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Abstract: In industrial experiments for improving reliability, censored data are of-

~ten observed because of cost and time constraints. Associated with censoring are

" estimability problems, however. We expose these problems in the industrial con-

“text by presenting some striking examples which show that it is difficult to tell,
just by looking at the data, whether the estimates exist or not. Thus, in practice,
there is a potential danger of using meaningless results when the estimates do not
exist. Estimability is easily characterized for small two level factorial experiments
such as 4 and 8 run designs. Because characterization becomes difficult for larger
experiments, using a linear programming (LP) algorithm to check the estimability
conditions is recommended. For industrial experiments whose run sizes are typically
small, we propose a simple alternative LP problem that can be solved directly by a
standard LP algorithm. These results apply to popular reliability models including
the Weibull, lognormal and exponential regression models.
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1. Introduction

To improve a product’s reliability, an engineer can perform an experiment to
identify important factors that affect this quality characteristic. Taguchi (1987)
pioneered the use of highly fractionated designs for these experiments, which was
studied further by Hamada and Wu (1991). In such lifetesting experiments, cen-
sored data are often collected because of cost and time constraints. The censored
data can then be analyzed by calculating maximum likelihood estimates (MLEs)
for popular reliability models such as lognormal, Weibull, and exponential regres-
sion. While less costly to implement, censoring can cause estimability problems;
i.e., the MLEs may be infinite and are said to not exist. The non-existence
of MLEs for censored data has not been an important issue because it seldom
occurs in the medical or social science context where data are abundant. It be-
comes an acute problem, however, for lifetesting data from highly fractionated

_designs, because of the small amount of data that is usually collected. Silvapulle
and Burridge (1986) and Hamada and Tse (1988) showed that the question of
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the MLEs’ existence for these models reduces to solving a linear programming
(LP) problem. For simple linear regression, Hamada and Tse (1988) described
how the LP problem can be reduced to checking a few data configurations. In
this paper, we consider such data configurations for more than one covariate, the
situation that one faces in industrial experiments, because it is more efficient to
study many factors simultaneously.

In practice, the experimenter uses a software package to calculate the MLEs.
A serious problem can arise when the stopping rule of the optimization algo-
rithm is based on the increase of the likelihood function in successive iterations.
Namely, there may be no indication of anything going wrong even when some of
the MLEs do not exist. While some of the estimates should diverge in theory,
the stopping criteria may be met first since the likelihood becomes flat as the
estimates diverge. Therefore, because of the potential danger of making decisions
based on meaningless results, detecting such estimability problems is important.
Recently, Clarkson and Jennrich (1991) presented algorithms for computing the
MLEs when all of them do not exist.

In Section 2, we present a table that summarizes the extent of the estima-
bility problem for the 8 run design. For a particular data set, it is generally
hard to tell, just by looking at the data, whether the MLEs exist or not. Two
striking examples are presented that should convince the reader. For small two
level factorial designs, however, estimability problems are easily characterized.
Results for the 4 and 8 run designs are given in Section 3. Characterization
becomes difficult for larger designs, so that using an LP algorithm to check the
estimability conditions is recommended. In Section 4 we propose a simple alter-
native LP problem for industrial experiments which can be solved directly by a
standard LP algorithm. A check for estimability can then easily be incorporated
into existing software which calculates the estimates. In Section 5, we observe
that the results from the previous sections suggest an analysis strategy which
has been incorporated into a method proposed by Hamada and Wu (1991). An
interesting question is what additional experimentation is needed to guarantee
the existence of the MLEs. Results from the previous sections also suggest a
simple way to do this.

2. The Estimability Problem Exposed

We first introduce some necessary notation and then review how the question
of the MLEs’ existence for popular reliability regression models is answered by
solving an LP problem.

By modeling the log lifetime, lognormal, Weibull, and exponential regression
models fall into the following framework. Consider the model for n observations,
Yi = z;0 + o¢; (1 < ¢ < n), where 3, the regression parameters, and z;, the
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covariates, are p dimensional vectors. The ¢; are independent and identically dis-
tributed with known density. For the lognormal model, € is Gaussian, whereas for
the Weibull and exponential models, ¢ is the standard extreme value distribution.
Note that o equals one for the exponential model. Assume that for 0 < r < n,
the observations y; are (i) —oo < a; < y; for 1 < ¢ < r (right-censored) and (ii)
known exactly forr+1 <12 < m.

Provided there is at least one exactly known observation, Silvapulle and
Burridge (1986) and Hamada and Tse (1988) showed that the necessary and
sufficient conditions for the MLEs’ existence for all these models are the same.
The MLEs exist if and only if there does not exist a non-zero e € R? for which:
(i)zie>0for 1 <i<rjand (ii) zie=0forr+1< 7 < . Thus, the question
of the MLEs’ existence reduces to solving an LP problem. :
- —For designed experiments, in contrast with the general regression setup,
there are a finite number of possible covariate combinations. The columns of
the design matrix are orthogonal, and the entries in the design matrix for the
two-level designs are either —1 or 1. This structure implies that only a finite
number of data configurations need to be investigated. Although the number of
data configurations increases when the experiment is replicated, we need only
classify each run of the experiment. Suppose that the design has n runs. Then
classify each run as R or E: R if all observations are right-censored and E (exactly
known) otherwise. Then, regardless of the number of replications, the necessary
and sufficient conditions above simplify to: there does not exist a non-zero e € R?
for which ze > 0 for an R run and ze = 0 for an E run, where z is the appropriate
row from the regression design matrix for the model being fitted. Thus, we need
only solve an LP problem with n constraints in p variables.

-Table 1 displays the potential estimability problems of fitting eight different
models for the 8 run two-level designs studied later in Section 3. Let 22~° denote
the model for a two level factors and ¢ two factor interaction (f.i.) based on a
2~ fraction of a full factorial design. The first and second columns (#R and
Total) give the number of R runs (out of 8) and the total number of such data
configurations (8 choose #R), respectively. The body of the table gives the
number of configurations for which the MLEs do not exist. The table shows that
the estimability problem increases as the number of parameters in the model
increases and as the number of R runs increases.

While Table 1 displays the extent of the estimability problem for the 8 run
design, it does not answer the question of whether the MLEs exist for a particular
data set. For the main effects model, the conditions of Silvapulle and Burridge
(1986) and Hamada and Tse (1988) suggest a geometric approach for verifying
them: if there exists a p-dimensional hyperplane such that all the R runs fall on-
one side, then the MLEs do not exist; otherwise, the MLEs do exist. Two data
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Table 1. MLEs’ non-existence for the 8 run design

Design

#R Total | 2° 2471 25-2 96-3 57—4 93 -1 92—l

0 1{o| of o] of o o

1 8|0 0 o 81 o
2 28/0| o0 16| 28| 4| 8| 16
3 56| 0| 0| 40| 48| 56 | 24 | 40 | 48
4 70| 6| 16| 66| 68| 70 [ 56| 66 | 68
5 56|24 | 32| 56 | 56 | 56 | 56 | 56 | 56
i 6 28 (24| 24| 28| 28| 28 |28 | 28| 28
_ 7 s{8| 8| 8| 8| 8| 8| 8 8

8

configurations are easily checked using this approach. First, if two E runs have
design matrix rows with opposite signs, then the MLEs exist; it is impossible to
have all the R runs on the same side of the hyperplane which passes through the
pair of runs. We refer to this configuration as the opposite sign pair. This result
has implications for subsequent experimentation which is discussed in Section 5.
Second, if all the runs in the design with the same level of a factor are R runs, then
the MLEs do not exist. Here, a hyperplane can be fit through the E runs with
all the R runs on the same side of the hyperplane. We refer to this configuration
as complete separation.

Generally, it is hard to tell just by inspecting the data whether the MLEs
exist or not as the two examples that we present next suggest. Although there is
much structure in designed experiments, the structure is sufficiently complex to
prevent a simple method to determine estimability. As seen by the next example
as well as Table 1, existence is not necessarily guaranteed if the number of E
runs exceeds the number of parameters to be estimated.

FEzample 1. Consider the data from a 16 run design in 9 factors as shown in
Table 2. Assume an exponential regression model (f(y) = #exp{—6y}, where
6 = exp{zf3}) with an intercept and nine main-effects (10 parameters). Note that
12 out of 16 run are E runs! Using ISMOD (Lawless and Singhal (1987a,b)) to
fit the model, the optimizer went through 7 iterations yielding the estimates and
standard errors given in Table 3. Although the ISMOD output did not indicate
a problem, the MLEs do not exist for this data configuration.

This example shows that although the MLEs do not exist, the optimization

~
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Table 2. Design and data for Example 1

Design Matrix
Run | Data | Type Al Bl C| D| E| F| G| H{ 1
1 2.0 R 1 1 1 1 1 1 1 1 1
2 0.5 E 1 1 1 -1 1 -1 -1 -1 -1
3 0.6 E 1 1 -1 1 -1 -1 -1 1 -1
41 2.0 R 1 1 -1 -1 -1 1 -1 1
5 0.7 E 1 -1 1 1 -1 -1 -1 -1
6 2.0 R 1 -1 1 -1 -1 1 -1 1 1
, 71 2.0 R 1 -1 -1 1 1 1 -1 -1 1
- g8|los8| E| 1 -1 -1 -1 1 -1 1 1 -1
- 9 0.9 E|-1 1 1 1 -1 1 -1 -1 -1
10 1.0 E -1 1 1 -1 -1 -1 1 1
11 1.2 E|-1 1 -1 1 1 -1 1 -
12 1.3 E|-1 1 -1 -1 1 1 -1 1 -1
13 1.4 E|l-1 -1 1 1 1 -1 -1 1 1
14 1.5 E|l-1 -1 1 -1 1 1 1 -1 -1
15 1.6 Ef-1 -1 -1 1 -1 1 1 -1
16 1.7 E{-1 -1 -1 -1 -1 -1 -1 -1 1

program can terminate since the likelihood becomes flat as the estimates diverge.
While many iterations of the optimization routine can signal problems, the de-
faults in a software package may preclude this possibility. Unless the stopping
criteria are suitably chosen, our concern is that practitioners will not be aware of
an estimability problem and consequently make decisions based on meaningless
results.

Fzample 2. Consider the data configuration for a different 16 run design in 8 fac-
tors as displayed in Table 4. Here only 2 out of 16 runs are E runs. Surprisingly,
the MLEs exist for an exponential regression model with 8 main effects (9 pa-
rameters including the intercept). The opposite sign pair configuration explains
why the MLEs exist.

3. Results for 4 and 8 Run Designs

In this section, we use the two easily checked configurations, complete sep-
aration and opposite sign pair, as well as some other rules to characterize the
‘estimability problems for the 4 and 8 run designs. The results for the 4 run
design are based on the two easily checked configurations and are presented first.
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Table 3. Estimates and standard errors for Example 1

Parameter | Estimate |Standard error
INT -1.95+ 00 3.92 + 00
A —-1.66 + 00 3.92 + 00
B 1.67 + 00 3.06 — 01
C 7.43 — 02 3.06 — 01
D 2.17 - 02 3.06 — 01
E 5.06 — 03 3.06 — 01
F -1.99+ 00 3.92 + 00
G -1.94 - 02 3.06 — 01
H -4.04 - 03 3.06 — 01
I —-1.99 4 00 3.92 4+ 00

Table 4. Data configuration for Example 2

Design Matrix
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Define the E (R) set for a particular data configuration to be the run numbers
of the E (R) runs where #E (#R) denote the number of runs in the set. The E
(R) lists are simply lists of E (R) sets with mE (mR) denoting lists of m size sets.
In the following, we represent a set of runs by combining all the run numbers
into a single number; e.g., 12 represents runs 1 and 2 from the design matrix.
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3.1. 4 run design results

The 4 run design matrix is given in Table 5. The 22 and 23~1(= 22) designs
are obtained by using the first two and three columns, respectively.

Table 5. 4 run design matrix

Design  Matrix

Run| 1 | 2 | 12
1 1 1 1
2 1 -1 -1
3 -1 1 -1
4 -1 -1 1

The results for 22 are: (1) The MLEs exist for all 1R cases. (2) Of the 6 2R
cases, 4 have complete separation (MLEs do not exist) and 2 are opposite sign
pairs (MLEs exist). (3) All 3R cases have complete separation. For 23-1(= 22),
there must be all E runs for the MLEs to exist. These results can be summarized
as follows: for 22, if 12, 13, 24, or 34 are contained in the R set, then the MLEs
do not exist; for 23~1(= 22), if the R set is contained in 1234, then the MLEs do
not exist.

3.2. 8 run design results

Table 6. 8 run design matrix

Design Matrix
Run| 1] 2| 3 [123[12[13]23
1 ] 1 1 1 1 1 1 1
2 {1 1-1-1 1-1-1
3| 1 -1 1-1-1-1 1
4| 1 -1-1 1 -1 1-1
5 -1 1 1 -1 -1 1 -1
6 |-1 1 -1 1 -1 -1 1
7 /-1 -1 1 1 1 -1 -1
8 |-1 -1 -1 -1 1 1 1

The 8 run design matrix is given in Table 6 with columns used for differ-
ent models displayed in Table 7. Note that the models not listed with fewer
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Table 7. Columns used for 8 run design models

Columns used
3112(113(23}123
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main effects and more two factor interactions are identical to the main effects
models listed; namely, 23 = 2572, 2% = 26-3 2;‘1 = 274 2?'2 = 26-2
2572 = 2872 = 27-4. For each given model, there are 256 data configurations
to consider. We developed some rules to eliminate the need to check every data
configuration (see Hamada and Tse (1989a)) and used then together with the two
easily checked configurations to obtain the results for the eight different models
displayed previously in Table 1.
A simple summary for all 8 run design models is given below.

e For 2, if the R set contains 1234, 5678, 1256, 3478, 1357, or 2468, then the
MLEs do not exist.

o For-2*~1, if the R set is contained in 123678, 234567, 134568, or 124578, then
the MLEs exist.

o For 2572 if the R set is contained in 1467, 2358, 1368, or 2457, then the MLEs
exist.

e For 26-3 if the R set is contained in 1467 or 2358, then the MLEs exist.

e For 2774, if the R set contained in 12345678, then the MLEs do not exist.

e For 23, if the R set contains 12, 34, 56, or 78 or complete separation (1234,
5678, 1256, 3478, 1357, 2468), then the MLEs do not exist.

o For 2171, if the R set is contained in 1458, 1368, 2457, or 2367, then the MLEs
exist.

e For 23"1, if the R set is contained in 1368 or 2457, then the MLEs exist.

Next, we make some comments about Table 1. These results demonstrate
that for a given design, estimability problems increase as the censoring becomes
heavier (larger #R). For a given amount of censoring, estimability problems
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increase as the number of parameters increase; in other words, larger designs
or designs with fewer factors provide more protection. Also, note the dramatic
increase in the MLEs’ nonexistence in moving from 2%~ to 2°~2 and the following
surprising cases where the MLEs exist for large size R sets and do not exist for
small size R sets: for the former where p > #E, see (4R, Lg(2°~?)), (6R, Lg(2?),
Lg(24-1)); for the latter where p < #E, see (2R, Lg(2°2)).

The complexity of larger designs quickly increases so that an exhaustive
study of all the data configurations becomes prohibitive. Nevertheless, the MLEs’
existence for a particular data set can still be checked for any design no matter
what its size by solving the LP problem given in Section 2. In the next section,
we propose a simple alternative LP problem for industrial experiments.

]

4. A Simple Alternative LP Problem for Industrial Experiments

The LP problem to check estimability given in Section 2 cannot be solved
directly by standard LP algorithms since they find the zero vector which is always
a solution; recall that a non-zero solution is needed for non-existence. Instead,
we propose a simple alternative LP problem particularly suited for industrial ex-
periments. Silvapulle and Burridge (1986) also proposed an alternative problem
based on reducing the size of the problem, which included several intermediate
steps to obtain an alternative LP problem. Their approach reduces the problem
size at the expense of simplicity. It is especially appealing for biomedical ap-
plications where the data sets can be large. In the industrial context, however,
reducing the original problem size is unnecessary since the run size of designed
experiments is typically small. Recall that even if several replicates are taken,
the problem can still be solved in terms of the runs and not the individual ob-
servations. _

The following simple restatement of the original LP problem given in Sec-
tion 2 is as follows. Suppose that n is the design run size and #R is the number
of R runs. We change each inequality associated with an R run into an equality
by adding a new slack variable s. Since this new variable must be negative, we
introduce the corresponding constraint, s < 0. Thus, the alternative LP problem
is to minimize the sum of all the new slack variables given all the constraints
consisting of n equalities (one for each run) plus #R new inequalities (one for
each new negative slack variable). There are two solutions to this alternative
problem: either the zero vector is the only solution or the problem is unbounded
from below. The MLEs exist for the former case, but not for the latter. This al-
ternative problem can be handled directly by a Phase 1-Phase 2 algorithm (Best
and Ritter (1985)). See Hamada and Tse (1989b) for an implementation which
can_easily be added as a front end to the optimization program which calculates
the estimates. Note that our approach, in fact, increases the size of the original



390 - M. HAMADA AND S. K. TSE

LP problem. Consider, however, that the worst case for a 32 run design would
be 63 constraints in 63 variables which is still a small problem by LP standards.

5. Discussion

The results for the 8 run design in Table 1 contain some important infor-
mation that suggest a general analysis strategy: estimability problems tend to
occur with saturated or nearly saturated models, i.e., models whose number of
parameters are equal or nearly equal to the number of experimental runs. Con-
sequently, the MLEs for a comprehensive model will usually not exist. This
observation suggests a strategy of building up a model rather than starting with
a éonlprehensive model and then looking for good submodels. Hamada and Wu
(1991) proposed an iterative scheme of model fitting, imputation of censored ob-
serva{ions, and model selection which incorporates this strategy. Although their
procedure uses MLEs, most estimability problems are avoided by building up the
model. See their paper for details and applications of their method to two actual
experiments.

While these results suggest that larger designs provide better protection
against estimability problems, what can be done when the MLEs do not even
exist for the main effects model? Two interesting questions are how many ad-
ditional runs are needed to guarantee the MLEs’ existence and what are they.
The opposite sign pair configuration suggests a simple solution. If we perform
one additional run so that there are a pair of E runs with opposite signs, then
the MLEs exist. Thus, for one E run, perform an experiment at the opposite
combination until exact data are observed. A referee asked whether a combina-
tion could be run that guarantees existence whatever its outcome. The following
example suggests this possibility. Consider the 4 run design for two factors with
two R runs at the same level of one of the factors, say runs 1 and 2; the MLEs do
not exist for the main effects model. If an additional run (-1.5,0) is performed
(assuming that both factors are quantitative), then the MLEs exist for the main
effects model as well as the full model (including the 2 f.i.) no matter whether
the run is exact or censored. More work along these lines for larger designs is
needed.
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