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Abstract: The problem of constructing trend-resistant factorial designs is discussed.
Suppose a factorial experiment is to be run in a time sequence with one observation
taken at a time. Then the experimenter has to decide in which order to observe the
treatment combinations. A common practice is to randomize. However, sometimes
randomization may lead to an undesirable ordering, and a systematic run order may
be preferred. Attention is focused on the comstruction of systematic run orders of
factorial designs in which the estimates of important factorial effects are orthogonal
to some polynomial trends. Some recent work on this subject is unified and extended.
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1. Introduction

- An ordered application of treatments to experimental units over time is called

a run order. The purpose of this paper is to unify and extend some recent work on
the construction of systematic run orders of factorial designs in which the ordinary
estimates of factorial effects are orthogonal to certain polynomial time trend
effects. In a factorial experiment carried out in a time sequence, the observations
may be affected by uncontrollable variables highly correlated with the time in
which they occur. Then the experimenter may prefer systematic designs in which
the usual estimates of the factorial effects of interest are not affected by the
time trend effect. A survey of earlier work on this subject can be found, for
example, in Cheng and Jacroux (1988). We shall mention only the important
work of Daniel and Wilcoxon (1966), who recognized that certain contrasts in the
standard order of the complete 2" design are orthogonal to linear and quadratic
trends, and suggested the important idea of using these trend-resistant contrasts
to comnstruct a run order so that they represent the desired main effects and
“interactions in the new order. This idea was utilized by Cheng and Jacroux for
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general 2" designs. One drawback of this method is that its implementation
can be quite cumbersome. Coster and Cheng (1988) presented a generalized
foldover method for constructing a run order from a sequence of generators in
a simple manner, while one still needs to find suitable generators which will
produce desired trend-resistant properties. In a review of these two methods,
Cheng (1990) discussed their relationship and pointed out that they are actually
equivalent. Therefore the two methods complement each other nicely: trend-
resistant contrasts are selected, the corresponding generators can be determined
easily from the established equivalence, and a run order is then constructed by
the generalized foldover method.

. In this paper, we shall extend and unify the above-mentioned work of Cheng
and Jacroux (1988), Coster and Cheng (1988), and Cheng (1990) to general
symmetric and asymmetrical factorial designs. Many results in Coster and Cheng
(1988) can be reproduced and strengthened by a different and simpler approach.

Definitions and some preliminary material are reviewed in Section 2. It is.
shown in Section 3 that, in a standard order of the complete s; X s9 X -+ X s,
design, the trend-resistant properties of main-effect and interaction contrasts can
readily be determined. Examples are given to show how one can use higher-order
interaction contrasts to construct trend-resistant run orders. Section 4 applies
this method, in conjunction with the classical breakdown of treatment degrees of
freedom via finite geometries, to the case where the numbers of factor levels are
prime powers. The connection of this method to the generalized foldover method
is also discussed. Section 5 is devoted to the generalized foldover method fer
general symmetric and asymmetrical factorial designs. Section 6 deals with the
case where the factors are quantitative. The paper concludes with some remarks
in Seetion 7.

2. Preliminaries

Consider an s; X s9 X - - - X 8, experiment with n factors A1, Ao, ... ,‘An, where
A; has s; levels. The s; levels can be represented by integers 0, 1, ..., s; — 1 and
each treatment combination is denoted by an n-vector x = (zi, z2, ..., z,),

where z; is the level of the ith factor. Let S be the set of all the s1s3- - s, treat-
ment combinations. Then S is an abelian group under the following operation:

(:Cl, T2y vy x‘n),+(y13 Y2, -y y‘n)l = (Zl) 22y« 0oy Zn),) where z; = zi+y; mod s;.
(2.1)
The treatment combination 0 = (0, 0, ..., 0)' with all the factors at level 0 is

the identity element. The order of any treatment combination x is the smallest
positive integer [ such that /x = 0. Fractional factorial designs are often chosen to
be subgroups of S. Each subgroup G of S contains a set of independent generators
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{X1,...,Xm} in the sense that G is the direct sum < X3 > @& < Xy >,
where < x; > is the cyclic group generated by x;. Given a sequence of generators
X1, ..., Xm with orders I3, ..., lm, respectively, a run order of G can be obtained
in the following way. The first run is 0, which is followed by x1, 2x1, ..., (l1—1)x1.
Suppose a sequence U; of Hle l; treatment combinations has been generated.
Then U; is followed by U; + X;+1, Uj + 2Xj41,..., Uj + (l;41 — 1)xj41, where
U; + txj41 is the sum of tx;41 with the treatment combinations in U; in the
same order as in U;. Once a sequence of generators is chosen, a run order can
be constructed systematically. Of course, the experimenter needs to solve the
design problem of choosing an appropriate generator sequence. The run order of
a complete s; X sg X -+ X s design obtained by applying the above method to
the generator sequence e, ey, ...,€n, Where €; has the ith component equal to 1
and all the other components equal to 0, is called a standard order.

The above method is essentially the generalized foldover method defined in
Coster and Cheng (1988), except that they consider symmetric factorial designs
with prime-power number of levels, in which field operations, instead of (2.1), are
used, and the tx;.1’s in the construction are the products of x;,1 with all the
nonzero elements in the field. We continue to call the method described above
a generalized foldover method. Coster (1988) also gives a version of generalized
foldover method for asymmetrical factorial designs. He only considers the case
where the numbers of levels are prime numbers and uses pseudo factors for the
general case. In his construction, each I; is one of the s;’s, which needs to be
specified and is not necessarily the order of x;. We will comment more on-this
work in Section 5.

Another convenient notation for the treatment combination x = (z3, z2, ...,
z.)' is to denote it by af*a3? -+ aZ", with af* omitted if z; = 0. If the exponent
of a letter is 1, then that exponent is also omitted. Then (2.1) becomes

xl mzc.‘

al a2 Gxn

ca¥lg¥2 L g¥n = g% g% .. aF
n aj ay an"—al ay a™.

n

All the definitions in the previous paragraph are modified accordingly. The treat-
ment combination in which all the factors are at level 0 is then denoted as (1),
and the generators ey, ez, ..., €, become aj,a2,...,0n. Throughout this paper,
we shall use both notations freely; from the context, there should be no danger
of confusion.

In an s; X 83 X -+ X S, experiment, s152 - - - 5, — 1 mutually orthogonal con-
trasts of the treatment effects can be constructed to represent the main effects
and interactions. A convenient choice is based on orthogonal polynomials. Let
{PF,k = 0,1,..., s — 1} be a system of orthogonal polynomials on s equally
spaced points u =0,1,...,s—1,1e,

T P(w) =1,
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s—1
Z P_,k(u)Pfl (u) =0, forall 0 <k <k <s-1,

u=0

where PF is a polynomial of degree k. These polynomials are unique up to con-
stant multiples and can be scaled so that the values P¥(u) are all integers. Then
the kth order main-effect contrast of factor A;, denoted by AF, is the contrast
of the s1s9 -8, treatment effects in which the coefficient of a treatment effect
is equal to P.,k‘, (u) if factor A; appears at level u. The first- (second, third, --:)
order main-effect contrast is usually referred to as the linear (quadratic, cubic,
-+ -) main-effect contrast and is denoted by lin A; (quad A;, cubic 4;,..., respec-
ti\(ely). For any r distinct factors A;,, A;,, ..., A;, and integers 1 < k; < s;; — 1,
j= L2...,m A?ll X A:‘: X oo X Ai-“: denotes the contrast of the sysg - - s, treat-

ment-effects in which the coefficient of a treatment effect is equal to [];.; Psklj (uj)
if factor A;; appears at level u;, j =1, 2, ..., r. This contrast represents a com-
ponent of the interaction of factors A;,, Aj,, ..., A;,. For example, A} x Al
and A} x A% are usually referred to as the linear x linear and linear x quadratic
components of the interaction of factors A; and As.

For a run order of a subgroup of S of size N, define uf’ to be the N x 1
vector with the [ th component equal to P,k‘. (u) if factor A; appears at level u on

the [th run, where I =1,2,...,N,i=1,...,n,1 <k < s; — 1. For any two
N x 1 vectors u = (ug, ..., uy) and v = (v1, ..., vy)'. let uov be the vector
(uiv1, . ..,uyvy). If y denotes (y1,v2,...,yn)’ , where y1, vo, ...,yn are the N

observations in the given run order, then under the usual homoscedastic linear
model for factorial designs without trend effects, the least squares'estimator of AZ-“
is proportional to (u¥)'y, and the least squares estimator of Aﬁ‘ X Af; X - X A:‘:
is praportional to (uﬁ1 ) uf: 0-:-0 ui-‘: )y, provided that they are estimable. For
simplicity, we shall call u¥ a main-effect contrast of order k, and ufll ouz2 o -ouf:
an r-factor interaction contrast of order 3 7_; k;. Now suppose the observations
are equally spaced in time and are affected by a trend effect which is a tth degree
polynomial function of the time. If the least squares estimator of a factorial effect
is not affected by the time trend, then we say that it is orthogonal to a time trend
of degree t. If it is orthogonal to all polynomial trend effects of degrees up to and
including ¢, then we say that it is t-trend free. It is easy to see that a necessary
and sufficient condition for a main-effect or interaction contrast u to be t-trend

free is that
u'T; =0foralli =0,...,t, where T; = (1, 2, ..., N%)". (2.2)

In general an N X 1 vector u (not necessarily a main-effect or interaction contrast)
is"calléd t-trend free if (2.2) holds.
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Bailey, Gilchrist and Patterson (1977) and Bailey (1985) describe a method
of dividing the treatment degrees of freedom for any factorial design into homo-
geneous orthogonal subsets. Here homogeneity means that all the contrasts in
the same set belong to the same main effect or interaction. For any subgroup
G=<x1>® & < X > of S, consider the vector space RS in which the
components of each vector are indexed by the elements of G. Let I = {1,..., m}.
For any subset J of I, we can define a partition of G by putting two elements in
the same class if their projections onto @jey < X; > are the same. Let V; be the
subspace of RO consisting of the vectors which are constant on each class of the
partition defined above. Further, let W be the orthogonal complement in V; of
all those V: for which J' C J and J ! # J. If the order of X; is l;, then the dimen-
siofi of W is Hjej(lj—l). Notice that if G =S =<e; > ®:--® < e, >, then for
any-J C {1, ..., n}, Wy defines the [];c;(s; — 1) degrees of freedom for the inter-
action of the factors in J. The finite abelian group G =< X1 > @+ & < Xp >
has a dual group G* =< x1 > ® - ® < Xm >, where x; is a functional on G
defined by

Xi (E d_.,'x]')= d; )\ /li mod )\,
i=1

with I; being the order of x; and X the least common multiple of I3, ..., l;. Each
element x of G* has a unique expression as ) ;- ¢;Xi, and

x(Z d,-x,->= 3" ¢jdjA /1; mod A. .
j=1 ‘

j=1

Given x € G*, a partition of G can be obtained by putting two elements x and
y in the same class if x(x) = x(y). Let Vy be the subspace of RC consisting
of the vectors which are constant on each class of this partition. Further, let
W, be the orthogonal complement in V of Vy x,..., V4,x, where 13, ..., t; are
all the divisors, except 1, of the order of x. Then the W,’s give an orthogonal
decomposition of R6. When G =S =<e; > &®---® < e, > is the complete
$1 X -+ X 8, design, W, defines ¢(I) treatment degrees of freedom, where [ is the.
order of x and ¢(I) is the number of integers between 1 and ! which are coprime
to ; see Bailey, Gilchrist and Patterson (1977). In fact, in this case, for each
x € S* , there exists y € S such that

x(x) =[x, y] = ) ziyip/si mod p, for all x € S,

=1

_ where p is the least common multiple of the s;’s. Using the notation in Bailey,
Gilchrist and Patterson (1977), we shall denote these ¢(l) degrees of freedom
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by Tu(y’). If ¥iy, ¥igs - - - » Yi, are the nonzero components of y, then these ¢(I)
degrees of freedom belong to the interaction of factors A;,, Ai;, ..., 4i,. In a
symmetric s” design, where s is a prime number, this is the same as the usual
decomposition of treatment degrees of freedom based on finite geometries (Bose
(1947), Kempthorne (1947); also see below). The following theorem from Bailey
(1985) links the two decompositions described above and is needed later in the

paper.

Theorem 2.1. Let G =< X1 > @@ < X, > be a subgroup of S. For any
x =" cxi in G, let J(x) = {i : cixi # 0}, that is, J(x) = {i : x(x;) # 0}.
Then Wy is a subspace of Wy(y).

 When the number of levels is a prime power, these levels can also be repre-
sentéd by the elements of a finite field. In this case, the classical decomposition
of the treatment degrees of freedom is based on finite geometries. For example,
in an s™ experiment, each treatment combination is identified with a point in
EG(n, s), the n-dimensional Euclidean geometry with s points per line. For any
nonzero b = (by, by, ..., by)' € EG(n, s), and any by € GF(s), the finite field
with s elements, the set {x : Y0 ; biz; = bp} is called an (n — 1)-flat. As by
ranges through the s elements of GF(s), we obtain the s nonoverlapping (n — 1)-
flats in the pencil P(b) determined by b. A total of s — 1 mutually orthogonal
contrasts between these s (n — 1)-flats can be constructed. If b;,, b;,, ..., b; are
the nonzero elements among by, bs,...,b,, then these contrasts represent inter-
actions of factors A; , A;,,...,A;,. The associated s — 1 degrees of freedom are
denoted by A?:‘A?;’ Af:’ Unless s is a prime number, this gives a different
decomposition from that obtained in Bailey, Gilchrist and Patterson (1977), and,
as pointed out earlier, the generalized foldover method also leads to a different
construction because field operations, instead of (2.1), are used. In Section 4,
we shall discuss the construction based on finite geometries and its relation to
a version of the generalized foldover method based on field operations, while in
Section 5, (2.1) is used for general factorial designs.
If by,by,...,by € EG(n,s) are linearly independent, then we say that the
k pencils P(b;), P(bs), ..., P(by) are linearly independent. Throughout the
paper, 1,, denotes the m x 1 vector of ones.

3. Complete Factorial Design: Standard Order

Lemma 3.2 of Cheng and Jacroux (1988) showed that in a standard order
of the complete 2™ design, a k-factor interaction is (k — 1)-trend free. This key
result can be extended as follows:

Theorem 3.1. In a standard order of a complete 81 X s2 X -+ X 8, design, a
main-effect or interaction contrast of order k is (k — 1)-trend free.
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Proof. This result can be proved in two different ways. The first method is
similar to the proof of Lemma 3.2 of Cheng and Jacroux (1988). Let N =
s152 -+ Sn. Then one can show that the vector T defined in (2.2) is a linear
combination of 1y,ul, u%, ..., and ul. The result then follows.

Another proof is based on a result of Jacroux and Saha Ray (1988), also
independently reproved by Wang (1989). They showed that if x is a p-trend free
vector and y is a g-trend free vector (x and y can be of different dimensions),
then their Kronecker product x®y is (p+ g+ 1)-trend free, x®11s p-trend free,
and 1®y is g-trend free. In both papers, this result was stated for the case where
x and y have 1 and —1 entries, but it is clear from the proof that this restriction
is not necessary. Let p* be the s x 1 vector (PX(0), P*(1), ..., PF(s —1))". By
the definition of orthogonal polynomials, p¥ is (k — 1)-trend free. Now in the
standard order, ui-‘ , the kth order main-effect contrast of factor 7, is equal to
X1 ®Xo® - - ®Xyp, Where X; = pf:i, and x; = 1,; for all 7 # 7. Since pfi is (k—1)-
trend free, uf is also (k — 1)-trend free. An interaction contrast of order k, say

ks ks ks .
u;ouy?o---ou;” with 337_; ki; = k can be expressed as X; ®X2®- - -®X,, Where
X; = pi";’, i=1iy,19,...,ir, and x; = 1,, for all 4 # iy, 42, ..., 1». By repeatedly

. k; k; k;
using Jacroux, Saha Ray and Wang’s result, we conclude that uil'1 ouiz’2 o-..ou;"

is (k — 1)-trend free. "

Therefore, for example, in the standard order the quadratic component of a
main effect is linear-trend free, and the linear x quadratic X quadratic compo-
nent of a three-factor interaction is 4-trend free. Unlike the 2™ designs, when'the
factors have more than two levels, each main effect or interaction term carries
more than one degree of freedom, and some degrees of freedom may have stronger
trend-free properties than others. Theorem 3.1 determines the trend-free prop-
erties of the main-effect and interaction contrasts defined by orthogonal polyno-
mials. For other main-effect and interaction contrasts, such detailed knowledge
may not be readily available; but we have the following corollary of Theorem 3.1:

Corollary 3.2. In a standard order of a complete s1 X s2 X - -+ X s, design, any
contrast representing a k-factor interaction is at least (k — 1)-trend free.

The 2" version of Corollary 3.2 is the key result for the construction of trend-
resistant two-level designs discussed in Daniel and Wilcoxon (1966) and Cheng
and Jacroux (1988). To make the presentation precise and to prepare for later
extension based on design keys (Patterson (1965), Patterson and Bailey (1978)),
we write P;,i=1, ..., n (or P, Q, R, --+), for dummy plot factors, and 4;, 1 =
1,2,...,n (or A, B, C, --+), for the genuine treatment factors. For plot factors,

the -main-effect and interaction contrasts such as u¥ and ufll ° u:-‘

‘defimed in Section 2 will be written as v and v}

2 kr
O +++ 0O A
2 u"vr

1oy o...0vkr ively.
toviio-oV,T, respectively.
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The 2" factorial design is constructed in standard order with respect to the plot

factors Py, ..., P,. To make all main-effect contrasts of the treatment factors
trend-resistant, one can choose n mutually orthogonal higher-order interaction
contrasts Wi, Ws,..., Wy, of the plot factors, and use each to define the levels of a

treatment factor. Suppose w; is identified with treatment factor A;. Then assign
high (respectively, low) level to A; on the uth run if the uth component of w; is
1 (respectively, —1). Then the main effect of treatment factor 4; is (k—1)-trend
free if w; represents an interaction of k plot factors.

The above method works for two-level designs because the interaction con-
trasts have 1 and —1 entries, which can be used to assign high and low levels. It
may not work, however, for general s; X s2 X -+ X s, designs, where the entries
in an-interaction contrast such as vl"'1 o v’c2 0-::0 vfr' may not be the s; entries
in u,l,for ali=1,2,...,n. In splte of thls, we give some examples where the

method does work.

Example 3.1. Consider a 2 x 3 x 4 design where factor A; has 2 levels, factor A
has 3 levels and factor A3 has 4 levels. Introduce plot factors P;, P, and P; with
2, 3 and 4 levels, respectively. In the standard order with respect to Py, Ps, P3, we
have vi = (~1,1)®13®14, v} = 1:®(-1,0,1)®14, vi = 1o®13®(1,-1,-1,1),
and v§ = 1, ® 13 ® (—1,3,-3,1)". Then the P; x quad P3 contrast is

viov=(-1,1,-1,1,-1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1, 1, -1, 1, -1, 1),

the linear P, X quad Pj3 contrast is

v%ovs (110011110011110011110011),
and the P; x cubic P3 contrast is
V1°V3 (111111-333333333333111111)

Then v} o v3, v o v3, and v} o v3 have the right entries for defining the levels of
treatment factors A;, A2 and As, respectively: on each run, assign level 0 or 1
to factor A if the corresponding entry of vi o v% is —1 or 1, respectively, assign
level 0, 1, or 2 to factor Ay if the corresponding entry of vi o v%is —1, 0, or 1,
respectively, and assign level 0, 1, 2, or 3 to factor As if the corresponding entry
of v% o vg is —3, —1, 1, or 3, respectively. Then we obtain the following run order
a%, aijas, azag, aiazas, a%a%, alaga3, alag, agag, aiag, agag, ai, ag, alagag,

2 3 3 2
a3, ajaqaj, az, aiay, (1), a3, a1a3, azas, alagag, a%ag, alagag. (3.1)

In (3.1), the ma.in effect contrast of A; is equal to v1 o v3, the linear A, contrast
equalS§Vviov3, and the linear A3 contrast equals viov3. Also, one can verify that
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the quadratic A contrast equals vZ, the quadratic A3 contrast 1s v3, the cubic
Ajs contrast is —(v1 o v3) and the A; X linear A contrast is v1 o v2 By Theorem
3.1, we conclude that in run order (3.1), the main effect of A; and linear A9 are
quadratlc-trend free, linear A3 is cubic-trend free, quadratic As, quadratic As,
cubic A3 and the A; x linear A2 interaction are all linear-trend free.

Example 3.2. In a standard order of the complete 42 design, the linear P; X
quadratic P, contrast is v} ovi = (-3,-1,1,3,3, 1 1 -3,3,1,-1,-3,-3,-1,
1,3)', and the quadratic P; x linear P contrast is viovi = (-3,3, 3 -3, 1 1,1,

-1,1,-1,-1,1,3,-3,-3,3). Now as in Example 3.1, use vi o v? and viovj
to define the levels of A; and As, respectively. Then we have the following run

o‘rdgr:

(17, a1a3, a2a3, a3, aday, a?a2, a1a3, a, ada?, alaz, ajaz, a2, a3, a1, a, ada3.
(3.2)
One can verify that all the main-effect contrasts and the linear Aj X linear A,
interaction contrast are at least linear-trend free. For example, the linear A; X

16 12 12
linear A2 contrast in (3.2) is equal to 75 2E,)v%ov2+ 25 —viovi+— 55 viovs,
which is a linear combination of linear-trend free contrasts and therefore is linear-

trend free.

Vl °V2+

4. Symmetric Factorial Designs with Prime-Power Number of Levels

The method described in the last section imposes severe constraints; in par-
ticular, an interaction contrast identified with an s-level factor must have exactly
s distinct entries. When the factors have prime-power numbers of levels, this diffi-
culty can be circumvented by using Corollary 3.2 in conjunction with the classical
breakdown of treatment degrees of freedom via finite geometries. Here we shall
consider only the case where all the factors have the same number of levels and
briefly comment on the asymmetrical case, because an alternative construction
for the general case will be discussed in the next section.

The fact that all pencils P(b) in EG(n, s) contain the same number of (n—1)-
flats facilitates the construction of trend-resistant run orders. To make all main-
effect contrasts at least t-trend free, one can choose n linearly independent pencils
P(b1), P(by),..., P(by), where each b; = (bi1, ..., bin)" has at least +1 nonzero
entries, to redefine the levels of the n factors. By Corollary 3.2, all the contrasts
of the s flats in P(b;) are t-trend free in the standard order. The main effect
of A; can be made t-trend free by rearranging the run order so that all runs
originally occupied by treatment combinations in the same (n — 1)-flat of P(b;)
are now occupied by those with the same value of z;. This can be achieved
by the following: in the standard order, if a treatment combination satisfies
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blix = b,b € GF(s), then assign level b to factor A;. In other words, the run
order can be constructed, from the standard order with respect to n s-level plot
factors P,..., P,, by assigning the level

n
> bijyj (4.1)
i=1
to treatment factor A; on the run whose level of P; is y; for j = 1,...,n. More

succinctly, this can be expressed as a design key

A; = E bi; P;. (4.2)

This is a natural extension of the construction in Cheng and Jacroux (1988). A
similar construction is reported in Wang (1991).

In a run order constructed by this method, the trend-free properties of all
the interaction components can easily be determined. All runs occupied by treat-
ment combinations in the same (n — 1)-flat of pencil P(c) in the new order were
occupied, in the standard order, by treatment combinations in the same (n —1)-
flat of the pencil P(3 1, c;b; ). Therefore the s — 1 degrees of freedom of the
r-factor interaction A,l'1 A:’ Af:' is t-trend free if E;__.l ¢;;b;; contains ¢t + 1
nonzero entries. As in Patterson (1965), the s — 1 degrees of freedom defined by
> j=1Ci;bi; are called the plot alias of A, 'IAC'2 . Ac"

In a regular (1/sP)-fraction of a complete s” demgn, there exist n —p factors
called basic factors, such that the design contains all the s"? combinations of
these factors. The other factors are called added factors, whose levels can be de-
termmined from those of the basic factors by the defining relations of the fractional
factorial design. The method described above can be applied to the complete
s™ P design of the basic factors. The plot aliases of all the factorial effects can
be determined from those of the main effects of the basic factors and the defining
relations. One added complication here is that after choosing n — p linearly inde-
pendent pencils to redefine the levels of the basic factors, defining relations must
be employed to check that factorial effects involving the added factors also have
desired trend-free properties. If the defining relations are not given, the tasks
of selecting defining relations and constructing trend-resistant run orders can be
combined by choosing appropriate interaction components of the basic factors to
assign the levels of all factors.

Example 4.1. In the 32 design with treatment factors A and B and plot factors
P and Q, to make the main effects linear-trend free, one can write down the
desighi in standard order with respect to P and Q, and then use the design key B
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A = PQ, B = PQ? to define the levels of the two treatment factors. This results
in the following run order:

(1), ab, a2b?, ab?, a2, b, a?b, b?, a.

For example, the fourth run in the standard order with respect to the plot factors
is g, which, when considered as a point in EG(2, 3), is (y1, y2)’ with y1 = 0 and
yo = 1. Then y;+y2 = 1 and y1+2y2 = 2. So the fourth treatment combination in
the new run order is (1, 2)’, that is, ab?. In this order, the interaction component
AB is not linear-trend free because its plot alias (PQ)(PQ?) = P? is a main
effect.

1

~When s is not a prime number, one has to use the complicated operations
of a-finite field instead of the straightforward arithmetics modulo s for this con-
struction. In this case, it may be more convenient to use pseudo factors.

Example 4.2. Consider a complete 42 design with two 4-level factors A and B.
Identify the 4 levels 0, 1, 2, 3 with the combinations 00,10,01,11, respectively,
of two 2-level factors. Denote the pseudo factors of A by A; and Az, and the
pseudo factors of B by B; and Bs. Construct the 2% design in standard order
with respect to two-level plot factors Pi, Py, P3 and P;. Then use the design
key A = PyPyP3, Ay = PoP3Py, By = P\P,Py, By = PiP3P;. This gives the
following run order of the 2% design:

(1), a1biba, ajagby, agby, arazby, azby, bybs, a1,

4.
agbiby, a1az, aiby, by, a1b, b2, a2, azazbibe. (43)
The corresponding run order for the 42 design is
(1), ab®, a3b, a%b?, a3b?, a?b, b%, a, o263, a3, ab?, b, ab, b?, a®, aV®.  (4.4)

The plot aliases of A1 A2 and BBy are, respectively, P, P4 and Py P3. Therefore
in run order (4.4), all main-effect contrasts of A and B are at least linear-trend
free.

In this example, more detailed information can be obtained about the trend-
free properties of various main-effect and interaction contrasts defined by or-
thogonal polynomials. Let wi = (=1,1,-1,1), wa = (-1,-1,1,1), and w3 =
wiows = (1,—-1,—1,1)". Then we have

p; = (-3,-1,1,3) = w; + 2wy,
p: = (1,-1,-1,1)' = wj o wy,
pl = (-1,3,-3,1) = 2w; — w,
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where p}, p? and pj are as defined in the proof of Theorem 3.1. Let ul, ui, ud,

be the linear A, quadratic A and cubic A contrasts and ulB, u2B, u33 be the linear
B, quadratic B and cubic B contrasts in (4.4). Also let uga,, us,, up,, up, be
the contrasts representing the main effects of A;, Az, By and Bz in (4.3), and
Vp, Vp,, Vp,, Vp, be the contrasts representing the main effects of Py, Pp, Pj

and Py in the standard order. Then we have

2 3
uh = ugy, +2uy,, Uy = uyg, OU4,, Uy = 2Uy, — Uy,, (4.5)
1 2 3 __
ug = up, +2up,, up = up, oug,, Ug = 2up, — Ug,. (4.6)
Furthermore,
= u4, = Vp OVp, ©Vp,, U4, =Vp,0Vp, OVp,,
- ug, = VpOVp,OVp, U, =Vp10Vp OVp,.

From these relations and (4.5), (4.6), the linear, quadratic and cubic contrasts of
the main effects of A and B, and various interaction contrasts can be expressed
in terms of vp, Vp,, Vp,, and vp,, and then their trend-free properties can be
determined. For example, the linear A x linear B contrast

ulA °© ulB = (vpovpovp +2VpoVp 0 vp,)

o(vp,ovp,ovp +2vp oVp, 0Vp,)
= vp,ovp, +2vpovp, +2vp ovp, +4Vp oVp,

is linear-trend free. Similarly, one can verify that linear A, cubic A, linear B and
cubic B are quadratic-trend free, and quadratic A, quadratic B are linear-trend
free.

Since the standard order can be obtained by applying the generalized foldover
method to the particular generator sequence ay, as, ..., an, use of n linearly inde-
pendent pencils of (n —1)-flats to redefine factor levels amounts to replacement of
the generators. Therefore run orders constructed by the method described above
can also be obtained by the generalized foldover method. Notice that here we
refer to the generalized foldover method based on field operations as in Coster
and Cheng (1988), not the one described in Section 2. In (4.2), let B be the n x n
matrix [b;;], whose rows correspond to the plot aliases of the main effects of the
treatment factors. Then the generators are precisely the column vectors of B.
The generalized foldover method can be used, and there is no need to go through

the tedious process of determining the values of b’x for all x and all the pencils
P(b) used to redefine factor levels.

Example 4.3. In Example 4.1, a run order of a 3% experiment is obtained by
using A = PQ and B = PQ? to define the levels of A and B. Here b; = (1, 1)’
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and by = (1, 2)". The column vectors of B = (b1, by)’ are (1, 1) and (1, 2)/,
respectively. It follows that the two generators are ab and ab?.

One can also reverse the above process. For any generator sequence X1, X2,
..., Xn, let B the matrix with xi, x2,...,X, as its column vectors, then the row
vectors of B correspond to the plot aliases of the main effects of the treatment
factors. A useful and interesting byproduct of this is a simple rule for determin-
ing the trend-resistant properties of all the factorial effects from the generator
sequence. This allows one to bypass the selection of linearly independent pencils,
and search directly for generator sequences which will produce run orders with
desired trend-resistant properties.

'i‘h_eorem 4.1. Consider a complete s® design, where s is a prime power. In a
run_order constructed by applying the generalized foldover method to the generator
sequence X1, Xz, - - -, Xn, where X; = (i1, - -+, zin), we have the following:

(a) all the main-effect contrasts of a factor are t-trend free if that factor appears
at nonzero levels int + 1 generators;

(b) all the contrasts associated with the r-factor interaction component A::‘ A:;’
Af:’ are t-trend free if there are t+1 generators such that ¢'x; # 0, where c
has the iy th, ..., irth entries equal to c;,, ..., Ci,, respectively, and all the other
- entries are 0.

Proof. Part (a) can be found in Coster and Cheng (1988). A simpler and
perhaps more insightful proof can be based on the remark in the paragraph
preceding the statement of this theorem. It follows that the plot alias of ‘the
main effect component A; is Py* ... Pgn, If A; appears at nonzero levels in
t + 1 generators, i.e., t + 1 of x5, ..., Tn; are nonzero, then Py* ... P is a
(t + 1)-factor interaction. The result then follows.

Part (b) can be similarly proved. The plot alias of A::‘ A:;’ A is P
P where z; = c¢'x;. So if there are (¢ + 1) generators such that ¢'x; # 0, then

the plot alias of A::‘ A::’ e A?:' is a (t + 1)-factor interaction and is t-trend free.

1

Example 4.4. In a complete 3% experiment with four 3-level factors A, B, C
and D, a run order is constructed by applying the generalized foldover method
to the generator sequence abcd, a?b2cd, a?bc?d, albed?. Here x; = (1,1,1,1),
xo = (2,2,1,1), x3 = (2,1,2,1), and x4 = (2,1,1,2)". The row vectors of
B = [x1 x2 X3 X4] are (1,2,2,2,), (1,2,1,1), (1,1,2,1)" and (1,1,1,2)". It follows
that the plot aliases of the main effects A, B, C and D are PQ?R2S%, PQ?RS,
PQR2S and PQRS?, respectively. So, all the main-effect contrasts are at least
cubic-trend free. The trend-tree properties of all the interaction contrasts can
be determined by identifying their plot aliases. One can also obtain the same
“conclusion by using Theorem 4.1. For example, all the main-effect contrasts are
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cubic-trend free, since each of a, b, ¢ and d appears in all the four generators.
Denote the levels of A and B in a generator by g(A) and ¢(B), respectively. To
determine the trend-free property of the interaction component AB, we need to
count the number of generators such that g(A) + ¢(B) # 0 (mod 3). There are
two such generators: abed and a?b?cd. So AB is linear-trend free. Since there
are also two generators with g(A4) + 2¢(B) # 0 (mod 3), AB? is also linear-trend
free. Therefore all the contrasts representing the interaction of A and B are
linear-trend free.

For two-level designs, part (b) of Theorem 4.1 simplifies to the following: an
r-factor interaction A;j --- A;, is t-trend free if there are t + 1 generators each of
which contains an odd number of letters out of a;,, ..., a;,. This is Theorem 4.1
of Cheng (1990).

It is easy to see that Theorem 4.1 also holds for all the estimable main effects
and interactions in a run order of a regular fractional factorial design obtained
by the generalized foldover method.

5. Generalized Foldover Method for General Factorial Designs

In an asymmetrical design, the method of Section 4 can be applied separately
to each subdesign consisting of factors with the same number of levels. The
generators of the resulting run order are such that only factors with the same
number of levels can appear at nonzero levels in the same generator. Using (2.1),
however, one can apply the generalized foldover method to an arbitrary generater
sequence in any design. An important issue is how to determine the trend-free
properties of the factorial effects. Corollary 3.2 and Theorem 2.1 together provide
a solution.

Throughout this section, we shall consider subgroups of the abelian group
S=<e; >® - < e, > under operation (2.1). Unlike in Section 4, even for
complete symmetric factorial designs, the number of generators is not necessarily
equal to the number of factors.

Suppose G =<x1 > B+ D <X, > isa subgroup of S, where x; has order
l;, Let P,...,P, bem plot factors, with P; having [; levels. Then it is clear
that the run order obtained by applying the generalized foldover method to the
generator sequence Xj, ..., X, can be constructed from the standard order with
respect to Py, ..., Py, through the design key

m
= Z z;; P,
i=1

Here,—unlike (4.1) in which field operations are used, treatment factor A; takes
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level

m
Zmﬁy,— mod s;
Jj=1

on the run whose level of P;is y;, 7 =1, ..., m.

Theorem 5.1. Let G =< X1 > @+ ® < Xy > be a subgroup of S. Then for
any x € G*, if there are t+1 generators such that x(x;) # 0, then in the run
order of G obtained by applying the generalized foldover method to the sequence
of generators X1, . ..,Xm, all the vectors in Wy are t-trend free.

Proof. It follows from Corollary 3.2 that for any subset J of {1, ..., m} of size
ti+ 1, all the vectors in W are t-trend free. For any x € G*,let J(x) ={i:1 <
i <m, x(x;) # 0}. From Theorem 2.1, W, is a subspace of W;,). Therefore if
J(x) contains t + 1 elements, then all the vectors in Wy are t-trend free.

For complete factorial designs, we have the following

Corollary 5.2. Suppose G =S =<e; > ® - ® < e, > is a complete s1 X - -+ X
sn design. Let'y be any elememt of G with order l. In the run order obtained by
applying the generalized foldover method to another set of generators X1, ..., Xm,
the ¢(1) degrees of freedom in Tu(y') are t-trend free if there are t + 1 x;’s such
that [x;,y] # 0, where [x, y] = 271 zi¥iA/s;i mod A and X s the least common
multiple of s1, ..., Sn.

Example 5.1. Consider the run order of a complete 2 X 2 x 3 X 6 experiment ob-

‘tained by applying the generalized foldover method to the sequence of generators
(1,0, 0, 3),(1,1,0,3),(0,1,0,3),(0,0,1, 2), (0,0, 2, 2)". These five genera-
tors have orders 2, 2, 2, 3 and 3, respectively. Corollary 5.2 can be used to verify
thaf all the main-effect contrasts are at least linear-trend free. For example, for
y = (0, 0, 0, 3)', there are three generators x such that [x, y] # 0; therefore the
one degree of freedom in T%(0, 0, 0, 3) is 2-trend free. Similarly, the two degrees
of freedom in T, (0, 0, 0, 1) and the two degrees of freedom in T, (0, 0, 0, 2) are
4- and 1-trend free, respectively. It follows that all the five degrees of freedom
of the main effect of the 6-level factor are at least linear-trend free. The trend-
resistant properties of all the interaction components can be similarly determined.
For example, the two degrees of freedom in T.(0, 0, 1, 1) are 3-trend free since
there are four generators x with [x, y] # 0, where y = (0, 0, 1, 1)’. However,
the two degrees of freedom in T.(0, 0, 1, 2) are not linear-trend free. In fact, no
2-factor interaction involving the 6-level factor has all its contrasts linear-trend
free, although all the other 2-factor interactions are at least linear-trend free.

‘When s; is a prime number, all the s; — 1 degrees of freedom in the main
‘effect of factor A; is in T\ (e}). From Corollary 5.2, the following is evident:
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Corollary 5.3. In the run order of a complete s1 X -+ X sn design obtained
by applying the generalized foldover method to a set of generators, if s; 15 a
prime number, then all the main-effect contrasts of factor A; are t-trend free if
A; appears at nonzero levels in at least t + 1 generators.

A result similar to Corollary 5.3 was also obtained by Coster (1988) for
his generalized foldover method. Besides the fact that our construction is more
general, results such as Theorem 4.1 or Corollary 5.2 for determining trend-
resistant properties of interaction effects from the generators are not available in
Coster (1988). His (partial) results on interaction effects are difficult to use. Our
proof based on Theorem 3.1 is also more transparent.

: For fractional factorial designs, the result in Corollary 5.2 still holds so long
as the alias relations are taken into account.

6. Quantitative Factors

The results in Section 4 are useful for constructing run orders in which the
interaction components defined via finite geometries have desired trend-resistant
properties. When treatment factors are quantitative, these interaction compo-
nents bear no simple relation to the interaction contrasts defined by orthogonal
polynomials, the contrasts typically of interest. Some examples where trend-
resistant properties can be established for such contrasts are given in Section 3
(Example 3.1) and Section 4 (Example 4.2).

Suppose all the factors have s levels, where s is a prime number. When all
factor levels are equally spaced, a contrast such as linear A xlinear Aj is partially
confounded with all the interaction components A;Aj, A;143,..., A1A§_1. In
order to use the methods of Section 4 to construct a run order such that the lin
Ajxlin A, contrast is t-trend free, we need to make all of A; Ag, A1A2 ... ,A1A§_1
t-trend free. For quantitative factors, Bailey (1982) suggested taking the actual
level corresponding to nominal level g(A;) of factor A; (0 < g(4;) < s—1) to be

k1 + ko sin g(A;)0, for § = 27 /s,

where k1 and kg are constants, possibly different from factor to factor. The ad-
vantage of choosing such levels is that the corresponding orthogonal polynomials
for a factor A are

linear A = s;(A4),
quadratic A = c2(4),
(2h) th degree orthogonal polynomial in A = cg(A4),
" (2h + 1) st degree orthogonal polynomial in A = sap41(A),



TREND-RESISTANT FACTORIAL DESIGNS 409

where ci(A) and s;(A) are s x 1 vectors, ch(A) has entries cos(h8q(A)), and sp(A)
has entries sin(h6g(4)), 0 < h < s —1, 0 < g(A) < s — 1. Contrasts c, and s,
are similarly defined for interaction terms: ch(A,-A;?) has entries cos(h8(g(A4;) +
kq(A;))), and sh(A,-A;?) has entries sin(h8(g(A;)+kq(4;))). Then it can be shown
that

1 1 -
cn(4i) ®ci(4;) = §Ch(AiA?) + Ech(AiAj 7)

1 1 -
cn(4i) ®@si(4;) = §Sh(AiA?) — 5sn(4id; 7)

1 1 —
; sh(4i) ® ci(4;) = §Sh(AiA§)+§Sh(AiA,-'g)

1 1 -
- sh(Ai) ®si(4;) = ——Z-Ch(A,'A?) + §ch(AiAj 9),

where gh = | mods; see Bailey (1982). Factors A; and A; above can be re-
placed by any generalized interactions. Therefore any Kronecker product of c-
and s-contrasts from r factors has components in 27! of the (s — 1)"~! sets into
which the corresponding r-factor interaction is divided by the method of finite
geometries. For example, the linear A;Xlinear A;j contrast is s1(4;) ® s1(4;) =
—3c1(Ai4;) + %cl(A,-A;-"l). Thus to make linear A;xlinear A; t-trend free, it is
enough to require A;A; and A,-A;-"1 to be t-trend free.

7. Concluding Remarks

In this paper, a method of constructing trend-resistant run orders of factorial
designs, which goes back to Daniel and Wilcoxon (1966), is discussed. The run or-
ders constructed by this method can also be obtained by the generalized foldover
method, which is much easier to execute. The generalized foldover method is
useful in its own right. The trend-resistant properties of all the main-effect and
interaction components can easily be determined from the generator sequence.
This can be used to search for generator sequences which will produce run or-
ders with desired trend-resistant properties. Extensions to general asymmetrical
factorial designs is also presented.

It is interesting to note that the order in which the generators appear is not
important in the conditions of Theorem 4.1 and Corollary 5.2. In other words,
it does not affect the trend-resistant properties of any main-effect or interaction
component. This provides much needed flexibility for achieving other secondary
design goals. It can be used, for example, to perform some limited randomization.
Another possible application is to the case where the cost of level changes is an
important consideration. When the experimenter wants to minimize the cost
“of level changes, the order in which the generators appear becomes important.
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Cheng (1985) considered the problem of minimizing the total cost of level changes.
Sometimes it is possible to construct run orders which provide required protection
of important factorial effects against time trend effects as well as achieve minimum
cost of level changes.
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