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EXPERIMENTS: TWO EXAMPLES
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~Abstract: In a computer experiment, the data are produced by a computer program

that models a physical system. The experiment consists of a set of model runs; the
“design of the experiment specifies the choice of program inputs for each run. This
paper demonstrates two applications of a Bayesian method for the design and analysis
of computer experiments to predict model output corresponding to input values for
which the model has not been run. When the original code is long-running, the fast
predictor produced by this method can serve as an efficient, though approximate,
substitute. The models used in the two examples are (i) a computer model for the
combustion of methane and (ii) a computer model that simulates the compression
molding of sheet molding compound in the manufacture of an automobile hood.
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1. Introduction

The purpose of this paper is to demonstrate the application of existing
Bayesian methods for design and analysis of computer experiments (DACE) to
two computer models. The first example is concerned with a model for the
combustion of methane; its role in the application described here is to calculate
ignition delay times as a function of the reaction rates for the key reactions. The
second example involves computer simulation of a compression mold-filling pro-
cess used in the manufacture of automobile hoods. The role of this model, as
described here, is to calculate the position of the flow front of the material as
a function of time. In both examples, the original models are moderately long-
running. On a Cray X-MP, the methane combustion model typically requires 20
seconds per run, while the compression molding model requires 4-5 minutes.

Our primary use of these models was to try out our current versions of
Bayesian design and prediction, which are described in Currin, Mitchell, Mor-
ris and Ylvisaker (1991). Except for some minor philosophical differences, our

undetlying approach is essentially the same as that discussed by Sacks, Welch, ~
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Mitchell and Wynn (1989). As noted there, versions of this approach have been
used for a long time in various settings, e.g., kriging and Bayesian interpolation.

The objective in each example was to generate prediction formulas that could
serve as fast substitutes for the real model in certain well-defined tasks. This
done, we did not follow through any further, so the two accounts here are best
considered as realistic examples rather than complete case studies or scientific
applications. The reader who is already familiar with the general method and
with the examples presented by the papers cited above may wish to go directly
to the second example, which involves a somewhat more innovative application
of the prediction method.

2. Example I: Methane Combustion Model
2.1= Introduction

The model (Frenklach and Rabinowitz (1989)) was developed by Michael
Frenklach of Penn State University and Martin Rabinowitz of NASA, and came
to us through the courtesy of Jerome Sacks, William Welch, Susannah Schiller,
and Robert Buck, who used it in various applications of DACE carried out at the
University of Illinois. (See, e.g., Example 2 in Sacks, Schiller and Welch (1989).)

The model calculates, among other things, the ignition delay time in a com-
bustion reaction, given input variables that describe the experimental conditions,
the physical properties of the substances involved, and the rates of the reactions.
For an given reaction mechanism, it is of interest to find values of the reaction
rates for which the computed ignition delays closely approximate the (physically)
observed ignition delays in a collection of different experiments. This can be for-
mulated as a nonlinear least squares problem, but a straightforward numerical
optimization would be impractical due to the dimensionality of the domain and
to the nature of the least squares objective function, which has multiple ridges
and valleys (Frenklach and Rabinowitz (1989)). Since the calculation of each ig-
nition delay requires the solution of a large set of differential equations (requiring
approximately 20 seconds on a Cray X-MP computer), such a search would, ac-
cording to Frenklach and Rabinowitz, “place a prohibitively large demand upon
computer time”. The approach taken by them was to approximate the response
function of interest (ignition delay as a function of the key reaction rates) by
a polynomial and then use the approximation instead of the model-calculated
response values in the least squares objective function. Here we address only
the approximation part of this approach, using methods of Bayesian prediction,
which we regard as being better suited than polynomial approximation for func-
tions that are observed without random error.

-fnthe computer experiment we conducted using this model, there were seven™
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design variables, each corresponding to a particular reaction rate of interest. All
other inputs were held fixed at nominal values. The response (y) was taken to be
the logarithm of the ignition delay. (The designation of the seven rates of interest,
and the choice of metric for expression of the response, were made by Frenklach
and Rabinowitz.) Altogether, 50 runs of the computer model were made, in
stages, where each run corresponded to a particular configuration of the design
variables. We used the 50 resulting ignition delay values, y(¢t*)), i = 1,2,...,50,
where t() is the seven-dimensional vector of log reaction rates in the ith run,
to compute the prediction function 3 in the manner described by Currin et al.
(1991). This is based on a Bayesian approach. At any point ¢ in the region
of interest T, §(t) is the posterior mean of the random variable that is used
to represent uncertainty about y(¢). Bayesian posterior probability bounds for-
y(t)-were also computed. Predictions can be made very quickly using ¢; the
disadvantage, of course, is that §(t) is only an approximation to y(t).

Both the motivation (fast, inexpensive prediction) and the results (predic-
tions and uncertainty intervals) have parallels in response surface methodology;
see, e.g., Box and Draper (1987). There are some fundamental differences, how-
ever. In our setting, there is no random error, i.e., the function y is deterministic,
so there is no basis for the “response = signal + noise” model common to re-
sponse surface methods. Perhaps the most important difference between our
approach and response surface methodology is that the latter is based on the use
of empirical models (typically polynomials) fit to the data by the method of least
squares, whereas in our approach § is an interpolator whose functional form is
determined indirectly by the choice of correlation function (Section 2.3). If de-
sired, polynomials could be fitted to y as a follow-on, but since we are interested
only in fast prediction here, we have not done this.

2.2. Design

The central idea (which is not original with us) is to represent uncertainty
about the function y on a k-dimensional region of interest 7" by means of a stochas-
tic process (random field) Y. Although “stochastic process” often connotes ran-
dom sequences of events or functions of time, our usage is more general: it simply
means “random function”. This is a direct generalization of the Bayesian use of
“random variable” to represent uncertainty about a scalar quantity. For simplic-
ity and convenience, we use stationary Gaussian (normal) processes as priors.
These are fully described by a constant p = E[Y (t)], a constant o2 = V[Y (t)],
and a correlation function R, where R(d) = Corr[Y (¢t + d), Y (t)] and where
t = (t1,t2,...,t) and t +d = (t; + di, to + da,...,tx + di) are any two different
“sites” (points in T') separated by a difference vector d.

) Wﬁder the kriging approach, the unknown function y is assumed to be a
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realization of the stochastic process {Y (t),t € T}, which is treated as a model
for y. This model may also be expressed as one would a regression model with
correlated errors: Y (t) = u + £(t) where the “error” ¢ has mean 0, variance o2,
and correlation structure given by R. Although the prior mean in this model is
simply a constant, the correlation structure is very flexible, and this prior can be
used even when y is quite complex.)

Let Yp be the random n-vector that represents uncertainty about y at the n
design sites and let Y5 be the random vector that represents uncertainty about
the remaining sites in T. To motivate our design criterion, it will be convenient
to let D be a finite set of 7 sites (as it, indeed, is on a digital computer). After
the experiment, we are concerned only with the uncertainty in Y5, since yp is
known exactly.

It can be shown, using standard results from multinormal distribution theory,
that the posterior covariance matrix for Y given Yp = yp is

e*Chp = o*[Cpp - CppCrhChp) (2.1)

where Cpp is the 72 x 7 prior correlation matrix for Y, Cpp is the n x n prior
correlation matrix for Yp, Cpp is the A X n matrix of prior correlations between
the elements of Yp and Yp, and Cpp is the transpose of Cpp . Note that (2.1)
does not depend on yp.

By analogy with the well known criterion of D-optimality in the design of
experiments for linear model fitting, we shall adopt as our design construction
criterion the minimization of |C’}“—J pl- We find this criterion appealing, for reasons
given by Currin et al. (1991), but other criteria could be used. For example,
Sacks, Schiller and Welch (1989) and Sacks, Welch, Mitchell and Wynn (1989)
used-a criterion which amounts to minimizing the trace of C5p» With good results
in several examples.

Applying the rule for determinants of partitioned matrices, we know that

|Crr| = |Cpp| ICh 5l (2.2)

where Crr is the prior correlation matrix for the combined vector (Y}, Y3)'. Since
Crr is fixed by the prior, the D-optimality criterion is equivalent to maximizing
|Cpp|- That is, we want to choose D to maximize the determinant of the n x n
matrix of prior correlations among the design sites. This criterion can also be
regarded as a special case of the “maximum entropy” criterion. (See Shewry and
Wynn (1987) and Currin et al. (1991) for more details.)

Of course, one cannot maximize |Cpp| without specifying how Cpp depends
on D. For our priors, this means specifying the correlation function R. We favor

usinga weak correlation function, i.e., one for which R(d) decreases rapidly to
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zero as d increases. Such a strong conviction of prior ignorance is not useful for
analysis, since one would need to observe y at very many sites, located densely
in T, in order to yield predictions that are usefully precise. At the design stage,
however, we feel that the choice of a weak correlation function is appropriately
conservative.

For design purposes then, we use the exponential correlation:

R(d) = e ®20514! (2.3)

where 0 is “large”. Asymptotically (as § — o0), it can be shown that the D-
optimality criterion, where (2.3) is used to ‘construct Cpp, maximizes the mini-
mum intersite distance 3_ |d;| among design points, and favors those designs with
thefewest pairs whose intersite distance matches this minimum. This is a special
case of a result due to Johnson, Moore and Ylvisaker (1990), who called such
designs “maximin distance” designs. In this sense, the designs we construct will
attempt to push the design points as far away from each other as possible.

For design construction, we use an algorithm similar to DETMAX (Mitchell
(1974)). Starting with a random set of n sites, the algorithm does a series of
“excursions” in which candidate sites are added to and removed from the design.
When adding a site, the chosen site is intended to be the one at which the posterior
variance, based on the current design, is largest. It may not be possible to ensure
this if there are many sites to consider; if this is the case, the algorithm does a
limited search. When removing a site, the chosen site is the one corresponding
to the largest diagonal element in the inverse of the current CD p matrix. See
Currin et al. (1991) for further details.

A 50-run, 7-variable design for the methane combustion code was constructed
in this way, using the correlation function (2.3) with = 4.6 (e = 0.01) to
form Cpp. (Larger values of 6, which would be more likely to yield a maximin
design, were not feasible because of numerical difficulties encountered by the
design algorithm.) We shall refer to this design as D50; it consists of all 50 runs
given in Table 1. The design was constructed in the unit cube [0,1]" , with the
intention of scaling the actual input variables (the seven log reaction rates) in
the computer experiment appropriately. Since we restricted the candidates to
an evenly spaced 57 grid, each design variable can have values only in the set
(0, .25, .5, .75, 1). The minimum intersite distance E;{___l |d;| in D50 is 1.5; this
occurs for six pairs of sites. Although all of the design points are seen to be on
the boundary of T, this does not mean that they are all far from the center of T.
The mean distance of the 50 design points from the center of T is 2.38, compared
to 1.75 for a randomly chosen site and 3.5 for a corner of T'. Of the 78125 sites of
the 57 grid that served as cand1dates, the largest distance to the design is 2. 25
‘thé average is 1.15.
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Table 1. Fifty-run design used in the methane combustion example. Designs D20, D30,
D40, and D50 consist of the first 20, 30, 40, and 50 runs, respectively. y is the logarithm
of the ignition delay time in. usecs.

iy 2 ts 14 ts te ty Y
0.00 0.00 0.00 0.50 1.00 1.00 025 7.9315
025 050 050 0.75 0.00 1.00 0.00 6.2171
0.00 1.00 0.00 025 0.00 0.00 1.00 7.8535
0.50 0850 075 0.00 1.00 025 0.00 7.5708
0.00 075 0.75 1.00 1.00 1.00 0.50 6.3491
1.00 0.00 100 0.25 0.00 1.00 0.00 5.3045
000 100 000 075 100 050 1.00 85372
075 025 000 1.00 1.00 0.00 1.00 7.8710
050 075 025 0.00 025 050 0.50 7.8725
025 1.00 075 0.75 050 0.00 0.25 6.5930
0.50 0.00 1.00 025 1.00 0.75 1.00 6.2131
1.00 0.00 000 050 050 0.50 1.00 7.6311
1.00 050 1.00 075 0.00 0.25 050 5.1090
0.00 1.00 0.25 0.25 075 1.00 0.00 8.4206
1.00 1.00 0.00 1.00 025 0.00 0.50 7.2242
0.50 0.00 025 1.00 0.00 025 0.75 6.0216
1.00 1.00 100 100 050 1.00 0.00 5.3495
1.00 1.00 050 025 000 1.00 1.00 6.0325
1.00 0.00 100 000 075 0.00 0.25 6.4065
050 1.00 075 1.00 025 075 1.00 5.5674
025 000 050 0.25 025 000 1.00 65214
0.00 050 0.50 0.00 0.75 0.50 0.75 7.7907
025 000 0.00 0.25 0.00 0.75 0.50 7.3542
075 075 1.00 0.00 0.00 0.00 0.00 5.8651
0.25 0.00 1.00 050 0.75 0.50 0.00 6.4489
075 100 025 0.75 100 075 0.25 7.6225
000 1.00 1.00 050 025 100 0.50 5.8572 -
1.00 050 100 000 100 1.00 0.50 6.5656
100 025 1.00 100 1.00 025 0.00 5.7137
0.00 0.00 0.00 1.00 025 100 1.00 6.5603
0.50 0.00 0.50 0.00 0.75 1.00 0.25 7.5044
1.00 000 07 075 050 0.75 0.25 5.8721
1.00 0.00 000 000 100 0.25 0.00 8.2060
1.00 050 0.00 1.00 000 0.75 1.00 6.3746
025 050 1.00 0.75 050 1.00 1.00 5.4478
1.00 0.75 0.00 000 050 1.00 0.75 7.6953
0.50 0.00 100 0.00 0.00 050 0.75 5.3423
0.50 1.00 0.00 1.00 0.00 1.00 0.25 6.4493
1.00 025 000 050 000 0.50 0.00 6.8957
0.75 050 0.25 0.50 1.00 1.00 1.00 7.5563
0.75 0.75 0.25 0.50 0.00 0.25 1.00 6.7549
0.75 000 075 075 0.00 1.00 1.00 5.0056
000 025 0.25 1.00 075 0.25 0.75 7.4006
1.00 025 0.75 000 025 000 1.00 5.6656
0.50 0.50 0.50 0.50 050 0.00 0.00 7.4111
075 1.00 0.75 025 025 0.75 0.25 6.7111
1.00 050 025 025 075 0.75 0.00 7.9182
1.00 025 050 1.00 1.00 1.00 0.50 6.2543
000 075 050 0.75 025 025 0.50 6.7319
025 1.00 0.25 1.00 0.75 1.00 0.75 6.9749
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Rather than doing all 50 runs at once, we decided to run the experiment
in a series of stages, starting with 20 runs, then adding 10 at each succeeding
stage. The rationale was that we might gain sufficient information at an early
stage to avoid the need to run the complete design. To construct the 40-run
design (D40), we used D50 as the set of candidate runs and used the design
algorithm to choose 40 of them, again using the D-optimality criterion and the
same correlation function. The 30-run design (D30) was chosen from D40, and
D20 from D30, in a similar way. Apparently, the smaller designs in this sequence
do not suffer much with respect to the design criterion. Using as a baseline the
best of 10 randomly generated 5-level 20-run designs, we found the gain in log
|Cpp| achieved by D20 was 99.8% of that achieved by the best 20-run design we
obtained from the full 57 candidate set. :

2.3 Experiment and prediction

The initial experiment on the methane combustion code was based on D20.
Each t; was a coded (centered and scaled) value of the logarithm of the jth
reaction rate. After the initial 20 runs of the combustion code were made, pre-
dictions were made using standard formulas for conditional normal distributions.
The mean and variance of Y (t) given Yp = yp are:

E[Y(t)|Yp = yp] = §(t) = p+ CepChp(yp — pJn) (2.4)
VY (t)|Yp = yp] = 9(t) = 0*(1 — C;pC;pCh1) (2.5)

where Cp; = C}p is the n-vector of prior correlations between Y (t) and Yp and
J,, is an n-vector of 1’s. In order to use (2.4) and (2.5), one. needs to specify
the prior mean pu, the prior variance o2 and the correlation function (needed for
C:p and Cpp). In our approach, we arbitrarily choose a family of correlation
functions, indexed by a set of parameters 6, and then use maximum likelihood
or cross-validation to select g, 02, and . Maximum likelihood, which we use
here in the first example, is a well-accepted frequentist method if one views the
prior as a model for y (Sacks, Schiller and Welch (1989), Sacks, Welch, Mitchell
and Wynn (1989)). It can also be viewed as a form of Bayesian cross-validation
(Currin et al. (1991)). We can offer no particularly good reason for preferring
maximum likelihood to more traditional cross-validation methods (e.g., the one
we use in our second example), except that it takes into account the predictive
variances as well as the predictive means, which may or may not be considered
an advantage. ‘

For the present example, we choose the piecewise cubic correlation (Currin
et al. (1991)):

7
R(dl, cee 7d7) = H R](dj) (26)_
=1
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d: 2 |dl 3
R;d;)=1-6 (0—’> + 6 (9—’) |dj| < 6;/2 (2.7a)
J J

3
Rj(d;) =2 (1 - l—zj%l) 0;/2 < |d;| < 6; (2.7b)
J

Rj(dj) =0 |d;j] 2 6; (2.7¢)
There is no particularly compelling reason to use this instead of some other family
of correlation functions. However, the piecewise cubic does have two appealing
features: (i) R;(d;) decreases to 0 as |d;| increases to 6;, so that predictions can
be made more local or less local by controlling 6;, and (ii) § is a cubic spline
in every t; if the other t;’s are fixed. (This is because each element of C;p,
regarded as a function of t;, is itself a cubic spline.) Cubic splines are quite
highly regarded as interpolators and data smoothers; Bayesian prediction based
on (2.6)—(2.7) produces an interpolating cubic spline with very little effort on the
part of the user.

In the methane combustion example, we selected values of u, o, and § =
{61,...,67} by maximum likelihood. We actually have little interest in these
parameters for their own sake; we are simply trying to use the data to find a prior
that works well for the data at hand. By doing this, we admittedly stray from the
Bayesian path and take a turn that some would describe as empirical Bayesian.
This is more for pragmatic than philosophical reasons — we have not yet found a
natural approach for assigning a prior to . The natural “noninformative” prior
for p is the improper uniform prior p(u)dy = dpu; this in fact leads to the same i
as that provided by the MLE.

The log likelihood function is:

n
T2
which depends on 6 through Cpp. Given 6, this is easy to maximize over u
and 02, but maximization over @ requires iterative search — this is by far the
most (computer) time-consuming part of the prediction method if # has many
components. o

To obtain a measure of predictive error for fixed values of the parameters of
the prior process, it is useful to consider the errors in a “leave-one-out” cross-
validation. In principle, each of the n experimental runs is deleted, in turn,
and the data at the remaining sites are used to predict y at the deleted site.
Computationally, this is not as exhausting as it seems, since it can be shown that
the error of prediction at the deleted site is

n 1 1 —
L=-35 log(2m) — - log 0% — 5 1og|Cop|~ 5;"2'(1/19 —uJn) Cpp(yp—pds), (2.8)

- ei = gi(gi — pw;) (2.9)
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where
9=Cppyp (2.10)

w=CphJn (2.11)

and g is the inverse of the diagonal of CBII_). Here Cpp is based on the full n-run
design. The cross-validation root mean squared error is then:

n 1/2
CVRMSE = (n_l > e?) (2.12)
1

This computation is done with the parameters of the prior process fixed at
‘the values selected (by maximum likelihood, for example) for the full sample.
- That is, we do not recompute the MLE for every one of the n “leave-one-out”
scénarios; this would usually take too much computer time.

The values of CVRMSE at the end of each stage (D20, D30, D40, D50) of
the methane combustion experiment were, respectively, 0.21, 0.15, 0.13, 0.19.
(The response values in each stage ranged from about 5 to 8.5.) We have no
explanation for the increased CVRMSE at the last stage.

In order to find out how well the prediction procedure works in this exam-
ple, we ran the methane combustion code at two different sets of test sites and
compared the true y values with the predictions. The first was a set of 50 sites
chosen randomly from a uniform distribution on 7. The second was a set of 64
sites at the corners of T'; these were chosen to correspond to a half fraction (of
resolution VII with generator I = 1234567) of the 128 corners. Plots of y(t) vs.
y(t) for these two sets of test sites are given in Figure 1, where § is based on
the 50-run experiment D50. For the 50 random sites, where the true response
varied from 5.6 to 7.9, the root mean squared prediction error was 0.1212 and
the maximum prediction error was 0.3507. For the set of 64 corner sites, where
the true response varied from 4.4 to 8.9, the root mean squared error was 0.1680
and the maximum error was 0.5382.

Figure 2 shows the root mean squared error of prediction as a function of
n at the two sets of test sites, where the correlation parameters at each value
of n were selected by maximizing the likelihood. Also shown for comparison are
values corresponding to least squares fits under first order (linear) and quadratic
polynomial models. Our predictions are seen to compare favorably with these
standard approximation methods, particularly at the corners of T. It is possible
that other designs may be more suitable for polynomial fitting. However, we did
try a 79-run central composite design, with axial points at the faces of the cube,
in an attempt to see how well a standard design for fitting quadratic polynomials_
would-do. A quadratic polynomial was fitted to the data from this design by
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the method of least squares. At the 50 random sites, the predictive root mean
squared error was 0.1356, and the maximum error was 0.3475. Since these values
differ little from those for our design/prediction method with n = 50, we regard
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Figure 1. Predictions (§) vs. true values (y) at (a) 50 random sites and (b) at the 64 sites
that correspond to a half-fraction of the corners of the region of interest. Predictions are

based on the 50-run design D50.
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Figure 2. Root mean squared error (RMSE) of prediction vs. n at (a) 50 random sites
and (b) at the 64 sites that correspond to a half-fraction of the corners of the region of

interest. Bayesian predictions are based on a piecewise cubic correlation function. Also
shown are the RMSE values for the least squares fit of linear and quadratic polynomials.



BAYESIAN DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS 369

the latter as considerably more efficient here. (We did not do a similar comparison
at the corners, since our test set there was used as the “cube” part of the central
composite design.) ,

Sacks, Schiller and Welch (1989) used the same computer model for their
Example 2. They considered a region of interest that was centered at the same
point but was half as large in each dimension, and obtained very good predictions
in this region using a 79-run design. Their root mean squared error at 200 random
sites was 0.012, which is about one tenth the value that we obtained over the
larger region, using our 50-run design. We cannot say whether this is due to
the difference in density of design sites in the region of interest, the nature of
the response function over the larger region, or to the difference in the choice of
model and design and the method of analysis.

2.4. Estimating features of the response function

Although the coefficients in the expression for § are not directly interpretable
as features of the response function y (e.g., main effects, interactions, quadratic
effects, etc.), it is useful to recognize that such features can be defined as func-
tionals of ¥, and can therefore be evaluated or approximated using . To illustrate
this in the present example, we evaluated §(t) at the 128 corners of T', i.e. we
predicted the results of a 27 experiment, and then used these values to compute
main effects and interactions in the usual way. For comparison, we also com-
puted main effects and interactions based on the true values of y at our 64 corner
test sites, which correspond to a half-fraction of resolution VII. If 5-factor and
6-factor interactions are assumed neglible, then the main effects and two-factor
interactions estimated from the resolution VII data will be very nearly correct.
As Figure 3 indicates, there is a fairly strong correlation between our predicted
effects and those computed from the resolution VII data, even after 20 runs. The
largest effects, which are the main effects of ¢3, t3, t4 and t5, are accurately
identified (taking the resolution VII results as truth). The smaller effects are
more difficult to sort out. In fact, the largest two-factor interactions don’t really
emerge until n = 50. As a separate exercise,we added an amount equal to 0.8¢3t4
to each observed value of y, redid the analysis for D20, and again predicted main
effects and interactions. The purpose was to observe whether the presence of an
interaction having about the same magnitude as the largest main effect would
be detected. In this case it was, although its predicted magnitude (0.44) was an
underestimate. This raises the possibility that the prediction of main effects and
interactions, following the design/prediction method presented here, may be an
effective tool for screening (i.e., identifying important effects and interactions).

Our examination of main effects and interactions here is based on the pre-
dictions at the corner points of T. An Associate Editor has suggested that an
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analysis of predictions corresponding to three- or four-level factorial designs (or
fractions thereof) would be more informative, and we agree. A more global defi-
nition of main effects and interactions, which considers predictions over the entire
region,was suggested by Sacks, Welch, Mitchell and Wynn (1989, p.418). Plots
of these main effects and interactions, which are functions in one and two dimen-
sions, respectively, can reveal much about the nature of the response, including
curvature. This was done to advantage by Welch et al. (1992) for the purpose of
screening and prediction.
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Figure 3. Main effects and two-factor interactions (Z) obtained from predictions at the
128 corners of the region of interest, using the Bayesian predictor with n = 20 runs

-1

'

(design D20) and a piecewise cubic correlation function, plotted against the main effects
and interactions (Z) obtained from a 64-run resolution VII experiment. The main effects
for variables 2, 3, 4, and 5 are labeled.

This is as far as we took the methane combustion experiment, since our pur-
pose was to demonstrate our approach to the approximation of y by 7. To achieve
the ultimate goal of estimating the reaction rates by matching experimental and
computed results, we would need to undertake a similar exercise for each of M
experiments to obtain prediction functions g, for m =1,..., M. We would then
search for ¢ such that §m(t) = ym, m = 1,..., M, where y, is the observed
ignition delay time in the mth experiment.

3. Example II: Compression Molding Model

3.1. Introduction
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This example is concerned with an experiment on a simulation model of the
compression molding of an automobile hood. The material used in the manu-
facture of this part is a sheet molding compound composed of polymer resin,
chopped fibers, filler, and additives. Prior to the molding process, a “charge”,
or piece of this compound, is cut from a sheet and placed in a heated mold.
The process is begun by closing the mold slowly; during the process the material
flows and fills the mold cavity. After filling, a constant force is maintained on the
mold, as the curing reaction proceeds; then the part is removed and the curing
is completed.

Designers of the manufacturing process are concerned with the movement of
the flow front; it is desirable that the charge fill the mold evenly and rapidly,
without the presence of “knit lines” formed when two parts of the flow front
meet. To help determine the effect of the design parameters (e.g., the initial
shape and placement of the charge) on the flow front movement, a computer
simulation model is used. This model is a version of the TIMS (ThIn Mold filling
Simulation) model, which was developed by Tim Osswald and Charles Tucker
(1990). The version we used came to us through the courtesy of Alonzo Church,
Jr. and Daniel Fleming, who were of great help to us in learning to use it and in
evaluating the results. The theory and numerical implementation are described
in Osswald and Tucker (1990). The inputs to the code include the geometry
of the part, the material properties (e.g., viscosity), the closing speed, the final
thickness of the part, and the-shape and location of the charge. The output
consists of all the information needed to predict the position of the flow front as
a function of time. The code uses a finite element method to solve a system of
differential equations based on the physics of the process. This is not a trivial
computation — each run of the model code takes 4-5 minutes on a Cray X-MP
computer. For specific, well-defined experiments, it is worthwhile, therefore, to
seek a fast approximation to the model; this is the purpose of the exercise we
shall describe here. Of special interest to us is the highly multidimensional nature
of the response (flow front movement). Previous applications of our prediction
method, and of similar methods described by other authors, have been concerned
with prediction of a single response computed from the output. Although we
shall do nothing more than apply the same prediction method separately to 2345
related responses, we shall see that even this kind of naive approach can be useful.

3.2. Predictors and response variables

In this example, we are concerned only with the effect of the initial shape
and location of the charge. The input that defines this is a list of “nodes” (in
the finite element discretization of the mold surface) that are filled initially by
the charge. There are 469 nodes altogether, and the initial charge typically fills
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30 to 40 of them. (Although nodes are actually points, each is associated with
a small subvolume of the mold. When we refer to a node as being “filled”, we
are really referring to this associated subvolume.) In order to represent the list
of initially filled nodes by a few predictor variables, we require the initial shape
of the charge to be rectangular. The predictor variables are then defined by
the boundaries of the rectangle. This is done conveniently using the node map
(Figure 4), where the nodes form an approximately uniform grid over the part
of the mold where the charge might be placed. The north and south boundaries
of the charge correspond to the predictor variables t; and t, while the east and
west boundaries correspond to ¢3 and i4, respectively. (The scaling is such that
0<t2<t1 <1 and 0 < t4 < t3 < 1.) See Figure 4 for an example. For other
geometries, of both the charge and the region of the mold into which the charge -
is to be placed, the representation of the initial shape and location of the charge
by a few predictor variables might be considerably more difficult.
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Figure 2. Node map, showing coordinate system for predictor variables t;, ta, t3, t4.
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The next part of the setup of the prediction problem is to define, from the
mass of output, a manageable set of response variables that will permit prediction
of the flow front. The output gives values of the function pm(7) for all nodes m =
1,...,469 at each time step in the simulation, where pm(7) denotes the proportion
of node m that is filled at time 7. Table 2 shows a portion of the output; the full
output consists of a sequence of many such tables, each corresponding to a time
step.

Table 2. Output of TIMS at a single point in simulated time. The full output is a
sequence of many such tables.

i Time = 6.37210

Charge Information

- Node (Cell) Fraction
Number Filled

b

1 0.00000

2 0.00000

129 0.06009

130 0.28437

131 0.56793

132 0.69239

133 0.65781

R 134 0.43808
151 1.00000

152 1.00000

469 0.00000
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At each node m, we defined the five responses

Ym1 : the last recorded time at which node m is empty (pm(ym1) = 0),
Ymg : the time at which node m becomes 25% full (pm,(ym2) = 0.25),

Ym3 : the time at which node m becomes 50% full (pm(ym3) = 0.50),

Ym4 : the time at which node m becomes 75% full (p.,(yma) = 0.75),

Yms : the first recorded time at which node m is 100% full (pm (Yms) = 1).

Since these values are not given directly by the output, which gives values of p,, at
various times, we approximated them by linear interpolation of the output data.
The prediction problem was then taken to be: Approximate the 2345 functions
Ymr = Ymr(t1, to, t3, t4), where m = 1,...,469 and r = 1,...,5, over the region
defined by 0 < t2 < 13 < 1,0 < t4 < t3 < 1. Two further practical constraints
on the region of ineterest were added. The first restricted the placement of the
charge to be symmetric about the north-south center line, i.e., t3 + t4 = 1.0; see
Figure 4. The second required that the number of nodes initially filled by the
charge be between 30 and 40; this was our way of implementing a requirement
that the area of the mold surface initially covered by the charge be fairly constant.

3.3. Design

The design of the experiment was obtained using our design algorithm for
D-optimality with a weak correlation function as described in Section 2. The
set of candidate runs was formed by first letting ¢; and t; take any of 11 levels
(corresponding to the horizontal grid lines in Figure 4), and t3 and t4 take any of
13 levels (corresponding to the vertical grid lines). Imposition of the restrictions
mentioned just above reduced the number of feasible candidate runs to 41. (If
we were doing this problem solely for application, and discovered that there were
only 41 scenarios of interest, we would probably run them all using TIMS and be
done with it! However, for the sake of demonstration, we shall carry on.)

The initial 10-run design, plus an additional 5 runs that were chosen later,
are shown in Table 3. The need for the additional runs was clear after inspection
of the cross-validation predictions based on the initial experiment. These runs
were chosen using the same algorithm and the same correlation function which
generated the first ten runs. The full 15-run design populates the regidn of interest
(which is relatively small here) quite densely; the maximum distance E?=1 |t; —s;]
between any feasible site ¢ not in the design and the closest design site s is 0.2.



BAYESIAN DESIGN AND ANALYSIS OF COMPUTER EXPERIMENTS 375

Table 3. Design for experiment on compression molding model.

Initial Design

Run tl tg t3 t4

1 0.40 0.00 0.75 0.25

2 0.40 0.20 1.00 0.00

3 0.80 0.60 1.00 0.00

4 1.00 0.00 0.58 0.42

5 0.80 0.40 0.75 0.25

6 0.60 0.40 0.92 0.08

7 0.50 0.20 0.83 0.17

8 0.70 0.10 0.67 0.33

; 9 0.90 0.60 0.83 0.17
-~ 10 1.00 0.50 0.67 0.30

Additional Points

Run t1 tg t3 t4
11  0.50 0.00 0.67 0.33
12 0.70 0.40 0.83 0.17
13 1.00 060 0.75 0.2
14 060 0.20 0.75 0.25
15 090 0.20 0.67 0.33

3.4. Prediction

The prediction method was essentially the same as that described above in
Section 2.3, except for the criterion for selecting the parameters of the prior.
Equation (2.4) is the key formula; it was applied to each of the 2345 responses in
turn. We allowed p to differ among responses, but the correlation parameters (6;
in (2.7)) were taken to be the same for all responses. This was done for reasons of
expediency; it would have taken an excessive amount of computation to optimize
the choice of the 6’s separately for all 2345 responses.

Since t3 +t4 = 1 throughout the prediction region (due to our requirement of
symmetry of the initial charge), we might have omitted one of these variables as a
predictor in order to simplify the analysis. This would change the correlations, so
we could not expect the same predictions, but we have not determined whether
we would have done better or worse by taking this route.

We did add another predictor variable, however. In our first analysis, the
cross-validation results at particular nodes indicated that the predictions of y,,
tended to be lower than the true values when the area of the charge was smaller
than average and higher than the true values otherwise. That is, the predictions
had the flow front moving too fast when the area of the charge was relatively small.

-We-assumed that this was due to the increase in the height of the charge when
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the area is small (since the volume is held constant), which would presumably
result in a slowing of the movement of the front as computed by TIMS. At any
rate, we decided to introduce an additional predictor: ts = (t1 — t2)(ts — t3),
which represents the approximate area of the charge.

Predictions were based on the product piecewise cubic correlation function
given above in (2.6)—(2.7). To save time in the search for the optimal correlation
parameters, we used only one response at each node, namely ym3, the time to 50%
filling. This seemed reasonable since we expected the other response functions
to be similar in form. The values of py,3, m = 1,...,469, and 0;, j = 1,...,5,
were chosen to minimize the sum of squared cross-validation errors. Then, fixing
the 6’s at these values, we determined values of pp, for all m and r (again by
cross-validation), this time using all 5 responses at each node.

We then implemented the prediction equations for all responses in the form
of a short computer code “FTIMS”, which serves as a fast emulator of TIMS
for investigating the effects of changing the shape and location of the charge.
The input and output files for FTIMS are of exactly the same form as those for
TIMS. The only difference is that the output for FTIMS is based on the prediction
equations that followed from the computer experiment we described here, rather
than the finite element solution to the differential equations of the model.

FTIMS converts the TIMS input into the site (¢1,...,t5) at which predictions
are desired. The 15 x 1 vector C;p of correlations between this site and the design

sites are computed using the values of 6;, j = 1,...,5, that we found to be optimal
by the cross-validation criterion. .
The predictions of the responses ym», m = 1,...,469, 7 =1,...,5, are made

using (2.4), where the 15 x 1 vector w = CB})J,, (which is the same for all m, r)
is provided by a fixed input file, as is the 15 x 1 vector g = CB},yD and the scalar
p (both of which depend on m and r). FTIMS then adjusts the five predicted
responses at each node, if necessary, to incorporate the knowledge that the true
responses are nonnegative and nondecreasing. (We do not expect this adjustment
to be needed very often, since the predictions interpolate data that satisfy these
requirements. In the test case that we report below, the adjustment was needed
at only two of the 469 nodes.) Monotonicity is enforced in a straightforward
‘way, based on the notion that, of the five responses at node m, gm3 (i.e., the
time to 50% filling) is generally the most reliable. This response is therefore
left unchanged, and §m2 and §m4 are adjusted, if necessary, so that Jme < gm3 <
Yma4. Keeping these three predicted responses constant, Jm1 and yms are adjusted
similarly.

To convert the five predicted responses at each node into estimates of p(7) at
the values of time desired, FTIMS again uses linear interpolation. The results are
then-printed in exactly the same form as the output produced by TIMS (Table
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2). The postprocessor that normally runs on TIMS output can then be applied
to the output of FTIMS. This produced Figure 5, which shows the position of
the flow front seven seconds after the start of the simulation, as computed by
TIMS and FTIMS for a test case in which t; = 0.7, to2 = 0.3, t3 = 0.75, and
ts = 0.25. The predicted front is seen to be just a little ahead of the true front
in this case. Plots similar to Figure 5 were made at several different time points,
and the predicted flow front matched that computed by TIMS quite faithfully.
On average, the predicted time to 50% filling in this case was 0.14 seconds less
than the time calculated by TIMS; the root mean squared error for ym,m3 over
all nodes was 0.23 seconds. In seven other randomly chosen test cases, the root
mean squared error for J,3 over all nodes varied from 0.01 sec to 0.68 sec, with a
median of 0.27 sec. In these test cases, the “true” times to 50% filling, averaged
over all nodes, varied from 6.4-9.1 seconds.

The range of applications of the current version of FTIMS is obviously quite
[imited. Further generalizations, modifications, and tests would need to be made
before it could be considered a practical tool for optimizing this particular sheet
molding process. Even at that stage, we would regard FTIMS as only an occa-
sional replacement for TIMS, when one wants to consider many scenarios quickly
and one is willing to accept an approximate result. The computing time for the
single run of FTIMS in the first test case described above was about 43 seconds
on a Sun 3/50 Workstation, only 5 seconds of which were used to compute the
predicted response vector at each node. The rest of the time was used for input
and output. We have already noted that each run of TIMS takes 4-5 minutes on
a Cray X-MP, so the availability of a practical and well-tested version of FTIMS
would permit more extensive exploration of the effects of shape and position of
the_charge on the movement of the flow front.
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TIMS (lower) and FTIMS (upper). Top view of hood is shown, with nodes indicated as
in Figure 4. Dashed line shows position at start of simulation.
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