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ORTHOGONAL ARRAYS FOR COMPUTER 7
EXPERIMENTS, INTEGRATION AND VISUALIZATION

Art B. Owen

Stanford University

Abstract: This paper uses orthogonal arrays to define generalizations of Latin hy-
percube sampling and of lattice sampling in the d dimensional unit cube. These are
proposed as suitable designs for computer experiments, numerical integration and
visualization. The orthogonal array based designs extend to ¢ dimensional margins
the univariate stratification properties of Latin hypercube and lattice sampling. As-a
consequence, the variance reduction property of Latin hypercube and lattice sampling
also extends to orthogonal array based samples. We give a sample based estimate of
the error variance in the case of bivariate stratification.
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1. Introduction

Let X € [0,1]% and Y = f(X) € R, where f is a measurable function.
Computer experiments, as described by Sacks, Mitchell, Welch and Wynn (1989)
and by Currin, Mitchell, Morris and Ylvisaker (1988) are conducted by computing
f at a set of points X1,..., X, and making a Bayesian interpolation to [0, 14
The interpolated function can be orders of magnitude faster to compute than f
itself, and may therefore be more suitable for exploration. Owen (1992) describes
computer experiments in which regression models are fit to pairs (X;,Y;) using
randomness in the selection of the X; to assess the models. A sort of informal
computer experimentation in which one evaluates f at Xi,..., X, and then uses
techniques of interactive data analysis to visualize relationships among X and
Y can also be informative. In numerical integration, many methods estimate
[f(X)dX by Y =n"t T2 f(X;) for carefully chosen X;.

In all of these problems there is a design issue in choosing X,..., X,. This
article presents a class of designs based on randomized orthogonal arrays that are
suitable as designs for computer experimentation, integration and visualization.

This class includes and generalizes Latin hypercube sampling (McKay, Conover
and Beckman (1979)).
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Section 2 of this paper discusses Latin hypercube sampling (McKay, Conover
and Beckman (1979)) and lattice sampling (Patterson (1954)). Section 3 intro-
duces orthogonal arrays and shows how they can be used to generalize Latin
hypercube and lattice sampling. The result is a set of sampling plans that strat-
ify on all bivariate or trivariate (or t-variate) margins simultaneously. When used
as numerical integration schemes these methods remove the contribution to the
Monte Carlo variance from low order interactions in the integrand. Patterson’s
(1954) results are used to give an expression for the error variance. Section 4
shows how to estimate the Monte Carlo variance from the data in a sample with
bivariate stratification.

The rest of this section introduces notation, defines an anova decomposition
for square integrable functions on [0, 1]d and presents some elementary facts used
in the other sections.

We shall use X to denote a row vector in [0, 1]¢ with components Xl ..., X
Similarly X; = (X},...,X#) € [0,1]¢ for 1 < i < n. A matrix with elements X7
has rows X; and columns X’.

Following Efron and Stein (1981) and others cited by them, we introduce an
anova decomposition for continuous functions of independent random variables.
First we assume that [ f2dF < co. The grand mean is the integral

p= [ 10dF

where dF = H;l=1 dX7 is uniform measure on [0,1]¢. We use dFj, dFj;, dF_; and
dF_ji, for dX7, dXidX*, [l dX™ and [[ 4 mze dF™ respectively.
The main effects are

as(x?) = [(f ~wdF-;, 1<5<d.
The two factor interactions are
ajk(Xjan)=/(f‘ﬂ—aj_ak)dF—jk, JFk. T
Continuing this process we may expand f as :

f(X)= ;L+Zaj(Xj) + Za]‘k(Xj,Xk) + -'-+a1...d(X1,...,Xd).
j i<k :

In general, let u,v,w C D = {1,...,d} denote subsets of the axes of [0,1]¢.
We use dF, for integration with respect to the axes in u, leaving a function
defined over the axes in D — u. That is dFy = [ ¢, dX’. Then

F=) a

uCD



RANDOMIZED ORTHOGONAL ARRAYS ¢« 44l

where

oty = / (f -3 av) dFp. (L1)
vCu

The sum in (1.1) over v C u is understood to be over proper subsets only, that

is v # u. For u = 0 the empty set, &, = 4 and an integral with respect to dF, is

the integrand as a function over [0,1)4.

The expression dF; above means dF, where u = {j}. Whether the sub-
scripting of dF and a is by indices or sets will be clear from context. A term like
a,(X) means the function ay applied to the components of X in u, ignoring the
components in D — u.

The continuous anova generalizes the familiar discrete anova. It is easy to
show by induction that

/audFj —0, if jEu
from which it follows that
- /a'u,afudF = 0, u # v

by writing dF = dF;dF_j for j € uUv —uNv and so

JECEDY [ aiaF.

uCD

Measurability of f implies measurability of each a, by Fubini’s theorem. See
Royden (1968, p.269) where the definition of integrability implies measurability.
So if X is a random vector, a,(X) is a random variable. We make no further
mention of measurability.

Here we record some useful facts about integrals over hypercubes. For more
details see Davis and Rabinowitz (1984). Let C = [0, s]¢ be a hypercube of side s
in d dimensions. Let zg = (s/2,...,5/2) be the center of C, and let X ~ unif(C).
Then if f is sufficiently smooth, we have as s 10

52
E(f(X)) = f(20) + 5;V*f(20) + O(s") (12)
and 0
var(f(X)) = 5 IVf(@o)l* + O(s*) (19)
where

0 f (o) 3f(fvo))'

Vf(w0)= (_?5)_(_1_1 T gxd
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is the gradient of f at zo and
- J ,
2 —

is the Laplacian of f at zg. The smoothness needed in (1.2) is boundedness of
the fourth derivatives of f. For (1.3) bounded third derivatives are needed. If
only a bounded third derivative exists, the error in (1.2) becomes O(s®). Ifonly a
bounded second derivative exists, the error in (1.3) becomes O(s?) and the right
side of (1.2) becomes f(zq) + O(s?).

Now we consider the accuracy of some midpoint integration rules. Partition
the cube [0,1]¢ into a ¢¢ grid of subcubes of side s = g~ L. Now let G be a ¢% by
d matrix with rows given by the centers of the subcubes. The rows of G are the
points of a regular ¢¢ grid. To construct G, write each i =0, ... ,q%> — 1 in base q
as i = a3 (i) + ag(i)q + - - + aq(s)g?~! where each a;(i) € {0,...,¢ — 1} and take
G{=“"("t)+1/2, 1<i<gl, 1<j<d (1.4)
The d dimensional midpoint rule approximates [ fdF by ¢~¢¥ f(G;). From
(1.2) we have

[aF = ¢ % (£(G)+(4g) V(G +Ola™)

1<i<q?

= ¢ Y [(G)+ e [VEAF+0@Y). (19)

1<i<q?

A uniform rectangle rule is formed by taking

i Ul—1)2 : :

G§=G§+——’——é———/—, 1<i<g¢? 1<j<d (1.6)
‘where the Uij are independent U|0, 1] random variables and G‘Z is given by (1.4).
From here on we shall use the tilde, as in X, to designate design points with a

uniform random component. Now
E (q*d > #Go| = [ 1eF
1<i<q?
and from (1.3) we have

var (q—‘f > f(é») =g (Ep > IIVf(Ge)Ilz) +0(™%). (1)

1<i<qd
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As an estimate of p, the midpoint rule has bias O(g~?) and variance 0 whereas
- the uniform rectangle rule has bias 0 and- variance O(g~4"2). The root-mean
square error is therefore O(g~?) under the midpoint rule and Op(q“(d+2)/ 2) under
the uniform rectangle rule. A simple Monte Carlo scheme with independent
X; ~ Ulo, 1}¢,i = 1,...,n, has root mean square error Op(n‘l/z). For comparison
take n = ¢%. The midpoint rule attains a better rate of accuracy than Monte
Carlo for d < 4; it attains the same rate if d = 4 and Monte Carlo is superior
for d > 4. The uniform rectangle rule has root mean square error of order
Op(n‘l/ 2-1/dy which is better than the Monte Carlo rate for any d, but the
advantage is negligible for large d and requires a very large sample. Ford =1
the midpoint rule has a better order of accuracy than the uniform rectangle rule,
for d = 2 the rates are the same and for d > 2 the uniform rectangle rule has a
better rate than the midpoint rule.
If ¢ is even one can improve on the midpoint rule by taking

ol = { (aj(i— 1) +1-37%)/q, if a;(i—1)is odd,

(18
(aj(i—1) + 3-1/2)/q, if a;(i—1)is even, (18)

where a;(¢) are given above for (1.4). Then ¥ becomes a product Gauss rule of
order two (Davis and Rabinowitz (1984, p.95)) and has error O(g3%) = O(n=3/4)
which is better than Monte Carlo for d < 6 and better than the uniform rectangle
rule for d < 4.

2. Latin Hypercube Samples and Lattice Samples

A uniform Latin hypercube sample of size n has

i mi(@)=U!
7 =TV cicn, 15554 (2.1)
where 7;(1),...,m;(n) is a random permutation of the integers 1,...,n (uniforin

over the n! permutations), Uij ~ Ul0,1] and the d permutations and nd uniform
variates are mutually independent. In the general case of a Latin hypercube
sample, an inverse cdf transformation is applied to each column X7, We shall use
only the uniform version, subsuming the transformations in f. McKay, Conover
and Beckman (1979) introduce Latin hypercube sampling in order to sample the
input space of computer programs.

Stein (1987) shows that Latin hypercube sampling provides asymptotically
more accurate estimates of integrals than i.i.d. sampling. His result is that

varpgs(¥) = ;11- / e(X)2dF + o(n~Y) (2.2)



444 ) ART B. OWEN ¥

where e(X) = f(X)—p—ar(X!) - - aq(X?) is the non-additive part of f.
By contrast, for a de51gn of n mdependent U[0,1]¢ random vectors 7

varp(V) = = [(F(X) = wdF

- 1 (f e(X)zdF+fa%dF1 + -+ /aﬁdFd>
n

Owen (1992) shows that for bounded f
DY = ) — N (0, /e(X)zdF\)

in distribution as n — oo under Latin hypercube sampling. The proof actually
shows that for all integers p > 1

Ergs (nm(f’ - u))p = E1rp (nl/zé')p +0 (n‘l) -

so that to this order of accuracy Y — p is distributed as the mean, &, of an iid
sample of size n from e(X).
-In a lattice sample we have

J
Xi=1"1% 1<i<n, 1<j<d (2.3)

That is each Uij in the Latin hypercube sample (2.1) has been replaced by 1/2.
Patterson (1954) attributes the term “lattice sample” to Yates. Lattice samples
also remove the additive part of f from the error.

In a lattice sample we may write

P o= I3 (uten(X]) b aalXE) + e(X0)
=1

n

d .
= Z Z aj(X]) +e

1=1

+ (24n%)” 12 ) —aj(1))+ e+ O0(n” 4

by applying (1.5) with f = @;, d = 1 and ¢ = n, where o} = da;/dX7. The
lattice sample integrates the main effects of f by a midpoint rule with d = 1
and ¢ = n with an error that is negligible compared to the Monte Carlo error
in &. Similarly the Latin hypercube sample uses a uniform rectangle rule with
d =1 and ¢ = n on the main effects, and this has an error that is negligible by
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comparisoﬂ to &. For main effects d = 1, and the lattice method eliminates them
more effectively than does the Latin hypercube sample. S

By closely matching the sample univariate margins to the corresponding pop-
ulation univariate margins, the terms o; are “filtered out” of the error. This nat-
urally raises the issue: can we filter out higher order terms by matching higher
order population and sample margins? The answer is yes, at least for some com-
binations of n and d.

3. Orthogonal Arrays

An orthogonal array of strength t is a matrix of n rows and k columns with
elements taken from a set of g symbols, such that in any n by ¢ submatrix each
of the g¢ possible rows occurs the same number A of times. Clearly A¢t = n.
Such an array is denoted by OA(n,k,q,t). Orthogonal arrays are described in
Raghavarao (1971). In the standard definition, OA(n,k,q,t) has n columns and
k rows (called constraints) and is the transpose of the matrix described above.
We have transposed the arrays so that rows and columns of the array correspond
to rows and columns of design matrices constructed -from them.

. The lattice sample X given by (2.3) is an orthogonal array of strength 1,
OA(n,d,n,1). The grid G given by (1.4) is an orthogonal array of strength
d,0A(q% d,q,d).

The symbols of an orthogonal array A are ordinarily taken to be 0,1,...,¢—1.
The elementwise mappings X! = (A7 + 1/2)/n and Gg = (Af: +1/2)/q produce
a lattice sample and a grid from OA(n,d,n,1) and OA(q%, d, q,d) respectively.

The arrays OA(q?, k,q,2) have n = g% points that plot as a ¢ by ¢ grid
in each bivariate margin. This makes them a good choice for exploration of
functions when it is thought that important bivariate effects might exist. In
VLSI applications oxidation time and temperature might interact as might an
ion implant dose and energy. It is valuable to have some points in each “corner”
that might be interesting. There are 4(%) = 2k(k — 1) bivariate corners. Random
samples and even Latin hypercube samples often fail to have points near all such
corners. These strength 2 designs exercise the program computing f in a more
thorough way than does Latin hypercube sampling. They may also make good
designs for fitting models such as MARS (Friedman (1991)) by obviating the need
to interpolate bivariate effects estimated at the data points onto a plotting grid.
We show below that these arrays are good for integration in that they can be
used to filter out bivariate effects.

Tang (1991) independently and contemporaneously had the idea of using
orthogonal arrays to construct designs for computer experiments. He constructs
Latin hypercube samples with ¢? runs that become orthogonal arrays of strength
2 after grouping observations using ¢ bins on each axis. Tang further shows that
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these designs achieve the same order of variance reduction as orthogonal arrays of
strength 2, while their Latin hypercube property means that they use ¢ distinct
values on each variable instead of the g used by the straight orthogonal array.
This advantage becomes more important with the smaller computer experiments
appropriate for the more expensive simulators. For larger experiments one might
prefer the orthogonal arrays on account of their better balance.

A collection of orthogonal arrays of strength 2 has been contributed to statlib.
A listing of the contents of statlib, and instructions on retrieving them may
be obtained by sending an electronic mail message to statlib@lib.stat.cmu.edu
with the line send index as the sole message. The contributed designs are of
the form OA(qz, g+1,q,2) for ¢ =2,3,4,5,7,8,9,11,13, 16, 17,19,25,27,32 and
OA(2¢%,2¢+1,¢,2) for ¢ =2,3,4,5,7,8,9,11,13,16. The former are glatl)—(a—1)
fractional factorials of resolution III; that is, main effects are unconfounded
with each other but are confounded with two factor interactions. Matrices with
g = 23,29,31 are not included. They are very large and are much easier-to
generate than those for ¢ = 25,27,32. It should be mentioned that the designs
with 2¢2 columns have some rows that agree in three columns. ‘While they are
still valuable for exploring functions and provide good estimates of integrals, the
variance formula (3.7) below does not apply to them. From here on we consider
only orthogonal arrays of strength ¢ in which no two rows agree on any ¢ + 1
columns.

Arrays of strength t > 2 require quite large sample sizes for modest ¢ and
hence would seem to be of less practical use at present. This concern notwith-
standing, much of the analysis below is given in terms of general strength ¢.

If the symbols 0,...,¢ — 1 in a column of an orthogonal array are permuted,
the result is an orthogonal array of the same type. Therefore we can generalize
the lattice samples (2.3) by taking

i = (4] +1/2 (:;1) -

' q r
where the 7; are independent permutations of 0,...,¢ — 1, all ¢! permutations
being equally probable. Similarly we can generalize the Latin hypercube samples
(2.1) by taking .

’ q
where Uij ~ U[0,1] independently of each other and of the ;. Patterson (1954)
discusses the analysis of designs like OA(Ag*, k,¢,t), but does not address their
existence. The nonexistence of OA(62,4,6,2) is well known; no Graeco-Latin
square of side 6 exists.
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Let Gf: be the ¢¢ grid given by (1.4). Then for the lattice type integrals we
“can write ' - 7

¥ op= (Tt G + (6L F(G) — k). (3.3)

The first term in (3.3) is the error in estimating the mean of a finite population
of size ¢¢ by the mean over the sample of n observations given by X;. The second
term in (3.3) is the error in a midpoint rule of dimension d. These will be called
the sampling error and quadrature error respectively. From (1.5) we know that
the quadrature error is O(g~2). If A} is an array of strength ¢, then n = A¢’ and
so the quadrature error is O(n~2%/*). We assume here that ) is not increasing
with n. The sampling error is Op(n“l/ 2) and will be considered below. Here we
note that strength ¢ < 3 is necessary for the quadrature error be asymptotically
negligible compared to the Monte Carlo error. Using a Gauss rule grid (1.8)
makes the quadrature error 0(g~3) = O(n~3/t), improving on Monte Carlo for
t <5. -

The sampling error in (3.3) is of a type studied by Patterson (1954). If
X; is a row of the design in (3.1) and Gm is a row in the grid (1.4) , then
P(X; = Gm) = ¢~¢ by the randomization. Since no two X; are identical, the
probability that G, appears in the sample is Agt~2. Since this probability is the
same for all G, the mean sampling error is zero. -

To study the variance, define discrete main effects and interactions on the
grid. Let F(9) denote the discrete measure with an atom of probability g% on
each of the g% rows G;, and so let

v= [ £x)aF®

denote the mean of f(X) over the grid points G; € [0, 1)¢. Similarly define dFY
by analogy to dF, and discrete effects

ﬂu=/(f—2[3v dFl) -
vCu o

by analogy with o, in (1.1). It is clear that effects u of cardinality |u| < t are
removed from the error, since we can write

E Z ﬁu(Xi)
i=1uCD

Y =

Sl

and note that |u| < t implies that

iﬂu(xi) = A¢* /,BudFy) = 0.
i=1
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If follows that if ¢ < 3 and f has an anova decomposition with c = 0 for |u| > t,

-then ¥ — p has a smaller order of magnitude than it would have under Monte
Carlo sampling. More practically, if the oy for |u| > t are small compared to
those for |u| < t, then ¥ — p has the same order of magnitude as it would have
under Monte Carlo sampling but has a smaller asymptotic variance, which we
study below.

Let SS, denote the sum of squares in the analysis of variance of f(G;) asso-
ciated with the effect u. This sum of squares has (g — 1)/*! degrees of freedom.
Patterson decomposes the corresponding mean square into variance components,
via

MS, = Z gt g2, (3.4)

v2Iu

The decomposition does not guarantee that o2 > 0, but all the M S, are nonneg-
ative. This implies, for example, that a?_j > —a% /q. Then for X obtained from
OA(qt,d,q,t) with independent randomizations applied to all d columns =

var(Y) = ¢~ E (1 - qt""l) . (3.5)

. |ul>t

Formula (3.5) is Equation (4.1) of Patterson (1954) after translating an effective
variance per unit into the variance of a mean. The factors (1 — ¢*~I%!) are finite
population corrections. It follows from (3.5) that

(1-g¢t 120 < var(Y _IZO' (3.6)

[u]>t jul>t

Equation (3.5) is obtained for A = 1. For A = OA(\¢%,d,q,t) Patterson’s (4.3)
translates into

var(Y)=n"1 > o2 (1 - /\qt'l"l) 3.7)

|u|>t

assuming that no two rows of A agree on any ¢+ 1 columns.
A referee points out that Patterson (1954) states his formulas (4.1) a.nd
(4.3) without proof. By contrast Tang (1991) gives a proof of the variance re-
duction property for Latin hypercube samples based on orthogonal arrays of
strength 2. The author has been able to show by a direct argument that for
A=0A(¢?d,q,2)

var(¥) = n-1 Z/ oZdF (1+0(n"Y2)) .

lu{>2

Tang’s proof was obtained earlier.
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Now consider uniform rectangle rules (3.2) instead of midpoint rules | (3.1).
- Without loss of generality we may suppose that the uniform errors in G as given
by (1.6) and X from (3.2) are coupled so that if A; = ¢Gm — 1/2, where G
is the grid used to define G in (1.6), then UJ from (3.2) is equal to Uj, from
(1.6). We also couple the random permutations in (3.2) to those in (3.1) so that
X! = X! + (i - 1/2)/g. In words, uniform errors are added to the points
of the gnd G, giving G and then X is sampled from G according to the same
randomization of the orthogonal array A that was used to define X. The only
difference between integrals estimated using the uniform rectangle rule instead of
the midpoint rule comes from the n random Uij ’s actually used in the sample.
The bias in ¥ = n~! ", f(X;) is zero because in E(E(f(X))|r1,...,7q))
the inner expectation is uniform over one of the ¢ subcubes of [0, 1]d and in
the outer expectation each of the subcubes has the same probability ng~?. To
investigate the variance we write

var (23 7(%0) - £(X0)
= var (B (30 (%) - 1) | G)) +E (var (3T 1) - £(x9)] ¢)) G8)

where conditioning on G fixes the ¢% uniform variates but leaves the permutations
7; random. The first term in (3.8) is

ar (q-d > £(G) —f(G») =0 (%7

1<i<qd

by (1.7). Since n = A¢* and ) is assumed to be O(1), this becomes O(n~(4+2)/¢),
The variance in the second term of (3.8) is asymptotically smaller than what it
would be if the sampling given G were iid, meaning sampling with replacément
. from the population of q® subcubes. Under Lipschitz continuity of f, f (X’,) -
" f(X:) = O(g™"). So the second term in (3.8) is O(n~1¢~2), provided only that f
is Lipschitz continuous.

It follows that the difference between estimates based on (3.2) and (3.1)
has standard deviation o(n~1/2). Method (3.2) will be asymptotically superior
in cases where the bias of method (3.1) is not O(n~1/2). Method (3.1) can be
asymptotically superior only in those uncommon cases with n = ¢¢ and hence no
Monte Carlo error. Though (3.2) will usually have a better rate in most common
asymptotic settings, it should be borne in mind that where the additive terms in
f are dominant, method (3.1) may be much better for small n.

4. Variance Estimation
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Owen (1992) gives a way of estimating the error variance in Latin hypercube
sampling. It is possible to estimate J(f—p—2,; a,)zdF at the n'/? rate even
though this rate is not generally available for the a; themselves.

The method is as follows. For M > 1 let

&g(XH=0e2M™ > N'Y,
m==+1,..,.xM

where for m > 0, N['Y; is the value of Y observed m observations to the right of
X; along axis j. That is NI*Y; = Y}, when X! = X! + m/q. For negative m the
observation |m| units to the left is taken. If Xj 7 is so near to 0 or 1 that some
of the N;*Y; do not exist, an arbitrary value like Y or Y; may be substituted for

the missing neighbors. Then Lipschitz continuity of the aj and M = O(nl/?) as
n — oo leads to the estimate

~

=+ 2m) Y (Y- (D) = [(f - i a)%F +0p (n712)

i=1

of 7' = [(f — p — @;)%dF, the residual variance from a nonparametric regression
on X i, M =1 is adequate. Integration with respect to dF; gives additional
smoothing allowing estimation of 'rj2 at the nl/2 rate, even though that rate is
not achievable for o;. For a general discussion of estimation of residual variance

in nonparametric regression see Buckley, Eagleson and Silverman (1988). We can
estimate [(f — pu — 3, a;)?dF by

L., d-1¢ 12
S Aol py
i=1

i=1

In this section we extend this idea to residual variance in randomized orthog-

~onal array samples of strength 2 and A = 1. We consider only the midpoint ':ype

rules. h
Let X/ be given by (3.1), where 4 is OA(¢?,d,q,2). From Equation (3.5)

var( = _2 Z ( ql"'_z) = q'2 z ai + 0 (q"3)

lu|>2 |u|>2
Y MS,+0(¢7%) =¢2 Y /,@24F(4>+0 (¢79)
ful>2 lul>2

= ( [ = vrar - > [garo -5 [ ﬁ2de<4>> +0(a).

i<k
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Of the ¢? values of X, (¢ — 2)2 of them are not on an edge or corner of the

~ design in the jk plane. They therefore have 4 nearest neighbors in the jE plane

and we take their average as an undersmoothed estimate &k, (X;). For points on

an edge in the jk plane but not in a corner there are two neighbors in the edge

whose average we take to be d;ji. For corner points we simply take &;,(Xi) =Yi

although we could also use the sum of their edge neighbors minus their diagonal
neighbor in the jk plane. If ajk has a bounded first derivative, then

\ 4 < .
e = g 2 (¥ — &)

is n~1/2 consistent for
> [aiar.
ug{j.k}

The multiplier 4/5n is within a relative error O(g™!) of the reciprocal of the'trace
of the quadratic form Y ;—;(Yi — &(X;))2. A more closely calculated denominator
should be used in practice.

- Now let MSE be the mean square for error from a main effects analysis of
variance of the Y;. This estimates > i, >2 [ a%dF at the nl/2 rate. Finally we

take
oy =2 .2 d
var(Y) = ¢ (Z% ik~ (( o )—1) MSE)

We hasten to add the caveat that while the above method shows the pos-
sibility in theory of getting nl/? consistent estimates of the error variance, in
applications certain inconsistent estimators might be preferred. The main issue
is that estimates based on differences in sums of squares can take negative val-
ues. Raising these to zero is not satisfactory in applications. This estimate also
requires that g be large compared to d since M SE has g® — d(qg—1) — 1 degrees
of freedom. A simple conservative, but inconsistent, estimate is obtained by us-
ing a set of k regressors which are smooth functions of univariate and bivariate
margins of X. One simply takes the mean square residual from a regression of Y’
on said basis and divides it by n — k for an estimate of the sampling variance of
V. This estimate is asymptotically too large by a factor that depends on what
proportion of 3o ju<2 [ o2dF is not captured by the chosen regressors. In many
applications a variance estimate that is conservative is preferable to one that is
consistent but sometimes nonsensical. The challenge of finding a nl/2 consistent
and practical estimator remains open.
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