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Abstract: From a practical viewpoint the first decision to be made in the construction
of a design of a two-level factorial experiment is- the choice of the parameters of
interest. It is convenient to represent such a choice by considering an undirected
graph g with n vertices and e edges. The vertices and edges of g are used respectively
to identify the main effects of n two-level factors and the e two-factor interactions of
interest. The parameters identified by g together with the general mean are taken to
be the parameters of interest. A design d of the 2" factorial will be called a g-design
if and only if d is saturated and is capable of providing an unbiased estimator of the
parameters of interest relative to the orthogonal polynomial model. In this paper
(i) a g-design is constructed for each graph g and certain features of g-designs are
noted, (ii) some D-optimality results for g-designs within the class of all g-designs are
obtained.
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1. Introduction

Factorial designs in which each factor is studied at two-levels (high and low;
present and absent) are very important in factor screening experiments and inany-
scientific investigations. As a first approximation for the model of response con-
trolled by these factors it is customary to include the main effects and some
specified set of two-factor interactions. Thus, for example, if there are five fac-
tors to be studied, then we may want to explore and study a model involving the
general mean, the five main effects and some three two-factor interaction effects.
In this case, out of (‘;’) = 10 two-factor interactions we have selected some three
to be included in the model. Aside from the main effects and the mean, from
a practical viewpoint, the selection of the other parameters of interest, mainly
two factor interactions, is a crucial and weighty one and is often suggested by
previous knowledge or other background information concerning the experiment.
A discussion of how such interactions arise, and how one selects those which may
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be deemed important for the purposes of estimation, along with examples is given
- in Wu and Chen (1992). -

A general design question to be studied is this: suppose there are n factors
under study and we intend to include the general mean, the main effects and
m < (5) two-factor interactions in the model. We would like to specify a design
with at least N = 1 + n + m level combinations so that the N parameters in
the exploratory model can be estimated unbiasedly- The literature offers some
methods to tackle this problem. We review these briefly below.

If N is small the desired design may be constructed on an ad hoc search basis.
To save time in such a search, Greenfield (1976) suggests a more systematic tree
search procedure to select an appropriate fraction. However, such procedures
ultimately involve trial and error and rapidly become unwieldy as N becomes
large.

Taguchi (1959, 1960) proposes a graph aided method to tackle this problem.
He identifies each of the k vertices of an undirected graph g(k,e) with a factor
and each of the e edges with a corresponding two factor interaction. With g(k,e)
he associates a 2-level fractional factorial design, which is capable of providing an

_unbiased estimator of the (1 + k + ) parameters including the mean. For various

" values of k and e Taguchi, op. cit., has catalogued such graph aided designs. Thus,
in the case of a 2" experiment involving N = 1 4+ n + m parameters consisting
of the mean, n main effects and a specified set of m two factor interactions,
Taguchi’s method is as follows: (1) draw a graph g*(n,m) whose n vertices are
labelled by the factors and whose m edges connect the vertices specified by the
two factor interactions, (2) search the catalogued graphs to find a graph g(k,e)
such that g* is a subgraph of g with the values k > n, e > m as close to the values
n and m respectively as obtainable in the catalogue. The method then indicates
how the vertices of g* may be relabelled in accordance with the labelling of g.
Then the design associated with g solves the design selection problem for the
unbiased estimation of the N parameters. For further elucidation on Taguchi’s
procedure, see Wu and Chen (1992). -

Wu and Chen, op. cit., have also considered the above design construction
problem. They suggest that a satisfactory solution should meet three goals: (i)
the design should be capable of estimating the specified parameters assuming
the rest are negligible, (ii) the estimation in (i) should be possible even if the
assumption that the remaining interactions are negligible is somewhat relaxed,
(iii) there should be some built in flexibility in the design to allow for the esti-
mation of other interactions not in the set of specified parameters under (ii). Wu
and Chen (1992) discuss graph aided methods designed to meet these objectives.
In this connection we mention that in Hedayat (1990) this design construction
problem has been considered within the framework of meeting the objectives (i)



TWO-LEVEL FACTORIAL DESIGNS FOR MAIN EFFECTS ¢ 455
to (iii) via a different approach, namely the introduction and study of the conc;pt
- of orthogonal arrays of strength t+. _—
In this paper we follow the graphical approach of Taguchi in studying the
design construction problem stated above, but there is a big difference between
our method and that of Taguchi. As discussed above, Taguchi translates the
problem in terms of a graph and uses this graph to find a design from among a
set of catalogued graph aided designs. By contrast, in our approach we specify
an undirected graph and use it to construct a saturated design directly. Thus no
comparison with any catalogued graph aided design is involved.

Specifically, we do the following: for each n and each selected set of two-
factor interactions we specify a design with the minimum number of observations
(saturated) so that all the parameters of the model can be estimated unbiasedly.
If further observations are needed for variance estimation, then while our design
can be augmented arbitrarily with one or more level combinations, in practice
such an augmentation should be done carefully to attain statistical and other
efficiencies. i

As in Taguchi (1959) and Wu and Chen (1992), we find it useful to present

-each model under study with an undirected graph whose vertices are labelled
with the main effects and edges with two-factor interactions which are of interest.
From this perspective, specifying all nonisomorphic graphs on n vertices and e
edges gives us the set of all possible models for the 2" factorial in which the
parameters of interest are identified by the labelled graph. This saves time and
space in cataloging, storing and retrieving.

Section 2 outlines the linear model considered here and the use of a graph in
representing a specific model. From a practical viewpoint, once the parameters
of interest have been specified by a graph, the problem is to select a design so as
not to alias these parameters. To tackle this problem, the concept of a g-design
is introduced in Section 3 and a specific g-design is constructed for each graph g.

~ In Section 4, some D-optimality results for the class of g-designs are obtaihed.
" Finally, in Section 5, further results on the bounds of the determinants of the
information matrices of g(n,e)-designs are obtained. N

2. Preliminaries

We assume that the response under study is influenced by n quantitative
factors labelled by 1,2,...,n. Each factor will be studied at two different levels.
These levels will be coded by 0 and 1. A design d of the 2" factorial is a set of
level combinations t, where t= (i12...1,) is a (0,1)-vector, namely ¢; € {0,1}.
The response at the level combination ¢ will be denoted by Y; and will be assumed
to follow the standard orthogonal polynomial model (see Chapter 4, in Raktoe,
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Hedayat and Federer (1981)),

e -

Yo=p+ flij)oi+ D glijie)Bik + et (2.1)

j=1 (g.k)El

The various terms in the model (2.1) are defined as follows: u is the general mean,
a; is the main effect of the factor j, Bj& is the interaction effect between factors
j and k. The set I consists of those pairs (j, k) where interaction between factors
j and k are assumed to be present in the model. Further, the known coefficients
in the model are defined as

Sy 1, ifi; =1, . 1, ife; =1,
f(zz)—{ -1, ifé; =0, and g(“"k)‘{ —1, ifi; # ik

If we make IV observations at IV level combinations then we use an IV X 1 vector
Y to represent these observations. Thus under model (2.1), we can summarize
our data with its associated model in the form Y = X 6+¢, where each row of X
represents the coefficients in the model related to the corresponding observation
in Y and 0 is a column vector consisting of x, the main effects and the two-factor
intéractions in the model. The related error vector is €.

With each model we associate an undirected labelled graph g on n vertices.
The vertices of g represent the main effects and the edges of g are used to rep-
resent the interactions of interest. Two seemingly different models may produce
isomorphic graphs. Two undirected labelled graphs g and h are said to be iso-
morphic if one graph can be obtained from relabelling the vertices of the other
graph. From the design viewpoint we need not identify designs for all the differ-
ent models, but rather for nonisomorphic graphs. This saves us time and space.
The number of nonisomorphic graphs on n vertices grows very fast with n. For
example, there are 156 and 1044 nonisomorphic graphs with n =6 and n =7
vertices, respectively. For further details on graphs and graph enumeration-we -

~refer to Harary and Palmer (1973). .

3. The Class of g-Designs

Let g(n,e) be a graph with n vertices and e edges. Let V = {1,2,...,n}
denote the set of n vertices of g and let J(g) be a set of e distinct pairs of the
form (ij), i # j, of the elements of V.. The set J(g) will be called the edge set of
g, and a pair (i j) in J(g) indicates that there is an edge in g joining the vertices
t and j.

A design of the 2™ factorial will be called a g(n,e)-design if and only if (1)
it is capable of providing an unbiased estimator for the parameters specified by
g, namely the mean, the main effects of the n factors (identified by V'), and the
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two-factor interactions specified by the edge set J (g) relative to the orthogonal
-polynomial model (2.1), and, (2) it is saturated, namely, it contains pretisely
n + e + 1 level combinations, which is the number of parameters in the model
specified by g. A g(n,e)-design is called an orthogonal design if its corresponding
information matrix is diagonal.

The class of all g(n, e)-designs will be denoted by D(g,n,e). To shorten both
the notation and the language we will sometimes refer to a g(n, e)-design simply
as a g-design, especially when the number of vertices n and the number of edges e
of the graph g need no emphasis. Similarly, we will write D(g) as an abbreviation
for the class D(g,n,e) when no confusion is likely. Note that by definition each
g-design is nonsingular, that is, the determinant of its design matrix is nonzero.

A vector or a matrix all of whose entries are +1 or —1 will be called a
(=1,1)-vector or a (—1,1)-matrix respectively. A column vector all of whose
entries is +1 will be denoted by 1 and its dimension will be apparent from the
context. A (—1,1)-matrix will be called normalizedif its first column is the vector
1. Two (—1,1)-matrices will be called equivalent if either one can be obtained
from the other by a finite sequence of row interchanges, column interchanges,

or multiplication of a row or a column by —1. Let w' ="(ui,u2,...,us) and
v' = (v1,v2,...,vn) be (=1,1)-vectors. The Schur product of u and v is defined
to be the vector w where w’ = (u3v1,u2v2,...,UnVn).

A square (—1,1)-matrix T' of order n + e+ 1 will be called a g(n,e)-matriz
if and only if T is equivalent to a (—1,1)-matrix of the form

[11X1| X2], (3.1)

where

(i) X1 has dimension (n + e + 1) x n and whose columns are labelled by the
elements of V in order,

(ii) X2 has dimension (n + e+ 1) x e, and whose columns are indexed by J(g),
and, for (ij) in J(g), the (ij)th column of X3 is the Schur product of the 7th and
- jth columns of Xj. -

» The form (3.1) will be called the standard form for a g(n, e)-matrix and the
submatrix X; will be called the core. Hereafter, we will assume that all g(n,e)-
matrices under consideration are in standard form. The class of all nonsingular
g(n, e)-matrices in standard form will be denoted by M(g,n,e).

If d is a g(n, e)-design, then clearly its design matrix is a nonsingular g(n, e)-
matrix in standard form. Conversely, by replacing —1 by 0 in the core of a
nonsingular g(n,e)-matrix we obtain a g(n, e)-design whose design matrix is the
given g(n,e)-matrix. Hence, we have

Proposition 3.1. There is a one-to-one correspondence between the classes of
all g(n, e)-designs and nonsingular g(n, e)-matrices in standard form.
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Proposition 3.1, in effect, means that the study of the class D(g,n,e) is
-equivalent to the study of the class M (g,n,e). Note that as a class D(g,n,e) is
intermediate to the classes of saturated resolution V and resolution III designs of
the 9™ factorial. At one extreme when g is the complete graph and e = (3) then
D(g,n,e) equals the class of saturated resolution V designs of the 2" factorial.
At the other extreme, when g is the trivial graph, namely J(g) = 0, then the
corresponding class of g-designs is the class of saturated resolution III designs.
Clearly if g1 is a graph isomorphic to g then, knowing the class D(g), we also
know the class D(g1), for, given d in D(g) by suitably interchanging the columns
of d, we obtain a design in D(g;). However, it is possible for a design to be a
g1- and a go-design for two nonisomorphic graphs g; with n vertices and e edges.
This is illustrated in the following example.

Ezample 3.1. Consider the two nonisomofphic graphs g; and g2, used by Taguchi
(1959,1960), with n = 4 and e = 3 whose labelled diagrams are given below:

2 :
_ 1[/.2 1 3 4
] 91 g2

Let d = {(1111), (1100), (1010), (1001), (0110), (0000), (0101), (0011)}. Then d is
a g1- and a go-design whose design matrices are normalized Hadamard matrices
of order 8. Thus, d is a D-optimal g;-design in the class D(g;,4,3) for i = 1,2,
namely, that it has maximum determinant for its information matrix or, equiv-
alently, since we are considering saturated designs it has maximum determinant
for its design matrix in the class D(gi, 4, 3).

We now proceed to establish that the class D(g) is nonempty for each graph
g, by constructing a specific g-design for each g. )
Let g(n,e) be a graph with vertex set V' = {1,2,...,n} and edge set J{g).
- 'We define the design d(g) of the 2™ factorial whose level combinations are the
rows of the (n + e + 1) x n matrix below: -

0

I'n, b (3-2)
D.

where

(1) the lead row is the zero vector O,

(2) the next n rows are the rows of I, the identity n X n maitrix,

(3) The last e rows are based on the set J(g): for an edge (i) in J(g), the (ij)th
row of D, is a (0,1)-vector with exactly the ith and jth entries being +1.
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For the present we show that for each graph g, the design d(g) is indeed a

- g(n,e)-design. Some statistical properties of these designs will be addressed in
the ensuing sections. From the perspective of balance in a design (an attractive
feature possessed by regular designs), the designs d(g) in general can be very
unbalanced for estimating main effects or interactions. For instance, for any
factor that does not appear in any of the interactions, the column in the design
matrix corresponding to this factor has one +1 and (n + e — 1) —1’s. However,
for some small values of n and e, it will be shown in the next section that the
corresponding designs d(g) are, indeed, D-optimal.

We note that the design matrix associated with d(g) and the given graph
g(n, e) whose first column corresponds to the general mean, whose next n columns
correspond to the main effects and whose final e columns correspond to the e
interactions specified by g(n,e) is as given in (3.3):

1 -1 1
x=|1 M E|. (3.3)
1 N F

~ _ The entries of the matrices M, N, E and F in (3.3) may be described as
follows: (i) the (i,7)th entry of the n X n matrix M is +1,if i = j and -1, if
i # 4, (ii) the ((i§),t)th entry of the e x n matrix N is +1, ift € {¢,j}, and —1,
otherwise, (iii) the (i, (k£))th entry of the n x e matrix Eis -1, if ¢ € {k, £},
and +1, otherwise, and (iv) the ((25), (k£))th entry of the e x e matrix F is +1,
if |{i,5} N {k,£}] = 0 or 2, and —1, if |{z,5} N {k,£}| = 1. Thus d(g) will be a
g(n, e)-design if we can show that its design matrix X is of full rank. We establish
this by explicitly computing the determinant of X. We now convert X to a (0,1)-
matrix by performing the following elementary row and column operations on X
in sequence: replace the ith column C; of X by C; + 1, for each i € V, replace
the (ij)th column C(;;) of X by (=1)Cjy + 1 for each (i7) in J(g). Call the
. resulting matrix K after performing these column operations. Replace each Tow
" R (not the lead row) of the resulting matrix K by R — Ry, where Ry is the lead
row of K. Let W be the matrix that results from X after these column and row
operations. The matrix W has the form

1 o 0
wW=1{|0 2I, P
0o Q@ S

We claim that (a) P' = 2D, and Q = 2D,, and, (b) S =2D.D, — 4I., where D,
is defined in (3.2). We need to recall how the matrices P, @ and S are obtained.
Now the (i, (k£))th entry of P is 2 if i € {k,{} and is 0, otherwise, and this
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coincides with the ((k£),i)th entry of Q. Since Q = 2D, is straightforward, (a) is

_established. Next, the ((ij), (k£))th entry of the matrix Sis 0, if |{, j}N{k, ZfT=0
or 2, and is 2, if |{i,7} N {k,£}| = 1. Notice that the entries of D.D., are double
indexed by the elements of J(g). Now the ((ij), (k£))th entry of D.D.,is0,1,2
respectively according as |{i,j} N {k,£}| is 0, 1, 2. From this (b) follows. Thus
from (a) and (b), |det(X)| = |det(W)]| = 2n+2¢ Hence, we have

Theorem 3.1. For each graph g(n,e), the design d(g) of the 2™ factorial defined
in (3.2) is a g(n,e)-design and the absolute value of the determinant of its design
matriz is 272,

4. D-optimal g-designs

In the previous section it is noted that the study of the classes D(g,n,e)
and M(g,n,e) are equivalent. Thus, from the viewpoint of D-optimality, we find
it convenient to confine our attention to the construction of D-optimal g(n,e)-
matrices in M(g,n,e). The core of such matrices then provide the D-optimal
g(n, e)-designs in D(g,n,e).

Any two graphs with n vertices and one edge are isomorphic. Thus it is
enough to construct D-optimal g(n,1)-matrices for one specific g(n,1). We call
m an H-number if a Hadamard matrix of order m exists. Let n = 2m — 2, where
m is an H-number. Let L be a normalized Hadamard matrix of order m and let
M be obtained from L by deleting its first column. Let

1M M 1
(1 21 "

Then K is a Hadamard matrix of order 2m whose final column is the Schur

product of an ith and jth column of K forany i, 2 <¢ <m-—1,and j =:+m—1.

If the given interaction is between factors F and G, then we assign F' to any one
of the first m — 1 factors and G to its counterpart factor i + m — 1 in the coré of
- K. Hence, we have

Theorem 4.1. For each graph g(n,1), n = 2m — 2, with m being an H -number,
the design defined by the core of K in (4.1) is an orthogonal D-optimal g(n,1)-
design in the class D(g,n,1).

Let v} = (1,1,1,1), v, = (1,1, -1',-1'), v4 = (1',-1,1',-1') and
v, = (1',-1',~1',1'), where each component 1’ and —1’ of these vectors is a
row vector of order 2m + 1, m > 1. Note that vy is the Schur product of vs
and v3. Suppose that there is a (—1,1)-vector @' = (x),z5,23,2}), where the
dimension of &/ is (2m+ 1) x 1 , such that @ is orthogonal to each of v;. Then, if
there are k; plus ones in «;, the orthogonality assumption leads to the equations
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ky+ kg +k3+ ks =4m+2 and ky = kg = k3 = ky, clearly a contradiction. Hence
- no such vector @ exists and we have , in contrast to Theorem 4.1, the follewing:

Theorem 4.2. There is no orthogonal g(n,1)-design with n = 8m+2 factors as
long as m > 1 and n+2 is an H -number.

Let X be any g(n,1)-matrix. Up to a row and column interchange we can
always present X in the form

1 z A 1
= . 4.2
X ( 1y -y B -1 > (4.2)

Form the matrix C = X + J, where J = 11’. Then replacing the second column
of C by the sum of its second and third columns we obtain the matrix

_ _ 1 2a& z, A; 1

G--2Z--2(1 0 -y, B 0),

where @1, y;, A1 and Bj are obtained from their counterparts in X by replacing
—1 by 0. This leads us to the following result: i

Theorem 4.3. If X is the design matriz of any g(n,1)-design then det(X) 1s an
~ integer multiple of 2"*2, and ,

3 (4.3)

(n+2)/2
2n+2 < |det(X)| < 2n+2 [(n + 2) j\ ,
where [ ] denotes the greatest integer less than or equal to the quantity in the

brackets.

Proof. It is easy to verify that |det(X)| = 2"+1| det(Z)|. Expanding the deter-
minant of Z by its second column, we conclude that det(X) is an integer multiple
of 27+2. This, in conjunction with the Hadamard determinant inequality, estab-
lishes the theorem.

When n = 3, the two bounds in (4.3) coincide. Hence, | det(X)| =32 for
all g(3,1)-matrices X. When n = 4, by Theorem 4.3, for any g(4, 1)-matrix we
have |det(X)| = 64k for some integer k. By Williamson (1946), the D-optifnal
value for the class of all (—1,1)-matrices of order 6 is 160. Hence, we conclude
that k < 2 and |det(X)| < 128 for all g(4,1)-matrices X. Consider the matrix
L, where for simplicity we write + and — for +1 and —1 respectively:

+ o+ )
+ + - - + -
+ - + - + -
L =
+ - 4 - - (4.4)
+ + + - - +
+ - = = = 4/
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-Now L is a g(4,1)-matrix with J(g) = {(34)} and |det(L)| = 128. Thus, we have

Corollary 4.1. (a) Any g(3,1)-matriz in the class M(g,3,1) s D- optzma.l In
particular, the design matriz X of the design d(g) defined in (3.2) is D-optimal
in M(g,3,1) and |det(X)| = 32, (b) The matriz L defined in (4.4) is a g(4,1)-
matriz, where J(g) = {(34)}, which is D-optimal in M(g,4,1) and |det(L)| =
128.

Remark. We would like to point out that in general when constructing g(n, e)-

matrices, the requirement of normalization and the Schur product condition for
D-optimal g(n,1)-matrices are independent. For example, consider the matrices

+
o4 o+ - + + o+ o+
+ + - - + -
+ 4+ - + - N
P=|+ - + + + o
;iffi + 4+ + - -+ |-
-+ + + = =

Now |det(P)| = 48 and |det(Q)| = 160. It is known that these are D-optimal
values for the classes of all (—1,1)-matrices of order 5 and 6 respectively (see
for example, Williamson (1946)). Note that the final column in each of P and
Q is respectively the Schur product of the two immediately preceding columns.
However, neither can be converted into a g(3,1) nor a g(4, 1)-matrix, respectively,
according to Corollary 4.1.

In the remaining part of the paper we shall analyze further the lower bound
on the determinant of g(n, e)-matrices.

5. More on g(n,e)-Designs

We noted in Section 3 that the designs d(g) while being g(n, e)-designs, suffer -
-from imbalance for large n and e. The purpose of this section is to show how
‘these designs may be converted into more efficient ones. |
For n factors and e two-factor interactions we gave a method for constructing

a g(n,e)-design in (3.2). We would like to point out that any g(m,t)-design can
be looked upon as a g(n,e)-design with ¢ > e so long as m +t = n + e, by simply
taking t—e arbitrary columns of X5 into X in the design matrix representation as
given in (3.1). Therefore, by a direct method and the above conversion technique,
for a given n and e we can construct precisely N, g(n, e)-designs using the g(n —
i,e + 1)-design, ¢ = 0,1,...,k in (3.2), where N = k + 1, k being the largest
integer less than n and (";k) ~—k>e ie, k= [%[(Qn +1) — V/8n +8e+ 1]] By
Theorem 3.1, the determinant of the design matrix for the g(n, e)-design obtained
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by converting the g(n —1,e + i)-design is, gnt+2e+i ; = 0,1,...,k. Therefore, the
D-optimal g(n,e)-design among these N -designs is the one which is-obtained
from the conversion of the g(n — k,e + k)-design. Thus, we have

Theorem 5.1. Among all g(n, e)-designs, the determinant of the design matriz
of a D-optimal design is at least 272tk where

b= {(2n+1)—\/8n+8e+1}_

2

Note that the lower bound given in Theorem 5.1 is sharper than the one
given in (4.3) when e = 1.
We close this section by proving the following result.

Corollary 5.1. Among all g(5,1)-designs, the design obtained by converting the
g(3,3)-design in (3.2) is D-optimal.

Proof. The determinant of the design matrix of this converted design is 254242 =
29 On the other hand, Williamson (1946) has shown that the maximum deter-
minant of a (—1,1)-matrix of order 7 is 26(9). This fact and the upper bound
" given in (4.3) establish the result.
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