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This note contains the proofs of Lemma 1, 2, proposition 1. In appendix b, we have
the restricted estimation, appendix C, has the observed information matrix, and appendix

D contains the additional simulation study results.

Appendix A: Some Lemmas and Proofs

Lemma 1. Let Y ~ SNI(u, X, X\ H) and Y is partitioned as Y' = (Y],Y5)" of
dimensions p1 and py (p1 + p2 = p), respectively; let u = (p] ,pug )" and

> by
5 _ T )
o1 Yoo

be the corresponding partitions of u and . Then, marginally Y ~ SN, (1, 211, 214217; H),

where )
~ v+ X Ypv

v = s
A/ 1+ v2T222_1v2

with Y991 = dog — 22121_11212, v = 271/2)\ = (UI,’U;)T.

Proof. See Proposition 5.4 and 5.5 in Branco and Dey (2001). O

Lemma 2. Let Y € RP a random vector with the following extended skew-normal pdf

fy) )¢p(Y;u,2)¢1(c+aT(y—u)),

1
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where ¢ is A fixed real constant and a is a fized p-dimensional vector. Then,
E{Y} = p+6Ws, (0),
where § = ¥a/vV1+a'Xa and ¢ =c/V1+a'Xa.

Proof. 1t follows by using the well known stochastic representation Y 4 p+0Z o0y t+ 2y
where Z(_z ) < (Zo|Zo + ¢ > 0), with Zy ~ N(0,1) and being independent of Z ~
Ny(0,£—88") (see e.g. Arellano-Valle and Azzalini, 2006), and the fact that E{Z _co00)} =

Wa, (¢) (see Johnson et al., 1994, Section 10.1). O

Proof of Proposition 1: Consider the case where U is (absolutely) continues. Let h(u;v)
be the pdf of U, h(uly) = f(y|u)h(u;v)/f(y) be the conditional pdf of U given Y =y,
and ho(ulyo) be the conditional pdf of U given Yo =y, where Yo|U = u ~ N,(p,u"1%).

Since h(uly) = f(y|w)h(u;v)/ f(y) and ho(uly) = ¢p(y; s, uw " B)h(u;v)/ fo(y), where fo is
the pdf of Yy, we have for any integrable function g(u) that

BOY =y = (1/5() [ st shhtui)de
= /) [ ol )hus) B A
= /) [ oyl ) A
= CAIE) [ a2 A holulyo)d

Thus, the proof follows by considering the special cases with g(u) = «" and g(u) =
u"?We(u'/2A). The proof when U is discrete is analogous if we replace [ by . O

Appendix B:

e Restricted estimation

As in Lachos et al. (2007), suppose that our interest centers in estimating the parameter
vector B under k linearly independent restrictions defined as CJ-TB —¢j = 0, where the

Cj;, j=1,...,k are px1vectorsand ¢;, j = 1,...,k, are scalars which are assumed to be
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both known. The interest is to maximize the complete log-likelihood function ¢.(0;y.) sub-
ject to the linear constraints C3—c = 0, where C = (C1,...,C;)" and c = (c1,...,cx)".
Following Lachos et al. (2007), one can show that the equality restricted estimate of 3 is
given by

~ (k+1) NI . (K)o o
B, = B+ axTE "X

i=1

<cToy ax! =" 1x) el e - B,
i=1

—(k (ke
for k =0,1,..., where (ﬁgk), (ub)g )), t=1,...,n, and B( ) are obtained from (??) and

(?7), respectively. The EM-algorithm for estimating the parameters of the model (?7) and

(??) under the restriction C3 = d, denoted by 50, follows the same procedures of the
~(k ~

EM-algorithm, replacing ,6( ) by B. in the M-step.

e Generating of truncated gamma distribution

Suppose that X ~ Gamma(a, ). To draw X such that a < X <b
e Generate U ~ U[0, 1]
e Let V. =F(a)+ [F(b) — F(a)]U
e return X = F~1(V),

where F' is the cdf of the Gamma(a, 8) distribution. In R software to generate of 0 < X <

1, we use the following code:

e Derivation of the conditional expectation in the EM algorithm

The notation used is that of Section 3. From (?7) we have that

f(yi, bi ti,ui]0) = f(yilbi,ui, 0)f(bilti, ui, 0) f(t:]0) f(us|0)
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by using successively Lemma 3 in Arellano—Valle et al. (2005), we can see that

bi|T; =t;, Ui =i, Y = yi, 0 ~ Nq(ufl/QSz'tz‘ +B,Z;3;  (yi — XiB),u; 'By),
Ti|Ui =u;, Y =yi, 0 ~ Nl(uzlmﬂiaMiz)]l(o,oo)(ti)a
and since Y;|0 ~ SNI,,,(X;3, ¥;, Ap., H), then from Section 2 the conditional expectations
of U;|Y; = yi, @ are known for the particular SNI distributions considered. Then, all the
necessary conditional expectations can be computed by noting that for any integrable

function g
E{U;T;g(b;)|Yi,0} = E{U;E{T7E{g(bi)|T;, U;, Yi}|Ui, Y} Y, 60},

1=1,...,n.

Appendix C: The observed information matrix

First we reparameterize D = F? for ease of computation and theoretical derivation, where

F is the square root of D containing ¢(q+1)/2 distinct elements o, = (g, . . ., aq(q+1)/2)T.
Given the observed sampley = (y/,...,y,!)7, the log-likelihood function for 8 = (87,8, ,v")T,
with 81 = (B87,4") " and 0 = (o] ,AT) 7 is given by £(0) = 31", £:(0), where

i 1
:(6) = log2 — %logQﬂ' — 5 log| @] + log K; (1)

with K;(0) = [, ui’/2 exp{—§uidi}<1>(uil/2Ai)dH(ui; v), where d; = (y; — X;8) " (y; —

A'FZ 07 (yi — Xif)
(1+XTF-IAF-1N)L/2
that the score vector is given by

XiB) and A; =

. Thus, we have after some algebraic manipulations

n

= — 2
&~ 06 2 00 —~ K; 060 ’ @
8Ki7 ¢ni+1 0A; 1 o ,n+2 ad; .
where 20 =I7( 5 )(99 —2Ii( 5 )89,W1th

1% (w) = / uw exp{—%uidi}fb(uil/QAi)dH(ui; V),
0

19 (w) = /0 - u exp{—%uidi}gﬁl (Vw2 A ) dH(w; v).
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and K;(0) = I* (% ). Direct substitution of H in the integrals above yields immediately the

following results for each distribution considered, namely

o Skew-t:
2V 2T (w 4 v/2) v+ 2w
i (W) T(v/2)(v + dy)V/2Fw ( Gt YT “’) an
qw V2] (vE+2w
Iz(z)(w) = - ( 2 ) v42w *

V2l (v/2)(d; + A2 + )3

22T (1 4 w)

[Fw) = ~—@m— b (”“”ii) E{®(S;”*A;)} and

V2V T (v + w) P <1/ o di + AIZ)
‘/27T(di 4 Ai2)l/+w 1 ) D) )

where S; ~ Gamma(v + w, %)]I(OJ).

o (Contaminated skew—-normal:

[E(w) = VER{nrs o0, )04 A0 + (L- )ér (VA)B(AY} and

If(w) = V1V§U_1/2¢1(\/ di + AZ0,v5") + (1 — v1)p1(y/di + AD).

the derivatives of log W;, d;, A; and K;(€) involves tedious but not complicated algebraic

manipulations and are given next. We consider the common situation in which 3; = JgRi

e For log W¥;:
log | ¥,
M — 0’ for 7-:,67)\ and v
or
a1 \ 01l v, . ’
‘;fL” (@ Ry, LB _ gz, 1 FE)Z)),
0?2 ooy,
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e For A;:
DA; 1
B — =X/ O 'Z,F,
a;
DA; 1 1
! = ZFZ/ 9 N(Y;, - X,8) - SAFIAFIA
aA ai (3 7 ( 16) a% 9
0A; L\ TermTq—1 -1 1 Tp—1 Tp-1 -1
5 = ——AFZ/ U 'R (Y, - XiB) - —— 5 AN FAZRZAF I,
0o? a; 20.a;
OA; | N e | L s ToonTa -1 (% N7 T —1
. = A BZICTHY - Xif) - A TFZ O Z(E,F + FF)Z W (Y - Xf)
1 . . . .
— FAiATF_l(—FTF_lAi —AFR, - AF N (-FFL - FIR)FIA)F L),
a;

where a; = (1 + ATF 1A F-1IN)1/2,

e For d;:
od; od;
L= X el(Y - X ‘=0
8,6 (2 7 ( 18>7 8A Y
od; _ _
902 —(Y: = X;8) T 'R, W (Y, - XiB),
od; 3 . )
S = —(Y: —X;8)" ¥, Z,(F,F + FF,)Z/ ¥, (Y, - X;3),
. F
where F, = gar andr=1,...,q9(¢+1)/2.
e For K;(0):
o skew-t
0K;(0) 1 v w (VN0 My 1 g i
5 = gtz -V (GG -G+
1 [ .. 1
+ 2/0 uil/2 log u; exp{—iuidi}q)(uil/QAi)h(ui,V)dui,

where U* = aloaigx(x) is digamma function.

o skew-slash

0K;(0 i 1 n: v 1
615 ) = I;b(% +v—1)+ 1// ui1/2+ og us exp{—§uidi}<l>(uil/2Ai)dui,
0
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o skew-contaminated normal

O0K;(6 n; 1 1
MO = e i) 012 A)) — el i} (A1),
141 2 2
0K;(0) N n;/2—1 1 1/2 1 /2 1 1/2
TO = VlEZ/Q / exp{—iugdi}él(lﬁ/ A;) — §V2 / d; exp{—iygdi}q)l(%/ A;)
1 1
+ §l/§ ¢ 1>/2Ai eXp{—§l/2di}¢1( 1/21/2141)

Appendix D: Additional simulation study results

Simulation results for SSL-LMM

Table 1: Monte Carlo results based on 500 data sets, true SSL1(0,2,3,3) distribution for
the random effects and SL1(0,0.25,3) for the random errors. MEAN and SD are average
and standard deviation of the estimates, AVE SE is average of estimated standard errors.

True values of parameters are in parentheses.

Parameter MEAN SD AVESE MEAN SD AVESE MEAN SD  AVESE
(i) SSL-LMM (i) SN-LMM (i) N-LMM

Bo (1) 1.0404  0.2855 0.2371 0.9651  0.2621 0.2560 2.2735  0.1728 0.1722
B1 (2) 2.0000  0.0183 0.0191 2.0001  0.0191 0.0193 2.0001  0.0191 0.0198
B2 (1) 1.0236  0.1995 0.1994 1.0344  0.2035 0.2082 1.0300  0.2294 0.2448

a2 (0.25) 0.2607  0.0375 0.0364 0.3715  0.0335 0.0256 0.3716  0.0334 0.0268
ag (2) 2.0537  0.6060 0.5461 3.1105  0.8718 0.6604 1.3255  0.3248 0.2048
A (3) 4.1008  3.7138 3.3410 4.3293  2.5387 2.5377 - - -

v (4) 4.9442  5.5248 9.3553 - - - - - -
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Figure 1: Simulation study based on 500 data sets of SSL-LMM. (a) box-plot of the mean
absolute difference of the estimated and simulated random effects for the 100 individuals.
(b) True density of the random effects (solid line) and Monte Carlo average estimated
densities for 500 data set: using N-LMM (dashed-dotted), SN-LMM (dotted) and SSL—
LMM (dotted-line) fitted. The solid lines are the respective mean.
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Simulation results for SCN-LMM

Table 2: Monte Carlo results based on 500 data sets, true SC'N1(0,2,3,0.3,0.3) distribu-
tion for the random effects and C'N1(0,0.25,0.3,0.3) for the random errors. MEAN and
SD are average and standard deviation of the estimates, AVE SE is average of estimated

standard errors. True values of parameters are in parentheses.

Parameter MEAN SD AVE SE  MEAN SD AVE SE  MEAN SD AVE SE

(i) SCN-LMM (i) SN-LMM (i) N-LMM
Bo (1) 1.0375  0.2416  0.2195  0.8750 0.2126  0.1996  2.3463 0.1916  0.1878
B (2) 1.9989  0.0179  0.0194  1.9990 0.0196  0.0207  1.9990 0.0196  0.0210
Ba (1) 0.9991  0.1965  0.2034  1.0145 02050  0.2164  1.0199  0.2664  0.2662
02 (0.25)  0.2438 0.0397  0.0349 04235 0.0438  0.0295  0.4238 0.0440  0.0304
o? (2) 1.9514 0.5864  0.5381  3.8002 0.9099  0.7080  1.5867 0.3504  0.2430
A (3) 44608 41936  3.9464 54969  2.7730  3.0077 - - -

v (0.3) 0.3208  0.1220 0.1079 - - - - - -
~ (0.3) 0.2961  0.0515 0.0536 - - - - - -
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Figure 2: Simulation study based on 500 data sets of SCN-LMM. (a) box-plot of the mean
absolute difference of the estimated and simulated random effects for the 100 individuals.
(b) True density of the random effects (solid line) and Monte Carlo average estimated
densities for 500 data set: using N-LMM (dashed-dotted), SN-LMM (dotted) and SCN-
LMM (dotted-line) fitted. The solid lines are the respective mean.
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