Statistica Sinica 2(1992), 413-437

EFFICIENT SEMI-LATIN SQUARES

R. A. Bailey

University of London, Goldsmiths’ College

Abstract: Consider an n X n square array in which each small square is divided into
k plots. A semi-Latin square is an allocation of nk treatments to the plots of such
—an array so that each treatment occurs once in each row and once in each column.
_Several different practical situations are discussed which all lead to this same abstract
structure.

There are two reasonable models for data from semi-Latin squares. Under the
first, all semi-Latin squares are equally efficient, while under the second there is a
wider range of efficiencies. Attention is focused on the problem of finding efficient
semi-Latin squares for the second model.

There is a family of semi-Latin squares called Trojan squares, which are known
to be optimal, as are certain squares derived from the Trojan squares. Unfortunately,
these do not exist for all pairs of values of n and k. Recent agricultural experiments
have required efficient semi-Latin squares for some of these other values of n and
k. New designs for these values are presented and their efficiencies and possible
optimality discussed.

Key words and phrases: Efficiency factor, incomplete block design, Latin square, = -
optimal design, semi-Latin square, Trojan square. "

1. Combinatorial Aspects of Semi-Latin Squares

There is some confusion between the combinatorial object known as a semi-
Latin square and various uses to which such an object can be put, both in de-
signed experiments and elsewhere. In this section we are concerned only with the
combinatorics.

Definition. Let Q be a set of n?k points which is divided into n rows and
n columns in such a way that the intersection of each row with each column
contains k points. Suppose that nk symbols are allocated to the points, n points
to each symbol. If each symbol occurs once in each row and once in each column
then  is a (n X n)/k semi-Latin squre.

Examples of semi-Latin squares are in Figures 1(a), 3(a), 4(a), 5, 7 and 12.
One simple way to construct an (n x n)/k semi-Latin square is to take an
‘n X7 Latin square and replace each letter by k new symbols. This gives an
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inflated Latin square. An example is in Figure 1(a).

Let R, C and S be the partitions of {2 into -rows, columns and symbols
respectively. In the notation of Bailey (1985, 1989), the infimum RAC of R and
C is a partition into n? classes of size k—the intersections of rows with columns.
It is convenient to call these classes blocks. Similarly, RAS = CAS = E, where £
denotes the trivial partition of {2 into n2k singletons. The other trivial partition
U of Q contains a single class, the whole of 2. We have

RVC=RVS=CVS=U,

Figure 1. Inflated Latin square with n =4 and k=3

- A a a/B B b{C v c|D 6§ d
- D 6 d|A a a|B B b|C ~v c
C v ¢|D 6 d|{A a a|B B b
B B b|C v ¢|D é6 d|{A a a
(a) The semi-Latin square
4
A-\/.a
4 4
(4
B.\i/b
z 4 4
g
C‘\i/.c
4 4
v
D‘\i/'d
4 4
6

L — (b) Its variety-concurrence graph
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where V denotes supremum. (The supremum of two partitions has classes which
consist of whole classes of each partition, and which are as small as possible
subject to this condition.)

Tjur (1984) defines two partitions, or factors, Fi and Fj, to be geometri-
cally orthogonal if, within each class g of their supremum F; V Fa, every Fj-class
f1 meets every Fa-class fo and the size of their intersection fi N f2 is equal to
|f1]|f2|/lg]. Statisticians usually abbreviate ‘geometrically orthogonal’ to ‘orthog-
onal’. Thus R is orthogonal to C, R is orthogonal to S, and C is orthogonal to S.
However, the partitions RAC and S may or may not be orthogonal to each
other.

Definition. A semi-Latin square is orthogonal if its partitions RAC and S are
mutually orthogonal.

Theorem 1.1. A semi-Latin square is orthogonal if and only if 1t 1s an inflated
Latin square. ‘

Proof. Let L = (RAC)VS. Suppose that the semi-Latin square 2 is orthogonal.
Let £ be a class of L. Then £ consists of a union of whole blocks (each of size k),
and a union of whole symbols (each of size n). Within £, every block meets every
symbol in a single point, because no symbol occurs more than once in a block.
Thus £ consists of n whole blocks, which between them contain all the nk points
with k given symbols, and which therefore lie in different rows and columns.
Hence the classes of L form an n x n Latin square (on the n? blocks), of which
Q is an inflation. ”

Conversely, if Q is obtained by inflating an n x n Latin square A then the
classes of L are the letters of A and the orthogonality is obvious.

Thus, the partitions U, R, C, RAC, L, S and E of an orthogonal semi-Latin
square form an orthogonal block structure, as defined by Bailey (1984, 1985, 1989,
1991), with Hasse diagram as shown in Figure 2.

Suppose that there is a partition Q1 U- - -U§2 of Q and a partition S1U- - -US

of the symbols such that, for i =1,...,k,
e the set S; contains n symbols;
e the set ; contains n? points, all of whose symbols are in S;;

e the restrictions R; and C; of R and C to §; make (€, R;, C;, S;) into a Latin
square A;.

Then ) is called the superposition of the Latin squares Ay, ..., Ak. If the squares
Ajy,...,Ap are identical except for f,he naming of the symbols then 2 is orthogonal.
At the other extreme, if the squares Aj, ..., A are mutually orthogonal then 2 is
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called a Trojan square by Darby and Gilbert (1958). Examples of Trojan squares
are in Figures 3(a), 5 and 7.

Figure 2. Hasse diagram of an orthogonal (n x n)/k semi-Latin square

Figure 3. Trojan square with n =4 and &k = 2 -

RiR |
ol | | Q)

| ®[R |

QO |
NI Helle!
XRIR |

Ol Qf o -
W[ I|R

(a) The semi-Latin square

A a
B B
C Y
D ]

(b) Its variety-concurrence graph
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The operations of inflation and superposition can also be applied to semi-
Latin squares. In the latter case the constituent semi-Latin squares do not need
to have the same value of k.

If the rows and columns of € are ignored, the blocks and symbols form a bi-
nary incomplete-block design A(2). The variety-concurrence graph G(2) of this
design is described by Patterson and Williams (1976a) and Paterson (1983). It
has the symbols as vertices; the number of edges joining symbols s; and s3 is the
number of blocks in which s; and sz both occur. Thus the variety-concurrence
graph of an orthogonal semi-Latin square consists of n complete graphs on k ver-
tices, with all edges of multiplicity n; while that of a Trojan square is a complete
k-partite graph on k sets of n vertices. Examples of these graphs are in
Figures 1(b) and 3(b). :

Theorem 1.2. The variety-concurrence graph of an (nxn)/k semi-Latin square
is k-partite if and only if Q is the superposition of k Latin squares.

Proof. If Q is the superposition of Latin squares Aj,...,Ar then let S; be the
set of symbols in A;, for i = 1,...,k. In G(Q2) there are no edges between vertices
in S;, for any . Hence G(?) is k-partite.

Conversely, if G(Q) is k-partite then let Si,..., Sk be the sets of vertices such
that all edges of G() join two of these sets. Since no two vertices in S; are joined,
the symbols in S; must be in different blocks in any one row, and hence |S:] < n.
But ¥, |S;| = nk and so |S;| = n for i = 1,...,k. Thus the points of {2 whose
symbols are in S; form an n x n Latin square A;, and so § is the superposition

of A1,..., Ag.

Corollary 1.3. An (n x n)/k semi-Latin square is Trojan if and only if its
variety-concurrence graph is a complete k-partite graph with no multiple edges.

Figure 4 shows a (5 x 5)/2 semi-Latin square which is not a superposition;
its graph is not bipartite.

2. Practical Use of Semi-Latin Squares

Semi-Latin squares arise in various practical applications. The first five ex-
amples are from real designed experiments.

Ezample 1 (Consumer testing). A consumer research organization wishes to
‘compare eight new brands of vacuum cleaner. The organization has bought one
sample of each brand. Some housewives have agreed to compare the vacuum
cleaners. Each housewife will use two vacuum cleaners in her home for a week
and give each one a score. Thus at most four housewives can test cleaners in any
one week. Moreover, to allow for housewife effects, it is best that each housewife
“test every cleaner, and therefore take part in the trial for four weeks. A design
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such as the one in Figure 3(a) is possible, with rows representing weeks, columns
housewives and symbols cleaners.

This situation arises frequently in consumer testing, when only one object of
each of nk brands is available. Only one of each brand can therefore be used at
any one time, and the trial is completed most quickly if every brand is used in
every time-period. Consumers test k objects per time-period in their own homes:
typically k = 2 or k¥ = 3. To eliminate consumer effects, each of n consumers
participates in the trial for n weeks, with time-periods, consumers and brands
forming the rows, columns and symbols of a semi-Latin square. If a further n
time-periods are available for the trial, then a second semi-Latin square is used,
either with the same n consumers or with n completely different consumers.

Figure 4. A semi-Latin square for n = 5 and k = 2 which is not a superposition

0 o|A d|D a|C b |B c
B d|0 b|{A Cla c|D o
C a|D ¢ |B oo|{0 d|A b
A ¢ |C o©o|b d|B D|0 a
D b|B a|0 ¢c|A oo|C d
(2) The semi-Latin square
C a
d B
A c
0
b D

(b) Its variety-concurrence graph

Ezample 2 (Glasshouse crops). In trials on glasshouse crops there are usually
pronounced row and column effects. The glasshouse is typically rectangular, say
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nk plots by n plots, with its long axis East-West. Because North-South variation
is usually greater per distance than East-West variation, it is reasonable to divide
the glasshouse into n rows and n columns, where each row is an East-West line
of plots and each column consists of k contiguous North-South lines of plots. If
there are nk treatments—such as varieties of lettuce, or sowing dates for celery, or
factorial treatments on tomatoes—they can be applied according to the symbols
of a semi-Latin square. The Trojan square in Figure 5 is suitable for 15 varieties
of lettuce in a glasshouse which is 15 plots East-West by 5 plots North-South.
Indeed, Trojan squares were originally developed for this application by Darby
and Gilbert (1958).

Figure 5. Trojan square with n =5 and k=3

A a a|B B b|C v c|D 6§ d|E € e
E 6 c|A € d|B a e|C B a|D ~ b
D B e|lE v a|l|A & b|B ¢ ¢ C a d
C ¢ blD a c|E B d|A v e|B 6 a
B v d|{C é6 e|!D ¢ a|E « bl|A B ¢

As reported by Rojas and White (1957), semi-Latin squares have been used
for agricultural field trials in Mexico in much the same manner as Example 2.
In this context they are sometimes called modified Latin squares. Rasch and
Herrendorfer (1986) call them pseudo-Latin squares.

Ezample $ (Residual effects). The effects of some treatments may persist during
the next experiment. This is particularly true if the experimental units are trees,
but it can also occur on arable crops if the treatments affect the soil directly,
for example by inhibiting or encouraging nematode growth. Suppose that last
year five varieties of potato were compared in five replicates. This year, a single
standard variety is grown and ten chemicals are tested for their ability to control
nematodes. Last year’s varieties will affect the number of nematodes in the soil,
but it is assumed that there is no interaction between those varieties and this
year’s chemicals.

Chemicals can be applied to smaller areas of land than varieties, so each plot
from last year is split into two for the chemicals. Use of a semi-Latin square,
with rows representing old replicates, columns varieties and symbols chemicals,
ensures that each chemical occurs once in each old replicate and once on soil that
had each variety last year. The semi-Latin square in Figure 4 could be used, but
may not be the best choice.

_ Ezample 4 (Sugar beet trials). In sugar beet trials each plot is sometimes a single
line of plants. A typical size is 0.5 metres wide by 3 metres long. The plots are
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arranged in an n x nk rectangle, with plots in the same row adjacent along long
edges to keep the trial area compact. Thus plots in the same row are likely to
have similar soil, and so it is sensible to use rows for blocking, especially if there
are nk treatments. However, the drilling machine drills n plots in a row at once,
travelling along the plant lines across the rows, then turning through 180° and
returning in the reverse direction. Figure 6 shows the lines of drilling for n = 6
and k = 3. Plots with the same number are drilled by the same drill. Thus the
n drills constitute a second blocking system, which should be taken into account
in the design and analysis of the trial. There are precisely k plots in common to
each row and drill, and so the structure in Figure 6 is abstractly identical to the
row-and-column part of a (n X n)/k semi-Latin square. Applying the treatments
according to the symbols of a semi-Latin square ensures that -treatments are
orthogonal to both rows and dnlls.

Figure 6. Drilling of sugar beet trials (n = 6 and k = 3) (not to scale — the area is 9m

=

1{2)13{4(5(6{6]5]4}13{2|1]1{2|3]4]5(6 -

wide by 18m long)

112(314]5|6)615141312|1]11213}4]5(6

112}3[4(5|6{6]|5|4({3]211{1[2]|3]4|516

Ezample 5 (Food industry). An interesting experiment to compare colour in-
tensities of apple sauce was described by Harshbarger and Davis (1952). The
treatments consisted of all combinations of 12 blends of apple sauce with four
concentrations of cinnamon. Treatments could be stored for four different lengths
of time. A (4 x 4)/3 Trojan square was used in which rows, columns and symbols
represented cinnamon concentrations, storage times and blends respectively. This
ensuréd that each of the 48 treatments occurred once, and that both treatment
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factors were orthogonal to storage times. Part of the interaction between blends
and concentrations was totally confounded with storage times.

The gquotient block design of a semi-Latin square is the incomplete-block
design derived from it by ignoring the rows and columns: see Bailey (1988).
Because the quotient block design of a Trojan square with k = n—1 is necessarily
a rectangular lattice design, Harshbarger and Davis (1952) called their Trojan
square a latinized rectangular lattice. Generalizing this idea, Williams (1986)
called semi-Latin squares latinized incomplete-block designs.

Ezample 6 (Fractional factorials). Suppose that R, C and S are treatment
factors with n, n and nk levels respectively. If there are no interactions between
the-factors, then the three main effects may be orthogonally estimated from the
fractional replicate consisting of the n?k combinations in a semi-Latin square.

Thus a semi-Latin square is an asymmetrical orthogonal array with n?k as-
semblies (or plots), three constraints (factors R, C and S) and strength 2. This
means that, for every pair of treatment factors, each pair of levels occurs equally
often in the fraction.

In the language of design of experiments, a factor takes only one level on
any one plot. A nature generalization is a multi-factor, which takes m levels on
each plot, for some m. This idea is useful in diallel structures (with m = 2),
in rectangular lattices (see Thompson (1984) and Bailey and Speed (1986)), and
in experiments with neighbour effects from more than one side. Brickell (1984)
defined an orthogonal multi-array by replacing constraints by multi-factors (;v1th
various values of m) in an orthogonal array with strength 2 and minimal number
of plots. Thus an orthogonal multi-array OMA(p,n;m1, ma,...,mp) consists of
n? plots and p multi-factors with my,..., m, levels per plot, such that each pair
of levels from each pair of multi-factors occurs on just one plot. In this language,
an (n x n)/k semi-Latin square is an OMA(3, n; 1, 1, k).

Ezample 7 (Message authentication). Semi-Latin squares are also used as doubly
perfect authentication schemes in communications theory: see Anthony et al.
(1990). There are three source messages (R, C and S) and n? encoding rules,
corresponding to the n2? blocks. If the block in row ¢ and column j is the current
encoding rule, then source message R is transmitted as R;, source message C
is transmitted as Cj, and source message S is transmitted as a random symbol
from this block. An interfering person, who does not know the current encoding
rule and who wants to either transmit a false message or intercept a message
and replace it with a false one, has chance only 1/n of being believed by the
receiver to be the authentic transmitter. This chance is minimum over all message
“aufRentication schemes of this size. -
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3. Statistical Models and Analysis

In Examples 1-4 the symbols of the semi-Latin square are used for treatments
of the current experiment, while rows and columns represent pre-existing condi-
tions. I shall assume an additive model for the response y, with fixed treatment
effects. Row and column effects should also be included. As S is orthogonal to
both R and C, and RV S = CV § = U, it makes no difference to the analysis
whether R and C are regarded as fixed or random.

Some people argue that the weeks in Example 1 should not be included in the
model, because they are unlikely to differ among themselves. Moreover, they are
incorporated in the design only because of the limited availability of the vacuum
cleaners, not because they are believed to be an essential blocking system. In my
view, the changing of the treatments at the end of each week induces differences
between the weeks: for example, consumers may take stock of what they are
doing and change their habits slightly. To see this more clearly, consider the
situation where treatments can be applied only to whole weeks. It would be wrong
to use within-week or within-week-and-consumer variability to assess treatment
differences in that situation. In both situations it is the constraints on treatment
application which force us to consider weeks as meaningful blocks, and hence to
include them in the model.

A more controversial question is whether the factor RAC should be included
in the model. A ‘random effects’ model of the type studied by Nelder (1965) and
Speed and Bailey (1987) assumes that the expectation of y is a function of the
allocated treatments and that the covariance matrix C of y is given by

- ¢ = vyel+7vrac(Jrac —I) +7R(JR = JRAC)

+ v¢(Jo = Jrac) + Yo (J — Jr — Jo + JrnC)- (1)

Here, I is the identity matrix, J the all-1s matrix, and the (w, w')-entry of Jg,
Jco, and Jrac is equal to 1 if plots w and w' are in the same row, column, block
respectively, and to 0 otherwise. Equation (1) may be regarded as a patterns
of covariance model, because the v terms ‘are covariances, which depend on the
relationships between the two plots involved. This equation may fruitfully be
rewritten in two other forms (see Speed (1987) and Speed and Bailey (1987)):
the components-of-variance model

C = 0%I + o%nc Jrrc + 0% IR+ 02 Jo + 0fJ, (2)
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where )
o %: = 7YE — YRAC
Thae = YRAC — YR — Y +t W
o 23 = TR - T
o5 = v - w
a% = YU

and the spectral form
¢ = é(I-k"rnc)
+ €rnC (k-l']R/\C — (nk) ™' Jg — (nk) 1 + (nzk)—lf)
. +&r ((nk) 1R = (n%k) 71T + €¢ ((nk) 0o = (n%k) ™))

+ Eu(n®k)71Y, (3)
where
¢ = o}
Ernc = 0%7 + k”%/\c
&R = U% + ka’%,\c. + nka%
136, = 0% + ka%,\c + nkod
Eu = 0% + ko, + nko:k + nkodk + nko}.

Omitting R A C from the model is equivalent to assuming that {g = &rnc.
In terms of components of variance, this means that

so that, although rows and columns are represented by random variables, blocks
are not. In terms of covariances it means that

YRAC = 7YR+7YC— W
o} + 0% + of, (5)

so that the covariance between responses on two plots in the same block is deter-
mined by the covariances between pairs in the same row (but different blocks),
those in the same column (but different blocks), and those in different rows and
columns. In Examples 1, 2 and 4 assumptions (4) and (5) seem unreasonable to
me. As a general rule then, I use model (1).
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Table 1. Analysis-of-variance table if R A C is ignored

Stratum  Source Degrees of freedom

Mean 1

Rows n-—1

Columns n-1
Plots Treatments nk —1
Residual (nk —2)(n—1)

n’k—-2n+1

n’k

Example 3 is rather different, because the columns also represent treatments.
It is argued by Preece et al. (1978) that a suitable model in such a case is to have
an expectation part which is additive in C and S and covariance matrix

C=vel+vr(Jr—=I)+yw(J - Jr). (6)

The argument depends on the simultaneous randomization of both years’ ex-
periments. Once the relationship between R and C is fixed, there can be no
randomization validity for an analysis which ignores R A C. For this reason,
Yates (1935) advised against such an analysis. Rojas and White (1957) studied
the behaviour of such an analysis, using different randomizations of a semi-Latin
square on uniformity data. They supported Yates’ conclusion.

Recall that strata for the analysis of variance are just the eigenspaces of C:
see Nelder (1965) and Bailey (1981, 1991). If the model (6) without R A C is
assumed, then the analysis of variance is as shown in Table 1, no matter what
semi-Latin square is used. There is, therefore, no point in lookmg for anything
more sophisticated than an orthogonal semi-Latin square.

If model (1) is assumed and an orthogonal semi-Latin square is used, then
we obtain the analysis of variance in Table 2. There is now a separate stratum
for RA C, but the design is orthogonal in the sense that the treatment subspace
is the direct sum of two parts, one in the R A C stratum and one in the plots
stratum. The analysis is very similar to that for a classical split-plot design. If
a non-orthogonal design is used then we effectively have the incomplete-block
design A(S2), with the possibility of combining information from the bottom two
strata. The difference from the design A((2) is that the second stratum containing
treatment information has dimension only (n — 1)?, not n? — 1. The analysis-of-
variance table now depends on the semi-Latin square used. A Trojan square gives
the analysis of variance in Table 3. Some statisticians may prefer to use only the
information in the plots stratum. In this case the incomplete-block design A ()
needs to be at least connected, and preferably optimal with respect to the usual
optimality criteria such as A-optimality, D-optimality and E-optimality.
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If RAC is included in the model as a fized effect then the terms for R and C
become redundant. The analysis is similar to that just given, except that there
is no longer any possibility of recovering information which is orthogonal to the
plots stratum. Now an orthogonal design is disastrous, because the contrasts
between levels of L are totally confounded with blocks, and so are not estimable;
the design A(2) is not connected. It is even more important to use an optimal
design in this case.

Table 2. Analysis-of-variance table for an orthogonal semi-Latin square if R A C is not
ignored

Stratum Source Degrees of freedom

~ Mean 1

— Rows n-—1

Columns n—1
Rows A Columns L ' n—1
Residual (n—1)(n - 2)

(n— 1)
Plots Treatments orthogonal to L n(k - 1)
Residual n(n — 1)(k — 1)

n?(k —1)

n’k

Table 3. Analysis-of-variance table for a Trojan square if R A C is not ignored 7

Stratum Source Degrees of freedom

Mean 1
Z Rows n—1
Columns n-~1
Rows A Columns within squares
(efficiency 1/k) k(n - 1)
Residual (n—k-1)(n-1)
(n—1)?
Plots within squares
(efficiency (k —1)/k) k(n - 1)
between squares
(efficiency 1) k-1
Residual (nk—n —1)(n - 1)
n?(k —1)
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4. Randomization

The correct randomization for a semi-Latin square design whose rows and
colmuns are inherent in the experimental material consists of the following three
independent stages.

1. Randomize rows.

2. Randomize columns.

3. Randomize plots within each block independently.
Thus randomization could transform the design in Figure 5 into the plan in
Figure 7.

- Figure 7. Randomized verison of Figure 5

- B v d{b a E|c p A{C 6 e|a € D
C b ¢e6le A ~{é6 B ala D c|pf d FE
c 6 E|B C a|D v bid € A|B e «
a A a{D 6 dle € E|B b B|C v ¢
D B e|lc B €¢|C a diy a E|b A ¢

Care is needed when the rows and columns are not geometric rows and
columns. In Example 3, last year’s varieties might be as shown in Figure 8,
where the five replicates may be well separated and may be in different orienta-
tions. If there are 15 chemicals in the current year’s experiment then the plan in
Figure 7 must be interpreted as in Figure 9. -

Figure 8. Plan for 5 varieties last year

[413]1]5]2]

(2[1]4]8]5]
[1]8[5]2]4]
[(4]8]2]5]1]
[(2]5[4]1]3]
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Figure 9. Plan for 15 chemicals this year, following the plan in Figure 8

|C 6§ elc B A|B v dla ¢ D[b a E|

{e A 'le’ b ela D ¢c|é B a.Lﬂ d lﬂ

[céEleb]Bea]ﬁCald&:Al

leﬁIeaEchSd[C'yclaAoT‘

lc B e|b A 6|y a E|D B e|C a 4]

~ In the sugar beet trials (Example 4) I find it best to randomize as in Figure 7
and then convert this to the field plan using the rule

ith plot in row 7 and plot where drill £ crosses
— . . .
column £ row j for the ith time.

Figure 7 thus gives the plan in Figure 10.

Figure 10. Plan in Figure 7 converted for sugar beet trials

Dril 1 2 3 4 5 5 4 3 2 1 1 2 3 4 5
Bl|b|c|Clale|éd|Bla|jy|d|E|A]e|D
Clej{é|a{p|ld|D|B{Ajble|{vy|lajc|E )
c|B8|D|d|Ble|e |y |C|é6|E|a|b|A|la
a | Die|B|C|~v|ble|b6|Alald|E|p|c
Dic|Cly|b|A|la|la|B|Blelel|d|E]|S

5. Optimality of Trojan Squares

If RAC isincluded in the statistical model, then it is important to use a semi-
Latin square {2 whose quotient incomplete-block design A(f2) has high efficiency
factors. The efficiency factors for various semi-Latin squares were calculated
by Bailey (1988). The following lemma gives an alternative derivation of the
efficiency factors of Trojan squares and some other semi-Latin squares.

Lemma 5.1. Fori=1,...,M, let A; be a binary incomplete-block design for
a treatment set T; in b blocks of size k;, where |T;| = t; and each treatment is
replicated v times. Suppose that T;NT; =0 fori# j, and put T =T U---UTy.
Let B;1,...,Bj be the subsets of T; which are in the blocks of A;. Suppose that
A is a binary incomplete-block design for treatment set T in b blocks of size k,
where k = 3, ki, such that ' -
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(a) the set of treatments in the sth block of A is By, U--- U By,

(b) there are integers X;; for i # j such that if r; € T; and 7; € T; then the
concurrence of 7; and T; in A is Ayj.

Then the efficiency factors of A are:

k;
1-(1- ei)? for each efficiency factor e; of A;
1 with (additional) multiplicity M — 1.

Proof. Counting triples (7;,7;, B) with 7; € Tj, 7; € T; and block B containing
both 7; and 7;, we obtain :
— t;t; /\ij = bk; kj.

Sihce bk; = t;r for all 7, we obtain
/\,’j = 1‘2/b

for all ¢ and j with ¢ # j; and A;;t; = rk;.

Let N; be the concurrence matrix of A;. The concurrence matrix N of A is
block diagonal with the N; on the diagonal and all other entries equal to r2/b.
In R let u; be the all-1s vector, let 0; be the zero vector, and let v; be an
eigenvector of V; with eigenvalue f;, such that v; is orthogonal to u;. Then

1 fi
G

and so the canonical efficiency factor e; associated with v; is given by

- fi

e =1—-—

Tki.
In RT, put w; = (01,...,0,-1, v;, 0;41,...,0a). Then
wi N = fiw;,

so w; is a canonical contrast for A with efficiency factor

fi k;
l—-—=1—-(1—¢;)—.
rk 1= €i) k
Finally put z; = (01,...,0;—1, u;, 0;41,...,0p) and T = k{“lzi - k]-'l:cj.
Then

. ;N =rk;z; + Z }\ij tiz; = rk; (a:,- + Zm])

J#i J#
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because u;N; = rk; u;. Thus,
:I:,'jN = 0,

and so z;; is a canonical contrast for A with efﬁciéncy factor 1.

Corollary 5.2. The efficiency factors of a (n x n)/k Trojan square are 1 — k™!,
with multiplicity k(n — 1), and 1, with multiplicity k — 1.

Proof. In Lemma 5.1, let Aj,..., A be the constituent Latin squares of the
Trojan square. Then k; = 1 and all efficiency factors of A; are zero.

Corollary 5.3. Let Aj,...,A; be mutually orthogonal n X n Latin squares. Let
A; be the semi-Latin square obtained by inflating A; by k;, and let Q) be the sema-
‘Latin square obtained by superposing Ai,...,A,, so that Q is an OMA(s + 2,
- n;1,1,k1,...,ks). Let k=73, ki. Then the efficiency factors of 2 are 1 — k,-/ki,
with multiplicity n — 1, fori=1,...,s, and 1, with multiplicity nk —ns + s — 1.

Proof. Now A; has n — 1 efficiency factors equal to zero and the rest equal to 1.
Using these values in Lemma 5.1 gives the result.

Theorem 5.4. If Q is a Trojan square with k = n — 1, or an inflation of such
a square, then A(Q2) is A-, D- and E-optimal among semi-Latin squares of that
size.

Proof. The dimension of the R A C stratum is equal to (n — 1)?, so at most
(n—1)? of the efficiency factors can be less than 1, by the theory given by James
and Wilkinson (1971). Corollaries 5.2 and 5.3 show that Q has nk—~1— (n —1)?
efficiency factors equal to 1 and the remainder equal to 1 — 1/(n — 1). Since the
sum of the efficiency factors of a binary design is fixed, {2 maximizes the harmonic
mean, the geometric mean, and the minimum of the efficiency factors.

Theorem 5.5. If Q is any Trojan square then A(Q2) s A-, D-, and E-optimal
among all binary incomplete-block designs of that size.

Proof. See Cheng and Bailey (1991).

Note that the competing designs are different in Theorems 5.4 and 5.5. When
n = 3 and k = 4 then Theorem 5.4 shows that a 2-fold inflation of the (3 x 3)/2
Trojan square is optimal among semi-Latin squares. It has efficiency factors equal
to 1/2, with multiplicity 4, and 1, with multiplicity 7. However, among binary
incomplete-block designs for 12 treatments in 9 blocks of size 4, the optimal
design is the dual of the balanced lattice design. This has efficiency factors equal
to 3/4, with multiplicity 8, and 1, with multiplicity 3. By contrast, when k < n
then Theorem 5.5 shows that Trojan squares are optimal even over designs which
are not constrained to be doubly-resolvable.

" Definition. The integer pair (n,k) is Trojan if either
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(a) k < n and there exists a set of k mutually orthogonal n x n Latin squares,
or

(b) k is a multiple of n — 1 and there exists a set of n — 1 mutually orthogonal
n X n Latin squares.

Thus, if (n,k) is Trojan then we know how to find an optimal semi-Latin
square: a Trojan square or an inflated (n x n)/(n — 1) Trojan square. I do
not know any optimality results for (n x n)/k semi-Latin squares if (n, k) is not
Trojan, except when n = 3 (see Corollary 6.3).

Corollary 5.3 shows that Lemma 3, and hence part (b) of the Theorem, of
Bailey (1988) are false. The latter result concerns the optimality of semi-Latin
squares with k 2 n. I have never had to use such a square in practice. However,
they cannot be ruled out. Indeed, a square with n = k = 4 has been used by
Fielding (1990) for banana trees in Jamaica. The most likely values of k would
be close to n, and so not covered by Theorem 5.4.

6. Other Constructions

There are many other semi-Latin squares in addition to those formed from
Latin squares by inflation and superposition, or a combination thereof. Some con-
structions are given by Andersen (1979), Andersen and Hilton (1980a,b), Preece
and Freeman (1983) and Bailey (1988). It might be possible to enumerate the
isomorphism classes of (n x n)/k semi-Latin squares for small values of nk.

Theorem 6.1. There is only one isomorphism class of (2 x 2)/k semi-Latin
squares, for each k. It consists of the k-fold inflation of the 2 x 2 Latin square.

Theorem 6.2. There are |k/2] +1 isomorphism classes of (3 x 3)/k semi-Latin
squares.

Proof. Let B;; be the block in the ith row and jth column. Let T 1 be the set
of symbols common to Bj; and Bgy, Ty the set of symbols common to Bi; and
Bas, T3 the remaining symbols in Bjp, and Ty the remaining symbols in Bs3. We
must have

Ty Ty | Ty T3
N T3 | To Ty
T3 T4 T2 Tl

which can be completed only as

T1 T2 T4 T5 T3 T6
T5 T5 T1 T3 T2 T4 y
- T3 Ty |T> Te |Th Ts
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where |T1| = |Ty| = |Ts| = ki, say, and |To| = |T3| = |T5| = k — k;. Thus the
semi-Latin square is the superposition of the k;-fold inflation of a 3 x 3 Latin
square Ay with the (k — ki1)-fold inflation of the 3 x 3 Latin square Ay orthogonal
to A;. Interchanging A; with A does not change the isomorphism class, which
is therefore determined by min{k;,k — k;1}.

Corollary 6.3. If k = 25 4 1 then the superposition of an s-fold inflation of a
3 x 3 Latin square Ay with an (s + 1)-fold inflation of a 3 x 3 Latin square Az
orthogonal to A is an optimal (3 x 3)/k semi-Latin square.

Preece and Freeman (1983) list eleven isomorphism classes of (4 x 4)/2 semi-
Latin squares, and claim that there are no more. It should not be too difficult
to efilumerate the isomorphism classes of (4 x 4)/k semi-Latin squares for general
k, by allocating non-negative integers to each of the 24 transversals of the 4 x 4
array and using the constraints that the sum of these integers on any block is
equal to k.

In view of the results in Section 5, practical use of semi-Latin squares requires
us to find further constructions only for non-Trojan pairs (n, k). The total number
of isomorphism classes for such a pair may be too large to investigate completely.
However, it is widely conjectured that optimal designs are to be found among the
regular-graph designs—those in which no two concurrences differ by more than 1:
see John and Mitchell (1977), John and Williams (1982). Thus the search for
efficient semi-Latin squares for non-Trojan (n, k) could reasonably be restricted
to squares {2 for which A(f2) is a regular-graph design, if any such exist. -

Theorem 6.4. Let Q be an (n x n)/k semi-Latin square such that A() is a
regular-graph design. Then

(i) mo concurrence in A(QQ) is greater than 1;
(ii) k<n-1;
(iii) if k =n —1 then Q is Trojan.

Proof.

(i) The average concurrence is equal to n(k —1)/(nk — 1), which is less than 1.

(ii) The k symbols in the block in the first row and first column must all be in
different blocks in the second row, none of which is the block in the first
column.

(iii) Let T be the set of symbols in a given block B. Because |T| = n — 1, each
block B’ in different rows and columns from those containing B contains a
single element of T. Let 7 be a symbol outside T. Then 7 occurs in n — 2

_such blocks B’, and so concurs with n — 2 elements of 7. Thus if any two_

- ——

treatments concur then any third treatment must concur with at least one
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of them. It follows that the relation ‘is equal to or does not concur with’ on
the set of symbols is an equivalence relation with classes of size n. Thus,
G(€Q) is the complete k-partite graph on sets of size n, and so 2 is Trojan.

Theorem 6.4 gives no guidance on optimal semi-Latin squares if k > n. The
following conjecture is guided by Theorem 5.4 and Corollary 6.3.

Conjecture 6.5. If Aq,...,An_1 is a set of mutually orthogonal n x n Latin
squares and k = a(n — 1) +b witha > 1 and1 < b < n —1, and Q 1is the
superposition of the (a + 1)-fold inflations of Ay, ..., Ay with the a-fold inflations
of Ap+1,...,An—1, then Q is an optimal semi-Latin square.

Conjecture 6.5 would be a useful result if true, but it seems counter to in-
tuition because it recommends semi-Latin squares some of whose concurrences
Ai; are as large as n. In their important work on singly resolvable block designs
Patterson and Williams (1976b) recommend using designs with A;; € {0,1,2} in
these circumstances, while Paterson (1983) recommends using designs which min-
imize the number of short circuits in the variety-concurrence graph, in particular

2
Litj Nij-

Ezample 8. Compare the two (4 x 4)/4 semi-Latin squares in Figure 11. The
square {23 in Figure 11(a) is the superposition of three mutually orthogonal Latin
squares Aj, A2, Az (on large Latin, small Greek and small Latin alphabets re-
spectively) with a fourth Latin square A4 (on the digits 1...4) which may be
obtained from any of Aj, A2, Az by transposing a pair of rows. The square 25 in
Figure 11(b) is the superposition of the 2-fold inflation of A; with Az and A3z. The
concurrences of §; are 0 (48 times), 1 (48 times) and 2 (24 times), while those of
Qs are 0 (36 times), 1 (80 times) and 4 (4 times). Thus Patterson and Williams’
advice would be to use §2;, while Conjecture 6.5 favours €22. Both squares have
3 A?j = 144, and G(£2;) and G(€2) both contain 256 triangles, so Paterson’s con-
jecture does not distinguish between 2; and Q9 until quadrilaterals are counted.
Corollary 5.3 shows that the efficiency factors of (25 are

with multiplicity 6

with multiplicity 6

[SC RN N I JUR

with multiplicity 3,

while the symmetry calculations of Bailey and Rowley (1990) show that these are
also the efficiency factors of {2;. The two semi-Latin squares are therefore equally _
good according to all the usual optimality criteria. Whether or not Conjecture
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6.5 is true, this suggests that intuition may be a poor guide to optimality for
k> n.

Definition. Semi-Latin squares 2; and Qs of size (n x n)/k; and (n x n)/kg are
orthogonal to each other if A(Q;) and A() satisfy the hypotheses of Lemma
5.1 with the blocks in corresponding order.

Conjecture 6.6. If 2 and Sy are optimal semi-Latin squares and they are
orthogonal to each other then their superposition is also optimal.

Figure 11. Two semi-Latin squares with n = k = 4

A a a 1{B g b 2{C v ¢c 3|D 6 d 4
- B v d 2|A 6§ ¢ 1|D a b 4(C B a 3
— C 6 b 4/D v a 3|A B8 d 2{B a c 1
D B ¢ 3|C a d 4|B 6 a 1/A v b 2
(a) The semi-Latin square §;
Al Ag a a Bl Bz ,@ b 01 Cz Y C .D1 D2 6 d
Bl Bz Y d A1 A2 6 ¢ D1 D2 a b C] Cz ﬂ a
01 Cz é b D] Dg Y oa A1 Az ,5 d B1 Bz a ¢
D] Dz ,B C Cl Cg a d B] B2 6 a Al A2 Y b

(b) The semi-Latin square {2,

7. Efficient Designs for non-Trojan Pairs

Real experiments are no respecters of pure mathematics. They may well need
efficient semi-Latin squares for non-Trojan pairs (n,k). In the sugar beet trials
(Example 4) at Brooms Barn Experimental Station in England, the number n of
drills is usually equal to 6: see Bailey and Payne (1990). As (6, k) is not Trojan
for any k except k = 1, we therefore need to find efficient (6 x 6)/k semi-Latin
squares. So far, our search for such designs has been confined to regular-graph
designs. Theorem 6.4 shows that these do not exist unless k < 4.

An efficient (6 % 6)/2 semi-Latin square was found independently by Brickell
(1984) and Bailey (1990). It is shown in Figure 12. Its efficiency factors are:

1
3 = 0.5000 with multiplicity 5
7+ V5
*; 2‘f = 0.7697 with multiplicity 3

= 0.3970 with multiplicity 3.
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Table 4 compares various measures of overall efficiency with those that a
Trojan square would have, if it existed. The minimum efficiency factor, the har-
monic mean and the geometric mean of the efficiency factors are the E-, A- and
D-criteria respectively. The minimum simple and maximum simple efficiency fac-
tors are the extreme values of the efficiency factors of contrasts which compare
one treatment with another. Of course, the quotient block design of a Trojan
square is a connected group divisible design with k groups of size n and con-
currences equal to 0 and 1. When k£ = 2, such a design always exists and the
Corollary to Theorem 3.1 of Cheng (1978) shows that it is optimal. Thus, the
competing design in Table 4 is optimal for 36 blocks of size 2 even though it is
not in the list of optimal designs given by John and Mitchell (1977) and does not
exist as a semi-Latin square.

Figure 12. Efficient (6 x 6)/2 semi-Latin square

| O]~ | ) X
O~ | Q)

G
L
K
F
J
E

| | < ol QY

Qf by ] M| |~
~| Q) | O

| | o] Qf | B

| O~ QY
= | Qo |ty

Q| Q) | o =

| M| | O] O >
| Q) 5| o | &

Table 4. Comparison of (6 x 6)/2 semi-Latin squares

efficiency factors | Figure 12  hypothetical
Trojan square
- minimum 0.3970 0.5000
minimum simple 0.4783 0.5000
harmonic mean 0.5127 0.5238
geometric mean 0.5281 0.5325
maximum simple 0.5500 0.5455
maximum 0.7697 1.0000

A (6x6)/3 semi-Latin square was needed for one of the 1990 trials at Brooms
Barn. Peter Wild of Royal Holloway and Bedford New College, University of
London, found a regular-graph-design semi-Latin square just in time for the trial.
It is the superposition of the semi-Latin square in Figure 12 with the Latin square
in Figure 13. Since these two are orthogonal to each other, Lemma 5.1 shows
that the efficiency factors for the superimposed design are:
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% = 0.6667 with multiplicity 10
1—3—_{—8£_§ = (.8464 with multiplicity 3
E—l—_Sﬁ = 0.5980 with multiplicity 3

1 with multiplicity 1.

In fact, this (6 x 6)/3 semi-Latin square was given, as an OMA(4,6; 1, 1, 1, 2)
by Brickell (1984), who found it by a computer search. Peter Wild’s invaluable
contribution was to realise that this example from communications theory was
precisely what was needed to solve the statistical problem.

Figure 13. Latin square orthogonal to the semi-Latin square in Figure 12

| 2o | x| o Ot
[TV R BV K] KN K e )
=L O | U W

Moy Wi
U] O N
[ R -8 Bl R RN

Table 5. Comparison of (6 x 6)/3 semi-Latin squares -

efficiency factors Figures hypothetical
_ 12 and 13 Trojan square
B minimum 0.5980 0.6667
minimum simple 0.6586 0.6667
harmonic mean 0.6922 0.6939
geometric mean 0.6986 0.6992
maximum simple 0.7099 0.7059
maximum 1.0000 1.0000

Table 5 compares this semi-Latin square with a hypothetical Trojan square.
The competing design exists as the dual of a three-replicate square lattice design,
which is optimal among designs with 36 blocks of size 3, by Corollary 2.3 of Cheng
and Bailey (1991).
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