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Abstract: The problem of low-dose extrapolation is common in risk evaluation of

carcinogens. To set safety standards, regulatory agencies often employ the bench-

mark dose (BMD) method with a default model of low-dose-linearity. They claim

this approach is inherently conservative, leading to dose levels that are considered

protective of the publics health. These dose levels have been historically referred

to as Virtually Safe Doses (VSD) and they correspond to doses for which the upper

bound on the projected lifetime incremental risk is, for example, 1 in 1,000,000.

However, for carcinogens that are directly or indirectly beneficial, these VSD may

be unpractical and/or excessively protective of the public’s health.

This paper extends the framework in Fygenson (2008) to address the question of

just how conservative is the current BMD method and provides, for the first time, a

lower bound on the projected lifetime incremental risk from the so called VSD. The

proposed lower bound complements the upper bound derived by the BMD method

and can lead to more productive risk/benefit analyses.

Key words and phrases: Benchmark dose, low-dose extrapolation, model uncertain-

ties, pessimistic distributions.

1. Introduction

Establishing safe standards for carcinogenic substances that have direct or
indirect benefits is a major challenge for regulatory agencies. It requires coping
with scientific uncertainties and with the concerns of parties with conflicting
interests. Bromate is one example of a substance that illustrates the associated
difficulties. Bromate is a byproduct formed during the water disinfection process
of ozonization. It can also be found in some groundwater as a result of industrial
or agricultural runoff. The practical and public health benefits of ozonization are
confounded by the observation that high doses of bromate cause cancer tumors in
laboratory animals. In 2001, the United States Environmental Protection Agency
(EPA) compiled a toxicological review of bromate. The review acknowledged
limitations due to “knowledge gaps [in the biological mechanisms], uncertainties,
quality of data [lack of human data from experimental or observational studies],
and scientific controversies” (U. S. EPA, 2001).
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In general, the lack of human data on the effects of long-term exposure to very
low doses of carcinogen forces regulatory agencies to base their risk evaluations
on bioassay data. In bioassays, animals are exposed to doses much higher than
those humans are likely to be exposed to, and for much shorter time intervals.
Thus, reliance on bioassay data poses two fundamental problems. One is the
problem of species conversion: results from test animals need to be converted
into implications for people. Another is the problem of low-dose extrapolation
(within a species): effects of very low doses must be extrapolated from the much
higher dose levels used in the bioassay. This paper is concerned with this second
problem, which requires statistical modeling of the dose-response in the bioassay
data to anchor the low-dose extrapolations.

1.1. The low-dose extrapolation problem

Throughout the paper we consider the analysis of quantal bioassay data
where animal groups share the same exposure time to the substance under eval-
uation. Typically in these experiments a total of n animals are randomly assigned
to one of k + 1 dose levels di, where 0 = d0 < d1 < . . . < dk and d0 denotes the
control level. At the end of an experiment, the proportion, Yi/Ni, of animals
with the adverse response at every dose level di is recorded. Since each animal
in the experiment represents an independent Bernoulli trial, the dose-response
relationship is captured by the probability for an adverse outcome conditioned
on dose d (i.e., P (d) = P (Y = 1|d)).

For regulatory purposes, the interest is in the extrapolated probabilities of
an adverse outcome from exposure to very low-doses (i.e., P (d∗), 0 < d∗ << d1).
Specifically, the aim is to identify the dose(s) responsible for an acceptably small
increase in the likely number of additional cases in the population. For most
carcinogens, the incremental risk acceptable to regulatory agencies ranges from
10−4 to 10−6. They therefore define a “virtually” safe dose (VSD) as the dose
for which the upper bound on the projected lifetime incremental risk is between
1 in 10,000 to 1 in 1,000,000.

For some carcinogens, the difficulty of striking a balance between risks and
benefits, combined with scientific uncertainties, elevates the importance of the
method used in the analysis. For the last 20 years, the benchmark dose (BMD)
method (Crump (1984)) has been the method of choice (e.g., U. S. EPA, 2005).

1.2. The BMD method

Several years ago the EPA greatly increased the accessibility of the BMD
method by making available a user-friendly software package, called BMDS.
(The software can be downloaded from http://cfpub.epa.gov/ncea/cfm/
recordisplay.cfm. For an evaluation of the software, see Filipsson and Vic-
torin (2003) or Filipsson, Sand, Nilsson and Victorin (2003).) To outline the

http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm
http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm
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Table 1. Parametric Dose Response Models.

Model Formulation Parameters

Quantal-

linear
P (d) = γ + (1 − γ)(1 − e−βd) 0 ≤ γ < 1, β ≥ 0

Logistic P (d) = 1
.

(1 + e−(α+βd)) β ≥ 0

Log-logistic P (d) =

8

<

:

γ + (1−γ)

1+e−(α+β ln d) d > 0

γ d = 0

0 ≤ γ < 1, β ≥ 0

Probit P (d) = 1√
2π

R α+βd

−∞ e−x2/2dx β ≥ 0

Log-probit P (d) =

8

<

:

γ + (1−γ)√
2π

R α+β ln d

−∞ e−x2/2dx d > 0

γ d = 0

0 ≤ γ < 1, β ≥ 0

Weibull P (d) = γ + (1 − γ)(1 − eβdδ

)
0 ≤ γ < 1, β ≥ 0,

δ > 0

Gamma P (d) = γ + (1 − γ) 1
Γ(δ)

R βd

0
xδ−1e−xdx 0 ≤ γ < 1, β ≥ 0

Linearized

MultiStage
P (d) = γ + (1 − γ)(1 − e−

Pn
j=1 βjdj

)
0 ≤ γ < 1, β ≥ 0, n

is an integer

BMD method, we retrace a practitioner’s three likely steps when using the BMDS
program.

The first step is to fit a parametric model to the bioassay data via the
maximum likelihood method. The parametric dichotomous dose-response models
available on BMDS are listed in Table 1. With the exception of two (logistic and
normal), all of these models are based on non-negative distributions through the
general formulation

P (d) = γ + (1 − γ)F1(d), d ≥ 0, (1.1)

where γ is the background risk in the control group, and F1 is the cdf of tolerances
in the animal population.

The second step is to use the fitted curve to get a point estimate of the
benchmark dose (BMD), defined as the dose that causes a pre-specified extra risk
(referred to as the benchmark risk, BMR) above the risk faced by the control
group. The BMR corresponding to a BMD is uniquely defined for a dichotomous
response as

BMR =
[P (BMD) − P (0)]

(1 − P (0))
. (1.2)

Note that for models in (1.1), BMR= F1(BMD), and BMD is just the BMR-
percentile of F1. To complete the second step, a lower confidence bound for the
BMD (referred to as the BMDL) is derived using the asymptotic distribution of
the likelihood ratio.
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Often, the final step (common in carcinogen evaluations) is to draw a straight
line between the BMDL and the origin (zero dose, zero extra-risk). This linear
default model is used as an upper bound on the risk from very low-doses that
can be deemed as safe (e.g., upper bound for P (VSD)).

When using BMDS, risk-assessors must make at least two important input
decisions. They must select (i) a model from Table 1, and (ii) one or more BMR
value(s) for which to estimate the BMD and the BMDL.

To aid the user in selecting a parametric model, the BMDS provides a variety
of goodness-of-fit tools that include likelihood ratio tests, the Pearson chi-square
test for dichotomous data, and the Akaike information criterion (AIC). As a guide
in selecting the BMR, the research literature recommends values from 1 to 10% for
quantal data, with the most common being 1, 5 and 10% (e.g., Gaylor (1989) and
Faustman (1996)). According to the EPA, “an excess risk of 10% has generally
been the default BMR for quantal data,” but “if a study has greater than usual
sensitivity, then a lower BMR can be used” (U. S. EPA draft technical guidance
document (2000). A method for deriving simultaneous statistical inferences for
a number of different BMR is given by Piegorsch, West, Pan and Kodell (2005).

1.3. Statistical and practical challenges

Although the statistical tools of the BMDS are easy to use, and a risk-assessor
can justify choosing any of the recommended BMR values, in the big picture of
statistical methodology these actions raise some challenging issues common to
risk analyses in economics and statistics (e.g., Ryan (2003)). Two fundamental
statistical challenges arise from methodological issues: how to account for model
uncertainty and how to model extrapolated probabilities in worst-case analyses.
The major practical challenge is to objectively assess whether resulting policies
are insufficiently or excessively protective of the public’s health.

Statistical Challenges. The issue of model uncertainty is especially pro-
nounced and challenging in low-dose extrapolation problems because often differ-
ent models (F1) fit the data equally well, yet yield significantly different predic-
tions outside the data range, especially for BMR below 5% (e.g., Sand, Filipsson
and Victorin (2002) and Morales, Ibrahim, Chen and Ryan (2006)). Model un-
certainty in F1 can be dealt with, for example, by the Bayesian model averaging
approach (e.g., Morales et al. (2006)). or its frequentist version (e.g., Buckland,
Burnham and Augustin (1997)). Another possibility is to use the parametric
model (from Table 1) that provides the lowest BMDL (i.e., the most conserva-
tive model).

However, in low-dose extrapolation problems, model uncertainty in F1 is
not the whole story. In particular, it is not correct to presume that the same
model applies both inside and outside the range of positive doses in the bioassay.
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Accordingly, it was proposed in Fygenson (2008, p.11-12) that it would be more
appropriate to replace (1.1) with a more general model. The appropriate general
model for the current setting becomes

P (d) = γ + (1 − γ)F (d)I(0 < d < d1) + (1 − γ)F1(d)I(d1 ≤ d ≤ dk). (1.3)

Here two very different modeling problems are made explicit, highlighting
two different types of model uncertainty: uncertainty with respect to F1 and
uncertainty with respect to F – an unknown non-negative distribution. For the
latter, modeling should not be data driven and, therefore, a different approach
is required. This paper extends the approach in Fygenson (2008) to cover non-
negative distributions and left-tail extrapolations. The extended framework pro-
vides risk-assessors the opportunity to incorporate their outlooks (i.e., pessimism
or optimism) via constrained non-parametric models for F.

Practical Challenges. Most practitioners agree that the BMD method
leads to standards that are protective, but at the cost of making “· · · a number
of assumptions, the key one being linearity of the dose response to the origin.
In addition, most authorities take a precautionary approach in using the upper
bound [BMDL] value on the dose for a specified risk.” (Fawell and Walker (2006),
emphasis added). Consequently, the method is rarely challenged when the dose
levels to which humans are presently exposed fall below the VSD. However, when
the VSD requires changing the status quo, the question of whether the method
leads to overly protective standards is often echoed.

To addresses this question, it would be useful to have an informative lower
bound for P (VSD). By estimating the minimum number of extra cases in the
population arising from exposure to the VSD, a lower bound would be an im-
portant complement to the upper bound on the projected lifetime incremental
risk.

The idea for deriving such a lower bound appeared first in Cornfield (1977)
but to the best of my knowledge, no such bound has been proposed in the litera-
ture. This paper contributes a lower bound on the P (VSD) based on constrained
non-parametric models introduced in response to the above statistical and prac-
tical challenges.

1.4. Example: incidence of renal cancer upon chronic exposure to bro-
mate

In its evaluation of the carcinogenicity of chronic exposure to bromate, the
EPA cites the rodent bioassay studies of Kurokawa, Aoki, Matsushima, Taka-
mura, Imazawa and Hayashi (1986) and DeAngelo, George, Kilburn, Moore and
Wolf (1998). Both studies were conducted using an appropriate route of exposure
and adequate numbers of animals. However, they report different rates of tumor
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incidence and, as a result, the nature of the dose-response is not well defined.
The EPA ultimately characterized the cancer risk from bromate using data from
DeAngelo et al. (1998) because it used more animals per group than Kurokawa
et al. (1986). The EPA noted that “the hazard characterization of bromate
suggests that the dose-response assessment should apply a linear extrapolation
from data in the observable range to the low-dose region because of the lack of
understanding of bromates mode of action and the positive mutagenicity data”
(U. S. EPA, 2001). The data from both studies is analyzed via the proposed
methodology in Section 3.

1.5. Structure of the paper

The main results of this paper are presented in Section 2 and applied to
the analysis of the two rodent bioassay studies in Section 3. Section 4 contains
closing remarks and highlights some of the issues needing further attention. The
proofs are relegated to an Appendix.

2. Pessimistic Models in Bmds and Associated Confidence Bounds

The EPA recommends the BMD method (often with the linear default model)
as “inherently conservative of public health, without addition of another factor
for human variability” (U. S. EPA 1996, emphasis added). Given the existence of
scientific uncertainties and the high value we place on human life, the regulatory
agencies are justified in being extra protective of the public’s health. However,
the word conservative can mean different things and its clarification may have
important policy implications.

The use of the BMD method to set standards is part of a decision process. It
is therefore natural to view this method within the general framework of modern
economic decision models. Within this framework there are only two routes for
incorporating cautiousness (i.e., conservativeness) in a decision process: one is
through the use of a risk-averse utility function (of the possible outcomes) and
the other is through the use of a pessimistic probability model for the possible
outcomes (see the discussion in Fygenson (2008)). From the formulation of the
low-dose extrapolation problem (i.e., Models (1.1) or (1.3)), it is clear that only
the second route (whereby pessimistic models are used outside the data range)
applies.

2.1. Two pessimistic (optimistic) families of distributions

By construction (namely, the use of cdf in Models (1.1) or (1.3)), the risk of
an adverse outcome is non-decreasing with increasing exposure levels. Therefore
constraining the risk to be monotone cannot, in itself, be considered pessimistic.
A distribution can be classified as pessimistic, neutral or optimistic based on
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monotone patterns in its extra-risk mechanism (Fygenson (2008)). For the cur-
rent discussion it suffices to consider two classifications that are based on the
commonly used measures of association known as the Attributable-Risk (AR)
and the Odds-Ratio (OR). These measures describe extra-risk mechanisms and
can be defined as functionals of a cdf (F ):

(i) ARF (d∗, d) = F (d∗) − F (d),

(ii) ORF (d∗, d) =
[F (d∗)/(1 − F (d∗))]
[F (d)/(1 − F (d))]

, (2.1)

where d∗ and d are any two fixed values such that d < d∗, F (d) > 0 and F (d∗) < 1.
The functionals in (2.1) are particularly appropriate for characterizing a pes-

simistic outlook in low-dose extrapolation problems because they capture both
the strength and the direction of the relationship between the response (Y ) and
the exposure levels (D), without requiring explicit knowledge of the formula of
F . To apply them, however, one must choose the scale for comparing d∗ and d.
Fygenson (2008) demonstrates that the additive scale (i.e., d∗ = d + ∆, ∆ > 0)
is most productive in characterizing outlooks of continuous distributions with
support on (−∞,∞). To extend these results to the class of non-negative con-
tinuous distributions (e.g., Table 1), I demonstrate next the importance of using
the multiplicative scale (i.e., d∗ = αd, α > 1). The definition below defines pos-
sible outlooks of a distribution with respect to an interval J . For the low-dose
extrapolation problem, the interval of interest is the left tail starting at or below
the 10th percentile (i.e., the BMD).

Definition 2.1. A distribution function F is inherently AR- or OR-pessimistic
(optimistic) on an interval J if ARF (d∗, d) or ORF (d∗, d) is non-decreasing (non-
increasing) in d for all d∗ ∈ J , respectively. F is said to be inherently AR- or
OR-neutral on J if ARF (d∗, d) or ORF (d∗, d) are constant in d, for all d∗ ∈ J ,
respectively.

For intuition to the definitions above the reader should consult Fygenson
(2008). The main new idea here is the use of the multiplicative scale to achieve
important results for the class of non-negative distributions. In what follows,
AR-pessimism will be used to provide new insights to the BMD method and
OR-pessimism will be used to derive lower bounds on the risk associated with
the VSD.

When the different parametric models in Table 1 fit the bioassay data equally
well, one can be conservative by choosing a pessimistic model. The following
theorem provides the necessary classifications.

Theorem 2.1. Among the non-negative distributions that are available in the
BMDS (i.e., in Table 1):
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(i) Log-normal is the only OR-optimistic distribution in the interval [0, Mode);
(ii) Log-logistic is the only OR-neutral distribution throughout its support;
(iii)Quantile-linear, Weibull, and MLS are OR-pessimistic throughout their sup-

port;
(iv)Gamma with shape parameter λ ≤ 1 is OR-pessimistic throughout its support,

while Gamma with λ > 1 is neither OR-pessimistic nor OR-optimistic.

In summary, while goodness-of-fit tools often fail to discriminate among the
distributions in Table 1, choosing one or another to estimate the BMD or the
BMDL will produce (for the same data) a hierarchy of values according to the
different outlooks inherent in these distributions. Theorem 2.1 provides a (theo-
retical) explanation for the often-mentioned empirical observation that the log-
normals estimate of the VSD is the highest, usually followed by estimates from
the log-logistic, gamma, Weibull, and LMS models (e.g., Krewski and Van Ryzin
(1981) and Yanagimoto and Hoel (1990)).

2.2. Upper and lower bounds on the risk from low-doses

The notions of AR- and OR-pessimism (as applied here) are part of a non-
parametric framework that can provide upper as well as lower bounds on F in
(1.3). These bounds, given in the following theorem, are essential for determining
the practical consequences of using the BMD method.

Theorem 2.2. If F is AR-pessimistic on the interval J = [0, dp], then

F (d) ≤ F1(dp)
d

dp
, 0 < d ≤ dp; (2.2)

If F is OR-pessimistic on the interval J = [0, dp], then

F (d) ≥ (1 + e−Ad−B)−1, 0 < d ≤ dp < dq, (2.3)

where dp < dq denote a p-percentile and a q-percentile of F1, respectively, and

B = log
F1(dq)/(1−F1(dq))
F1(dp)/(1−F1(dp))

log dq/dp
and A = log

F1(dp)
1 − F1(dp)

− B log dp. (2.4)

Note that I purposely did not substitute p for F1(dp) or q for F1(dq) in the
above theorem. This provides the flexibility of either choosing a value of p (e.g.,
10%) and then estimating the corresponding percentile (the EPAs procedure),
or choosing a value in the data range and then estimating its corresponding
cumulative probability.
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Table 2. Upper bounds on percentiles (ξ) with p = 0.05 and q = 0.10.

UBξ10−4 UBξ10−5 UBξ10−6

Parameters (ξ10−4) (ξ10−5) (ξ10−6)

Weibull
β = 0.56 1.39 · 10−3 2.48 · 10−4 4.40 · 10−5

α = 1.28 (1.19 · 10−3) (1.98 · 10−4) (3.29 · 10−5)

α1 = 0.380

LMS α2 = 0.195 4.85 · 10−4 6.27 · 10−5 8.12 · 10−6

α3 = 0.002 (2.63 · 10−4) (2.67 · 10−5) (2.63 · 10−6)

α1 = 0.390

LMS1 α2 = 0.195 4.56 · 10−4 5.81 · 10−5 7.40 · 10−6

α3 = 0.000 (2.56 · 10−4) (2.36 · 10−5) (2.56 · 10−6)

α1 = 0.460

LMS2 α2 = 0.000 2.86 · 10−4 3.19 · 10−5 3.55 · 10−6

α3 = 0.086 (2.20 · 10−4) (2.20 · 10−5) (2.20 · 10−6)

Note: distributions parameterized so that the log transformation of the corresponding

random variables have a mean zero and standard deviation one.

The importance of imposing OR-pessimism on F when using the BMD
method can be judged by the proximity of the lower bound to the true prob-
abilities. Table 2 presents probabilistic lower bounds on the 10−4, 10−5 and 10−6

percentiles of the standardized Weibull and a variety of standardized linearized
multistage (LMS) models. The Weibull and LMS models are the two most pes-
simistic models among the distributions in Table 1 and are often used in analysis
of bioassay data. Note that since the early 80’s, and for the following 15 years,
regulatory agencies often used the LMS as the default model in their risk assess-
ments. For genotoxic substances, the World Health Organization (WHO, 2004)
still uses the LMS as the default model with reference risk of 10−5 to establish
safe doses (i.e., VSD).

Applying the inequalities in Theorem 2.2 to bioassay data requires account-
ing for the variability in the data. The common approach is to derive a confidence
interval for the parameters of interest. The problem of constructing approximate
confidence bounds for percentiles in a binary regression setup has been considered
by many authors, usually under the standard assumption of a logit or a probit
model for F1 in (1.1). With the exception of one case (where F1 is a logistic
and F is OR-pessimistic), the derivation of the approximate confidence bounds
is non-standard and requires a constrained maximum likelihood approach (see
Section 3). While other asymptotic approaches exist (e.g., the delta method), the
likelihood ratio method has been found to have good theoretical and practical
properties. In particular, it is invariant under parameter transformations (Cox
and Hinkley (1974)) and, with standard models, it yields coverage probabilities
close to their nominal values (e.g., Alho and Valtonen (1995) and Huang (2001)).
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Following the BMDS program, we use the likelihood ratio method to derive
the approximate 100(1−α)% upper and lower confidence bounds for F (d), d ∈ J .

Proposition 2.1. If F is AR-pessimistic on the interval J = [0, dp], then the
approximate 100(1 − α)% upper confidence bound (UCB) for F (d), d ∈ J is

Ud = Sup(θ)

{
H(θ; d, p) : 2(LL(θ̂) − LL(θ)) ≤ χ2

1,1−2α

}
, (2.5)

and the approximate 100(1−α)% lower confidence bound (LCB) for any percentile
Dγ, γ < p is

Lγ = Inf(θ)

{
Dγ = M(θ; γ, dp) : 2(LL(θ̂) − LL(θ)) ≤ χ2

1,1−2α

}
. (2.6)

If F is OR-pessimistic on the interval J = [0, dq], then the approximate 100(1 −
α)% lower confidence bound (LCB) for d ∈ J is

Ld = Inf(θ)
{

G(θ; d, p, q) : 2(LL(θ̂) − LL(θ)) ≤ χ2
1,1−2α

}
. (2.7)

In the proposition, dp = F−1
1 (p; θ) < dq = F−1

1 (q; θ) denote a p-percentile and
a q-percentile of F1, respectively. LL(θ) denotes the log likelihood function (of
the parameters in F1), LL(θ̂) denotes its maximum under the parameterization
of (θ). The functions in (2.5) through (2.7) are H(θ; d, p) = (pd)/[F−1

1 (p; θ)],
M(θ; γ, dp) = (γdp)/[F1(dp; θ)] and G(θ; d, p, q) = 1/(1 + e−A(θ)d−B(θ)), with
B(θ) = [log(q/(1 − q)) − log(p/(1 − p))]/[log(F−1

1 (q; θ)) − log(F−1
1 (p; θ))] and

A(θ) = log(p/(1 − p)) − B(θ) log(F−1
1 (p; θ)).

In closing, note that that seeking the supremum to derive Ud in (2.5) has
nothing to do with being pessimistic or conservative. It is merely the proper
statistical procedure given that a confidence interval is required to estimate the
upper bound in (2.2). Also, as with all asymptotic based methodologies, one
cannot grantee the small sample performance. Moreover, because in most appli-
cations we do not know the true distribution, it is difficult to quantify the “true”
relative accuracy of the above confidence bounds. It bears noting however that
under (1.3) the magnitude of the confidence bounds depends, to a large extent,
on the quality of the (probabilistic) bounds from Theorem 2.1- see Table 2. The
extra width of the confidence bound (beyond the corresponding probabilistic
bounds) is a function of the number of observations as well as how well they fit
the assumed F1 in (1.3), but does not depend on F in (1.3). In our framework
the extrapolation is taking place in F , which is modeled non-parametrically.
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2.3. The pessimistic side of the BMD method

The EPA and other regulatory agencies claim that the use of the linear
default model with the BMD method is protective of the public’s health. This
claim is based on the assertion that the dose-response curves are likely to be linear
for values in the neighborhood of zero and that F (d) is likely to be sub-linear
(i.e., convex) in d ∈ (0, BMD]. Therefore, in all likelihood, the linear default
model provides an upper bound on F (d) for d ∈ (0, BMD) or, equivalently, a
lower bound for the safe low-doses of interest (e.g., VSD).

Based on our framework (see the Appendix), it can be shown that imposing
an AR-pessimistic distribution on F (d) for all d ∈ (0, BMD] is equivalent to
assuming that F (d) is sub-linear for all d ∈ (0, BMD]. As a result, the default
linear model recommended by the EPA and other agencies is equal to the upper
bound on the risk given in (2.2). Thus, the BMD method accounts for model
uncertainty in F by imposing the non-parametric constraint of AR-pessimism.
How pessimistic is the EPA’s approach? It turns out that all continuous unimodal
distributions are, by definition, AR-pessimistic on J ⊂ (−∞, Mode].

2.4. A lower bound on the excess-risk of the VSD

The BMD upper bound reflects the doses that are likely to cause maximum
additional lifetime risk due to the exposure. Importantly, this does not exclude
the possibility that the associated VSD can cause no additional risk, in which case
it could be construed as overly protective (e.g., Cornfield (1977)). A reasonable
response to such possibility is to provide a lower bound on the risk by imposing,
once again, a pessimistic constraint on F .

Given that the low dose-response curve is to be modeled by a non-negative
distribution, considering a model where F in (1.3) is OR-pessimistic is a reason-
able approach since the use of OR-pessimism complements the AR-pessimism
currently imposed by the BMD method. The latter constrains the absolute excess-
risk mechanism to be non-decreasing on an interval, and the former imposes the
same constraint but on the relative excess-risk mechanism.

Employing both the absolute and the relative constraints has the advantage
of covering each mechanism’s limitations. For example, an absolute difference
in risk of 0.004 may be considered trivial if the risk to the control group is 0.4
(i.e., P (0) = 0.4). But, the same difference is substantial for a population with
P (0) = 0.00049, as P (d) is then more than 9 times larger than P (0). Finally, since
OR-pessimism neither implies nor is implied by AR-pessimism, the two provide
different kinds of pessimism, but not a hierarchy of degrees of pessimism.

3. Application to Bromate Assay Data

In its evaluation of the carcinogenicity of chronic exposure to bromate, the
regulatory agencies cite the rodent bioassay studies of Kurokawa et al. (1986) and
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Table 3. Renal Tumor Incidences in Male Rats.

Kurokawa et al. (1986)

Dose (mg BrO−
3 /kg · day 0 0.7 1.3 2.5 5.6 12.3 33

Tumor Incidence 0/19 0/19 0/20 1/24 5/24 5/20 9/20

DeAngelo et al. (1998)

Dose (mg BrO−
3 /kg · day 0 1.1 6.1 12.9 28.7

Tumor Incidence 1/45 1/43 6/47 3/39 12/32

DeAngelo et al. (1998). The two studies report different rates of tumor incidence
and leave the nature of the dose-response ill-defined. The U. S. EPA chose to
characterize the cancer risk of bromate using data from DeAngelo et al. (1998)
because that study used more animals per group than Kurokawa et al. (1986). In
applying the BMD method, the EPA noted that “the hazard characterization of
bromate suggests that the dose-response assessment should apply a linear extrap-
olation from data in the observable range to the low-dose region because of the
lack of understanding of bromate’s mode of action and the positive mutagenicity
data” (U. S. EPA, 2001).

As an application of the methodology presented in Section 2, in what follows
we analyze the renal tumor incidence data from both studies. Our objective is
to estimate the VSD for reference risks of 10−4, 10−5 and 10−6 and to provide
statistical lower bounds on the risks from these VSD (i.e., P (VSD)). To facilitate
comparison between the two studies, we focus on data recorded after rodents
were exposed for 100 weeks in the DeAngelo et al. (1998) study, and for 104
weeks in the Kurokawa et al. (1986) study (summarized in Table 3). The studies
differ in two major respects important to the key issue of model uncertainty.
The DeAngelo et al. (1998) study has more animals per dose level, while the
Kurokawa et al. (1986) study extends to lower dose levels. Thus, a priori, the
latter data set should result in less model uncertainty in the extrapolation range
(i.e., with respect to F ) and the former should provide a better account for model
uncertainty in the data range (i.e., with respect to F1).

In analyzing the data in Table 3, we follow the steps of a practitioner using
the EPA’s BMDS program (see Section 1.2). Table 4 provides goodness-of-fit
measures for the three models from Table 1 that best fit the data from each
study, along with corresponding BMD for 2.5%, 5% and 10% BMR. Notably, all
models provide similar quality fits to their respective data sets and all BMD fall
well within the data ranges. However, only for the Kurokawa et al. (1986) data
are the BMD very similar for all three models. For the DeAngelo et al. (1998)
data, BMD from the Quantal-linear model are much smaller than corresponding
BMD from the two other models and therefore yield lower values for the VSD.

For ease of comparison, we adopt the Quantal-linear model for both data
sets. This model is OR-pessimistic (see Theorem 2.1) and should yield the lowest
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Table 4. Results for the three BMDS models that best fit bromate bioassay data.

p-value BMD

Model LR test Pearson χ2 test AIC 10% 5% 2.5%

Kuhn and Tucker (1951)

Quant-lin 0.6996 0.7635 88.7265 4.8785 2.3750 1.1723

Log-probit 0.7805 0.8343 89.3698 4.4136 2.4718 1.4950

Log-logistic 0.6560 0.7464 90.1822 4.5227 2.2885 1.1881

DeAngelo et al. (1998)

Quant-lin 0.2610 0.3047 126.486 8.3579 4.0690 2.0084

Log-probit 0.2864 0.2458 126.261 13.4984 8.3580 4.8778

Log-logistic 0.2774 0.2322 126.339 14.5216 9.2437 5.4898

Table 5. VSD and Lower Bounds (LB) on P(VSD) using BMR = 2.5% and 5%.

P (VSD)
Kurokawa, DeAngelo,

et al. (1986) et al. (1998)

≤ 10−4 VSD 0.0033016 0.0054606

LB P (VSD) 4.3296 · 10−5 4.4186 · 10−5

≤ 10−5 VSD 0.0003301 0.0005460

LB P (VSD) 4.1491 · 10−6 4.2344 · 10−6

≤ 10−6 VSD 0.0000330 0.0000546

LB P (VSD) 3.9760 · 10−7 4.0577 · 10−7

estimates of the VSD. To minimize model uncertainty of F in (1.3), we use the
2.5% and the 5% BMD in (2.5) and (2.6) to derive the lower and upper confidence
bounds on the low-dose risks, respectively. Estimated VSD corresponding to
upper bounds of 10−4, 10−5 and 10−6 on the extra risk in (1.3) and lower bounds
on P (VSD) are presented in Table 5.

The BMD and VSD figures in Tables 4 and 5 were obtained using the EPA’s
free, user-friendly software package, BMDS. For a given BMR, the software pro-
vides the BMD and the BMDL directly. The VSD are easily computed from
10−k × BMDL/BMR for k = 4, 5, or 6.

To obtain the lower bound on the P (VSD) (i.e., LBP(VSD)) in Table 5,
I used Mathematica. For the MLEs and their log-likelihood values, I used the
FindMinimum function and for the constrained minimization, I used the FindRoot
function. For the latter, one must appeal to the Kuhn and Tucker (1951) condi-
tion (see Fygenson (2008, p. 20)). For illustration, here are the specific steps I
took in the analysis of the DeAngelo et al. data.

Finding the MLEs:

F1[b_,d_] := (1-Exp[-b*d])

FindMinimum
FindRoot
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F1inv[b_,p_] := Log[1-p]/b

Prob[a_,b_,d_] := a+(1-a)*F1[b,d]

llc[a_,b_,d_,y_,n_] := y*Log[prog[a,b,d] + (n-y)*Log[1-prob[a,b,d]]

ll[a_,b_] := llc[a,b,0,1,45] + llc[a,b,1.1,1,43] +...+ llc[a,b,28.7,12,32]

FindMinimum[-llc[a,b], {a, 0.0000001}, {b, 0.0000001}]

{61.2432, a− > 0.0187411, b− > 0.0126062} (output from Mathematica).

Finding the LBP(VSD).

B[b_,p_,q_] := (Log[q/(1-q)]-Log[p/(1-p)])/(Log[F1inv[b,q]]-Log[F1inv[b,p]])

A[b_,p_,q_] := Log[p/(1-p)] - B[b,p,q]*Log[F1inv[b,p]]

G[b_,d_,p_,q_] := 1/(Exp[-A[b,p,q]]*d^(-B[b,p,q]))

FindRoot[{ D[G[b,d,p,q],b]]==0, -ll[a,b]-62.5962==0 }, {b=0.0000001}]

{b− > 0.00896949} (output from Mathematica)

G[0.00896949,VSD,p,q] (gets the LBP(VSD)).

In summary, the VSD from the DeAngelo et al. (1998) data are about 1.64
times larger than the corresponding VSD from the Kurokawa et al. (1986) data
(Table 5). However, the lower bounds on P (VSD) are similar for both data sets
and halfway between the upper bounds on P (VSD) and the upper bounds for
the preceding reference risks. Thus, the Kurokawa et al. (1986) study makes
up for the use of less rodents per dose group by having a lower (positive) dose
level and because the Quantile-linear model provides a better fit to its data.
Very important to risk/benefit analysis, both studies indicate a similar minimum
number of extra cases due to exposure to bromate. Finally, it is important to note
that the results in Tables 4 and 5 are based in part on the asymptotic distribution
of the likelihood ratio test, and thus the true nominal value in applications with
small sample sizes is unknown. For the datasets used in this paper, the sample
sizes are relatively large (146 and 206, respectively) and one can safely expect
the approximation to be good.

4. Discussion and Conclusions

This paper advocates a new approach to dealing with the well-researched
problem of low-dose extrapolation. Ideally one would use biologically based
dose-response models for which parameters are calculated independently of curve
fitting to the data. Examples include the two-stage models developed by Mool-
gavkar, Vernon and Knudson (MVK), (see Moolgavkar and Luebeck (1990)).

G[0.00896949, VSD, p, q]
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However, extensive data is required both for building such models and for es-
timating their parameters. As a result, Crump (1996) writes, “This approach
has the same limitation as approaches based on non-biological statistical models:
Different assumptions about the dose response from the MVK parameters will fit
the tumor bioassay data equally well, but produce enormously different estimates
of low-dose risk.” (See also National Research Council (1993).)

Since in most cases biologically based models are not practicable, regulatory
agencies, like the EPA, recommend the use of the BMD method, combined with
conservative inputs, for estimating the VSD. This paper provides insights and
tools for arriving at conservative standards when applying the BMD method.
In particular, it is argued that the proper way to achieve this goal is to use
pessimistic models in the extrapolation region. Two broad families of pessimistic
distributions – AR-pessimistic and OR-pessimistic – are used. These two forms of
pessimism complement each other in the sense that AR-pessimism constrains the
absolute excess-risk mechanism to be non-decreasing, and OR-pessimism imposes
the same constraint on the relative excess-risk mechanism.

One way of dealing with model uncertainty in the data range is to use the
most pessimistic model among those that fit the data equally well. In Section
2.1, it was established that, among the parametric models commonly used in
fitting bioassay data, a few are not at all pessimistic. Characterization of these
models with respect to their outlooks thus provides a qualitative explanation of
the empirical observation that some models consistently lead to lower VSD.

AR-pessimism provides new insight into the current BMD method. Specifi-
cally, it was established that the current BMD method is AR-pessimistic because
it involves extrapolating to the VSD by imposing the non-parametric constraint
of increasing absolute excess-risk on the very low dose-response curve. Further-
more, the use of the BMDL as a point of departure for the extrapolation model,
construed by some as enhancing the conservative nature of the BMD method, is
actually the only proper statistical procedure, and therefore is neither especially
pessimistic nor conservative.

OR-pessimism is instrumental in deriving lower bounds on the incremental
risk from exposure to the VSD. This lower bound is an important complement
to the current BMD method. While having an estimate of the minimum number
of extra cases from exposure to levels of carcinogens recognized as safe (i.e.,
VSD) is of general importance, it is especially so for carcinogens that directly or
indirectly benefit the public. In such cases it can help resolve challenges from
parties concerned that a particular regulatory standard is excessively protective
and therefore unfair and/or unpractical.

The lower bound on P (VSD) was evaluated, as a probability bound in Table
2 and as a statistical (confidence) bound in Table 5, for the data from Section 3.
Both were found to be informative. Interestingly, the lower confidence bounds
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on P (VSD) in the two bioassay studies in Section 3 were similar even though
the reported incidence rate in the two studies were quite different. In general,
the results from Tables 2 and 5 are encouraging and strongly suggest that the
proposed lower bound should be used with other data and implemented in the
EPA’s software.

While the software is user friendly and offers advanced features, it remains a
work in progress. One issue that requires further attention arises in the estimation
of the control groups risk (i.e., P (0)), that plays a major role via equation (1.3).
In particular, when fitting one of the two unrestricted models (i.e., probit or
logit), the BMDS uses model (1.1). Its estimate of P (0) is therefore based on
parameters that were estimated from the data (very far away). It would be more
appropriate to consider model (1.3) and estimate P (0) non-parametrically. This
requires future consideration, especially about the best way of accounting for the
variability in the data.

One of the more difficult issues that remain is that of the appropriate point
of departure used to anchor the extrapolation of the VSD. Even if the anchor
point of choice falls in the data range, extrapolation from the 10th percentile,
for example, to the targeted percentile of 10−6 is a stretch, and may well be
inappropriate. In picking the point of departure there is always a tradeoff between
model uncertainty of F1 (in the data range) and model uncertainty of F (in the
extrapolation range). More consideration must be given to this tradeoff. We
have seen another aspect of it in the two bioassays of Section 3. The DeAngelo
et al. (1998) study used more animals per dose level, while the Kurokawa et al.
(1986) study extended to lower (positive) dose levels. A priori, the latter data
set should result in less model uncertainty in the extrapolation range and the
former should provide a better account for model uncertainty in the data range.
To find the “right” balance is therefore a design issue as well as a methodological
one.
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Appendix

Throughout the Appendix, g′(x) is the derivative of g and OF (x) = F (x)/
(1 − F (x)) denotes the odds of a distribution function F .

To prove Theorem 2.1, we require the following result.

Lemma 1. A distribution function F is inherently OR-pessimistic (optimistic)
on the multiplicative scale in interval J if, and only if, OF (x) is log-convex (log-
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concave) in log(x) for all x ∈ J . Equivalently, if, and only if, x log′ OF (x) is
increasing (decreasing) in x.

Proof of Lemma 1. ORF (αx, x) is increasing (decreasing) in x ⇔ log(ORF

(αx, x)) is increasing (decreasing) in x ⇔ d{log ORF (αx, x)}/dx = log′(OF (αx,
x)) − log′(OF (x)) ≥ (≤)0 ⇔ x log′(OF (x)) is increasing (decreasing) in x ⇔
log(OF (x)) is convex (concave) in log(x).

Proof of Theorem 2.1. Parts (i) and (ii) follow from Lemma 1 and Theorem
A.3 in Fygenson (2008). Part (iii) can be proven using Lemma 1. Here we
illustrate the proof for the LMS, which is the most difficult of the three. (The
proofs for the Quantal-linear and the Weibull require following the first four
equations in the proof below.)

By Lemma 1, we need to show that, for the LMS model, x log′ O(x) is in-
creasing in x. For the LMS

x log′ O(x) =
∑

βix
ii

1 − e−
P

βixi ,

and

[
x log′ O(x)

]′
=

∑
βix

i−1i2 − e−
P

βix
i
[∑

βix
i−1i2 + (

∑
βix

ii)(
∑

βix
i−1i)

]
(1 − e−

P

βixi)2
.

(A.1)
The numerator of (A.1) is non-negative if

log
( ∑

βix
i−1i2

)
≥ −

∑
βix

i + log
[∑

βix
i−1i2+

( ∑
βix

ii
)(∑

βix
i−1i

)]
,

(A.2)
or if

log
[
1 +

(
∑

βix
ii)(

∑
βix

i−1i)
(
∑

βixi−1i2)

]
≤

∑
βix

i. (A.3)

The left hand side of (A.3) is no greater than (
∑

βix
ii)(

∑
βix

i−1i)/(
∑

βix
i−1i2).

Thus, the inequality in (A.3) holds if(∑
βix

ii
)(∑

βix
i−1i

)
≤

(∑
βix

i
)(∑

βix
i−1i2

)
for all βi ≥ 0 and x ≥ 0.

(A.4)
Multiplying both sides of (A.4) by x gives( ∑

βix
ii
)(∑

βix
ii
)
≤

( ∑
βix

i
)(∑

βix
ii2

)
. (A.5)

The left hand side of (A.5) is( ∑
β2

i x2ii2
)

+ 2
( ∑∑

βiβjx
ixjij

)
, (A.6)
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and the right hand side of (A.5) is( ∑
β2

i x2ii2
)

+
( ∑∑

βiβjx
ixj(i2 + j2)

)
. (A.7)

Since (i2 + j2) ≥ 2(ij), this completes the proof.

To prove part (iv), we need to show (by Lemma 1) that for the Gamma
distribution with shape parameter 0 < α < 1, x log′ O(x) is increasing in x > 0
or, equivalently, that

F (x)(1 − F (x))
xf(x)

(A.8)

is decreasing in x > 0. Note that (A.8) for the Gamma distribution is

(1/Γ(α))
∫ x
0 λαtα−1e−λtdt

x

∫ ∞

x

(y

x

)α−1
e−λ(y−x)dy.

Now, with the change of the variables z = t/x and u = y−x, the above becomes(
1

Γ(α)

∫ 1

0
λα(zx)α−1(e−λz)xdz

)(∫ ∞

0

(u + x

x

)α−1
e−λudu

)
=

1
Γ(α)

∫ 1

0
λα

∫ ∞

0
(zx)α−1(e−λz)x

(u + x

x

)α−1
e−λududz

=
1

Γ(α)

∫ 1

0
λα

∫ ∞

0
g(u, z; x, α, λ)e−λududz,

where g(u, z; x, α, λ) = (zx)α−1(e−λz)x[(u + x)/x]α−1. Note that log′ g(u, z; x, α,
λ) = [(α − 1)/(x + u)] − λz ≤ 0, for all α ≤ 1. This completes the proof since
the above shows that the function g(u, z; x, α, λ) is decreasing in x > 0 when
0 < α < 1.

Proof of Theorem 2.2. Part a) follows from Theorem A.1 of Fygenson (2008),
which establishes that F is AR-pessimistic (optimistic) on J if, and only if, F (x)
is convex (concave) in x ∈ J . Therefore there exists a line βx, say, such that
F (x) ≤ βx and F (xp) = βxp. Setting F (xp) = F1(xp) and solving for β, we get
(2.1). To show part b), let Y = log(X), GY (y) = P (log(X) ≤ y), and (yp, yq)
be the p and q percentiles of GY , respectively, with p < q. From Lemma 1, we
know that log(OG(y)) is convex in y ∈ (−∞, yq]. This implies that there exists
a line A + By, say, such that

log(OG(y)) ≥ A + By, −∞ < y ≤ yp, (A.9)

where A and B are the solutions of

log(OG(yp)) = A + Byp and log(OG(yq)) = A + Byq.
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Solving these equations gives

B =
(OG(yq)) − log(OG(yp))

yq − yp
and A = log(OG(yp)) − Byp.

From (A.9), and since OF (x) = OG(log(x)) and yi = log(xi), i = p, q, we get

OF (x) =
F (x)

(1 − F (x))
≥ eAxB, 0 < x ≤ xp.

To get F (x) ≥ (1 + e−Ax−B)−1, simply isolate F (x) on one side of the above
equation.

Proof of Proposition 2.1. Under the conditions of the proposition it follows
from Theorem 2.1 that F (x) is bounded from above and below by the functions
H and G, respectively.

Let Pi = P (Yi = 1 | X = xi; θ), with θ = (θ1, . . . , θt)T ∈ Ω, where the
parameter space Ω is an open subset of t-dimensional Euclidean space. Consider
the common regularity conditions.

C1. limn→∞(ni/n) = ci, (0 < ci < 1) for all i = 1, . . . ,K, where K denotes the
number of different X values in the data.

C2. K is at least as large as the number of parameters in the model.

C3. The information matrix
∑−1 = ((σλσ)) with

σλσ =
K∑

i=1

ci
(∂Pi/∂θλ)(∂Pi/∂θσ)

(Pi(1 − Pi))
, (λ, σ = 1, . . . , t)

is positive definite.

It is not hard to show (Cox and Hinkley (1974)) that, under C1 – C3, the
likelihood ratio statistic is asymptotically a χ2

t , where t is equal to the number of
parameters in the model. Using standard arguments on a constrained parameter
space (Rao (1973, p.419)) the approximate (1-α)% upper confidence bound for
F (d), d ∈ J is

Ud = Sup(θ)

{
H(θ; d, p) : 2(LL(θ̂) − LL(θ)) ≤ χ2

1,1−2ρ

}
.

Using the same arguments we get the approximate (1-α)% lower confidence bound
for F (d), d ∈ J , given in (2.5). Note that χ2

1,1−2ρ is used instead of χ2
1,1−ρ because

a one-sided rather than a two-sided confidence limit is required.
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