the arguments δ0, β0, and ϕ0, as well as the
subindex δ0 in µi(β0), fi(β0, ϕ0), gi(δ0), Pδ0 , Eδ0 etc., and write µi, fi, gi, P , E

etc. Constants are further denoted by C and c, with subindices or without them;
they may depend on δ0 but not on n. The same C’s and c’s in different places
denote different constants. Finally, the d-dimensional unit matrix is denoted by
Id, and an admissible set for a vector β of regression parameters is denoted by
B. We make the following assumptions.

(A1) n/λmin(Fn) ≤ C1 for all n ≥ 1, where C1 is a positive constant.

(A2) {xi, i ≥ 1} ⊂ Kx, where Kx ⊂ Rp+1 is a compact set.

(A3) B ⊂ Rp+1 is an open set and δ0 is an interior point of the set Kδ := B×Φ×Ω,
where Φ := (1,∞) and Ω := (−cω, 1). Here cω is a positive constant such
that (3.2) holds for all x ∈ Kx, β ∈ B, and ϕ ∈ Φ.

Our main result states that results of Theorem 4 of Fahrmeir and Kaufmann
(1985) can be extended to ZMGP regression models.

Theorem 1. Under (A1)−(A3), there exists a sequence of random variables δ̂n

such that

(i) P (sn(δ̂n) = 0) → 1 as n → ∞ (asymptotic existence),

(ii) δ̂n
P−→ δ0 as n → ∞ (weak consistency),

(iii)Ft/2
n (δ̂n − δ0)

D=⇒ Np(0, Ip+3) as n → ∞ (asymptotic normality).

The proof of Theorem 1 is based on several auxiliary lemmas. The lemmas,
their proofs, as well as the proof of Theorem 1, are given in Appendices 2 and 3
of the accompanying on-line supplement at http://www.stat.sinica.edu.tw/
statistica.

Remarks

(i) Assumption (A1) is more restrictive than the corresponding condition (D) of
Fahrmeir and Kaufmann (1985). This is the price we have paid for deriving
the asymptotic theory for ZMGP regression models. Assumption (A2) means
that we deal with compact regressors.

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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(ii) If δ0 lies on the boundary of the parameter space Kδ, i.e., (A3) is violated,
then Theorem 1 does not hold anymore. This implies that we cannot test the
adequacy of the GP regression. However, the asymptotic results of Theorem 1
remain valid in GP or ZMP regression models subject to appropriate changes
to the log-likelihood, the score equations, and the Fisher information matrix,
as well as in Assumption (A3).

(iii)We would like to especially note that ω = 0 is not on the boundary of the
parameter space in ZMGP and ZMP regression models, thus allowing a direct
application of Wald, LR, and score tests.

5. Applications

5.1. Power comparison of score, Wald, and LR tests in ZMP and
ZMGP models

Jansakul and Hinde (2002) investigated the performance of the score test for
ZI in small and moderate sample sizes within the ZIP regression model. They
noted that their score test compares the Poisson model to the ZMP model, thus
avoiding the problem of testing on the boundary of ZI.

By virtue of Remarks (ii) and (iii), we can construct the Wald and LR
tests for testing ZM in ZMP models and then compare their performance with
the performance of the score test. Note this comparison is only feasible for
models with a constant ZM parameter. In particular, Jansakul and Hinde (2002)
considered models with ω = 0, 0.25, 0.45, linear predictors ηi(β) = 0.25, 0.75, and
ηi(β) = 0.75 − 1.45xi for i = 1, . . . , n and n = 50, 100, 200. Covariates xi’s were
taken uniformly from (0, 1). For each combination of sample size and model, they
simulated 1,000 sets of responses from the working model. The simulation setup
for the constant linear predictors ηi’s implies that the corresponding Poisson
distribution has approximately 28% (ηi(β) = 0.25) and 12% (ηi(β) = 0.75)
zero responses. In the case of nonconstant linear predictors, the probability of
obtaining zero outcomes from the Poisson distribution with parameter exp(ηi(β))
varies between 0.12 and 0.61 for i = 1, . . . , n. We used their simulation setup to
compare the performance of the three above mentioned tests in S-PLUS 7.0 on
a Windows platform. The MLE’s were determined with a help of the S-PLUS
function ‘‘nlminb’’ which finds the minimum of a smooth nonlinear function
subject to bound-constrained parameters.

The Wald statistic for testing H0 : ω = 0 versus H1 : ω 6= 0 is Wω = ω̂2/σ̂2
ω,

where ω̂ is the MLE of ω in a ZMP regression and σ̂2
ω is the estimated variance

of ω̂, the corresponding diagonal element of the inverse of the Fisher information
matrix evaluated at (ω̂, β̂). The LR statistic for the same testing problem is
LRω = −2(lPn(β̂

P
) − lZMP

n (δ̂
ZMP

)), where lPn(·) and β̂
P

denote, respectively, the
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log-likelihood and the MLE in a Poisson regression model. Further lZMP
n (·), and

δ̂
ZMP

= (β̂
ZMP

, ω̂ZMP) denote, respectively, the log-likelihood and the MLE in
a ZMP regression model. The score statistic for the above testing problem is
derived in detail by Jansakul and Hinde (2002) and is not given here. Following
them, the score statistic is denoted by Sω.

Estimated upper tail probabilities for an α size test were computed by cal-
culating the proportion of times that Wω, LRω, or Sω were greater than or
equal to the critical value χ2

1,1−α. For example, for the Wald test we determined
#{j : W j

ω ≥ χ2
1,1−α, j = 1, . . . , 1, 000}/1, 000. Here χ2

1,1−α is the (1 − α)100%
quantile of a χ2 distribution with 1 degree of freedom and W j

ω denotes the value of
Wω in the j−th sample. Note that when samples are drawn from the Poisson dis-
tribution the estimated upper tail probabilities correspond to the estimated level
of the test. For ZMP samples with ZM ω > 0, the estimated upper tail probabili-
ties give the estimated power function at ω. These values are given in Table 1 for
all three tests in the case of nonconstant linear predictors ηi(β) = 0.75− 1.45xi,
i = 1, . . . , n. We observe that the Wald and LR tests were conservative while
the score test was often somewhat liberal. Despite this fact, the Wald test had
higher power than the score test for samples of size n = 50 and n = 100, and
especially at level α = 0.01. For example when ω = 0.45, n = 50 and level
α = 0.01 the power of the score test was 0.471, approximately 69% of the power
(0.683) of the corresponding Wald test. Here and in the sequel, percents are
rounded to integers. It should be noted that our results for the score test are in
a good agreement with results in Table 2 from Jansakul and Hinde (2002). In
general when ηi(β) = 0.75 − 1.45xi, i = 1, . . . , n the score test resulted in power
loss between 15% (5%) and 38% (27%) compared to the Wald test for n = 50
(n = 100). For sample size n = 200 these tests were almost equally powerful.
Simulation results for constants linear predictors are only briefly reported. In the
case of the constant linear predictors ηi(β) = 0.75 all three tests performed about
equally well. In contrast to this, the Wald test was more powerful than others for
ηi(β) = 0.25. The power loss for the score test compared to the Wald test was
between 15% (2%) and 43% (26%) for sample size n = 50 (n=100). Thus a higher
percentage of zeros arising from the Poisson part resulted in a higher power loss
for the score and LR tests compared to the Wald test. It should be noted that
in our simulation for the ZMP case, the difference in power for the score and LR
tests was always negligible for constant as well as nonconstant linear predictors
(see e.g., Table 1).

As noted above, for the sample size n = 200, the Wald and the likelihood
ratio tests did not achieve their nominal level α = 0.05 or α = 0.01 satisfactory,
while the score test achieved its nominal level quite well. In order to shed light on
this phenomenon, we plot the profile log-likelihood with respect to ω for two data
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Table 1. Estimated upper tail probabilities for Wald (Wω), LR (LRω) and
score (Sω) statistics at χ2

1,1−α based on 1,000 samples from the ZMP model
with nonconstant linear predictors ηi(β) = 0.75 − 1.45xi.

Level of the tests α = 0.05 α = 0.01
Wω LRω Sω Wω LRω Sω

n = 50 ω = 0.00 0.023 0.019 0.047 0.008 0.007 0.014
ω = 0.25 0.407 0.339 0.340 0.244 0.151 0.152
ω = 0.45 0.804 0.680 0.685 0.683 0.471 0.471

n = 100 ω = 0.00 0.027 0.030 0.068 0.006 0.005 0.016
ω = 0.25 0.594 0.504 0.510 0.397 0.276 0.288
ω = 0.45 0.931 0.888 0.884 0.871 0.734 0.740

n = 200 ω = 0.00 0.019 0.019 0.060 0.002 0.002 0.011
ω = 0.25 0.934 0.918 0.919 0.842 0.795 0.800
ω = 0.45 1.000 1.000 1.000 0.999 0.997 0.997

sets of responses and covariates of sample size n = 200 from the simulation setup
with true ZM parameters, ωtrue = 0 and ωtrue = 0.25. The profile log-likelihood
function for ω in ZMP models is their log-likelihoods as a function of ω evaluated
at β = β̂

ZMP
, i.e.,

lZMP
n

(
(β̂

ZMP
, ω)

)
. (5.1)

On the left plot of Figure 1 we see that the profile log-likelihood (solid curve)
based on the data set with true ZM parameter ωtrue = 0 substantially deviates
from its quadratic approximation (dashed curve). The quadratic approximation
to the profile is just the second order Taylor expansion of lZMP

n ((β̂
ZMP

, ω)) at ω̂ZMP.
In contrast, in the right plot we see that the quadratic approximation (dashed
curve) to the profile log-likelihood function (solid curve) based on the data set
with true ZM parameter ωtrue = 0.25 is very accurate. It is well known (see
e.g., Meeker and Escobar (1995) and Pawitan (2000)) that the Wald and LR
tests may fail if the quadratic approximation to the log-likelihood function fails.
That is exactly the case here and therefore the Wald and the LR tests do not
maintain their nominal level α. It should be mentioned that for both data sets
the lowest permissible negative value of ω (i.e., −cω) is around −0.05, and the
99% confidence intervals for ω are determined by the horizontal solid lines in
Figure 1.

We also conducted an extensive simulation study to compare the performance
of score, Wald, and LR tests in ZMGP regression models for samples of size n =
50, 100, 200. For brevity we report only some results from this study. A ZMGP
model with ϕ = 2, ωj = 0.05j for j = 0, . . . , 9 and linear predictors ηi(β) =
1 + 0.5xi for i = 1, . . . , n and n = 50, 100, 200, was taken as a working model.
Covariates xi’s were taken uniformly from (0, 1). For each combination of sample
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Figure 1. The profile log-likelihood for ω of a data set of size n = 200
simulated from the ZMP model with ηi(β) = 0.75 − 1.45xi and the true
ZM parameter ωtrue = 0 (left), or ωtrue = 0.25 (right) (Vertical dotted lines
correspond to the MLE’s, and horizontal solid lines indicate asymptotic 99%
confidence intervals for ω. The solid curves correspond to the profile log-
likelihood given by (5.1) and the dashed curves correspond to the quadratic
approximation of the profile log-likelihood).

size and model, we simulated 1,000 sets of responses from the working model.
This simulation setup implies that the probability of obtaining zero outcomes
from the GP distribution with parameters ϕ = 2 and µi = exp(ηi(β)) varies
between 0.11 and 0.25 for i = 1, . . . , n. We display our findings in Figure 2.
The estimated power of the tests between two neighbouring knot points ωj and
ωj+1 for j = 0, . . . , 8, is obtained by linear interpolation. From Figure 2 we see
that all three tests maintained approximately their size, while the Wald test was
much more powerful than the LR test, and even more powerful than the score
test. A sample size of 50 was needed for the Wald test to achieve 80% power
at ω = 0.40 and level α = 0.05, while for the score test a sample size of 100
was not sufficient. Taking the total cost for sampling and statistical inference,
the Wald test appears much more effective than the score test: the power loss
for the score test compared to the Wald test lies between 46% and 87% for
n = 50, and between 22% and 73% for n = 100. In contrast to the ZMP case,
for n = 200 the percent difference in the power for the score and Wald tests was
still significant, between 2% and 56%. Thus the score test performed worse when
an additional overdispersion parameter compared to the Poisson distribution was
allowed. Moreover the LR test had significantly higher power than the score test,
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Figure 2. Estimated upper tail probabilities for Wald, LR, and score statis-
tics at χ2

1,1−α in the ZMGP regression, based on 1,000 samples from the
ZMGP model with linear predictors ηi(β) = 1 + 0.5xi (horizontal line cor-
responds to α level).

not the case in ZMP regression. The percent difference in power for the score
and LR tests was between 8% and 64% for n = 50, 8% and 36% for n = 100, 1%
and 20% for n = 200. With regard to the Wald and LR tests, we observe that
the LR test resulted in power loss up to 68% compared to the Wald test.

In contrast to the ZMP case, the Wald test for zero-modification maintained
the nominal level α in ZMGP models much better. Table 2 displays empirical
levels of all three tests for zero-modification from Figure 2 when ω = 0. It should
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Table 2. Empirical levels for Wald, LR, and score statistics in the ZMGP
regression, based on 1000 samples from the ZMGP model with linear pre-
dictors ηi(β) = 1 + 0.5xi. They are the estimated upper tail probabilities
from Figure 2 when ω = 0.

Level of the tests α = 0.05 α = 0.01
Sample size Wω LRω Sω Wω LRω Sω

n = 50 0.044 0.026 0.043 0.012 0.005 0.010
n = 100 0.055 0.034 0.054 0.020 0.009 0.012
n = 200 0.040 0.025 0.049 0.017 0.009 0.011

be noted that the LR test was still conservative for α = 0.05 and failed to achieve
its nominal level. This could be again caused by a poor quadratic approximation
of the log-likelihood function.

5.2. Apple propagation data

Ridout et al. (2001) analyzed data on the number of roots produced by
270 shoots of a certain apple cultivar. The shoots had been produced under an
8– or 16– hour photoperiod (Factor “P”) in culture systems that utilized one
of four different concentrations of cytokinin BAP (Factor “H”) in the culture
medium (for more details see Ridout and Demétrio (1992) and Marin, Jones and
Hadlow (1993)). Note that the data contain a large number of zero responses
for the 16–hour photoperiod. Ridout et al. (2001) derived a score test for testing
a zero-inflated Poisson regression model against zero-inflated negative binomial
alternative, and showed that the zero-inflated Poisson model is unsuitable for
these data.

Here we consider two different ZMGP models for the entire data set and one
ZMGP model for the subdata that were collected under 16–hour photoperiod.
In the first model for the entire data (Model 1), µ may take different values only
for two levels of Factor “P”, while in the second model (Model 2), µ may take
different values for each of the eight treatment combinations (“P∗H”). For the
partial data we fit the ZMGP model similar to Model 2, i.e., µ takes different
values for each four levels of Factor “H”. This model is referred to as Model 3.
The overdispersion parameter ϕ is taken to be constant in all models. We are
interested in testing for ZM, i.e., H0 : ω = 0 against H1 : ω 6= 0.

The values of the corresponding score, Wald, and LR statistics for testing
ZM are given in Table 3. The Wald and LR tests clearly indicate that a simple
GP regression without ZM is not sufficient for the whole apple propagation data
as well as for its part with a 16–hour photoperiod. The score test detects ZM
only in the partial data and is not powerful enough to do so in the entire data
set. Moreover we see that, for the partial data, the Wald test gives much higher
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Table 3. The values of the score, Wald, and LR statistics for testing ZM
in the apple propagation data. The corresponding p–values are given in
parentheses.

Data Model Score Wald LR
statistic statistic statistic

Complete Model 1: 0.45 72.96 8.03
Factor “P” (0.50) (< 10−16) (0.005)

Complete Model 2: 0.57 73.18 14.41
Factor “P” ∗ Factor “H” (0.45) (< 10−16) (10−4)

Partial Model 3 : 26.84 104.49 46.23
Factor “H” (2 · 10−7) (< 10−16) (10−11)

evidence for ZM than the LR and score tests due to the fact that the Wald test
is much more powerful compared to them, as seen in our simulation.

For the partial data, the ZMGP model and the the corresponding GP model
are compared with respect to their fit to the empirical mean Ê(Y |H = i) and
variance V̂ ar(Y |H = i) (i = 1, . . . 4) for the 4 different levels of Factor “H”.
Recall that the data contains replications for each level of Factor “H”, therefore
the Ê(Y |H = i) and V̂ ar(Y |H = i) (i = 1, . . . 4) can be computed. The mean
and variance in the GP and ZMGP regression models are

E(Y |H = i) = exp(xt
iβ

GP), V ar(Y |H = i) = (ϕGP)2 exp(xt
iβ

GP),

E(Y |H = i) = (1 − ω) exp(xt
iβ

ZMGP),

V ar(Y |H = i) = (1 − ω) exp(xt
iβ

ZMGP)
(
(ϕGP)2 + ω exp(xt

iβ
ZMGP)

)
,

respectively. Here (ϕGP, βGP) and (ϕZMGP, ω, βZMGP) denote the parameters of the
GP and ZMGP models, respectively. Hence 95% confidence intervals (CI’s) for
the mean and variance of the both regressions can be constructed and plotted for
all covariates xi (i = 1, . . . , 4) on the basis of basis of the Delta method (van der
Vaart (1998, Chap. 3)) and normality of the MLE δ̂ in ZMGP and GP regression
models (Theorem 1 and Remark (ii)).

From Figure 3, we see that the 95% CI’s in the ZMGP case are always
shorter, and predicted values for mean and variance are closer to their empirical
values than in the GP case. The only exception is the prediction of the mean in
the case of Level 3 of Factor “H”, where the GP regression better estimates the
mean. This is caused by the fact that the frequency of observed zero responses
is lower here compared to other levels of Factor “H” (40% (H = 3) versus 50%
(H = 1), 53.3% (H = 2), and 47.5% (H = 4)). The MLE’s and the corresponding
asymptotic 95% CI’s for the ZM parameter ω and overdispersion parameter ϕ

given in Table 4 also support the necessity of ZM in GP models for the apple
propagation data.
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Figure 3. 95% confidence intervals for the mean (top panel) and variance
(bottom panel) of the partial apple propagation data for ZMGP and GP
models.

Gupta et al. (2004) also analyzed these data within the framework of a zero-
inflated regression model associated with a RGP distribution. Their score tests
strongly indicate that a zero-inflated RGP regression is suitable.

6. Conclusions and Discussions

This paper shows that the MLE’s in ZMGP (GP, ZMP) regression models
possess similar asymptotic properties as GLM regression models despite the fact
that the ZMGP (GP, ZMP) distribution does not belong to the exponential
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Table 4. MLE’s and the corresponding 95% confidence intervals (CI) for ω
and ϕ in the ZMGP regression for the apple propagation data.

Data Model ω̂ ϕ̂ CI for ω CI for ϕ

Complete Model 1 0.2225 1.2782 (0.1714, 0.2735) (1.1423, 1.4141)
Complete Model 2 0.2231 1.2427 (0.1720, 0.2742) (1.1118, 1.3736)
partial Model 3 0.4638 1.4154 (0.3749, 0.5527) (1.1327, 1.6981)

family. General results of Fahrmeir and Kaufmann (1985) for noncanonical links
in GLM have been adopted for this purpose. A simulation study exhibits that
the power of the score test for testing ZM in ZMP regression can be up to 43%
lower than the power of the corresponding Wald test. In the case of ZMGP
regression, this difference increases to 87%. The effect of the poor performance
of the score test seen in our simulation studies can also be seen in the analysis
of the apple propagation data. The score test does not detect any ZM despite
the high proportion of zeros observed for one level of Factor “P”. The superiority
with regard to fit of ZMGP models over GP models is also illustrated on this data
set. The zero-inflated count regression models have been found to be appropriate
for these data by Ridout et al. (2001) and Gupta et al. (2004). We conclude that
score test for testing ZM in ZMP and ZMGP models can be highly misleading,
and the Wald and LR tests should be used instead.

It is often of interest to test whether ZI and/or overdispersion adjustments in
ZIGP regression models are needed. In this testing problem the true parameter
(or the parameter vector) lies on the boundary of a parameter space. To derive
the corresponding Wald and LR tests, we have to deal with a delicate boundary
problem as in Moran (1971), Self and Liang (1987) and Vu and Zhou (1997).
Further the small sample performance of these boundary Wald, LR, and score
tests needs to be investigated. These are the subjects of future research.
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