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3 Abstract: Parameter design is a quality engineering method, popularized by Japanese
= quality expert G. Taguchi, that aims at reducing sensitivity to hard-to-control vari-
_ ation in products and manufacturing processes. The method finds the settings of

design factors that minimize expected loss due to variation. To do the minimization
Taguchi uses controversial two-step procedures involving quantities he calls signal-
to-noise (SN) ratios. To explain SN ratios, Leén, Shoemaker and Kacker (1987) in-
troduced Performance Measures Independent of Adjustment (PerMIAs) and showed
that some of Taguchi’s SN ratios are PerMIAs. In this paper we propose a theory
to explain the roles of PerMIAs and adjustment factors in the two-step procedures
for constrained minimization. We develop conditions for finding PerMIAs and two-
step procedures. In the second part of the paper (Sections 6 and 7), we extend the
modeling techniques for quadratic loss to general loss functions. For this purpose,
general dispersion, location and off-target measures are introduced. Our results are
illustrated with several examples involving quadratic and other loss functions. Most
of Sections 6 and 7 can be read independently of Sections 2 to 4.

Key words and phrases: PerMIA, Taguchi’s signal-to-noise ratio, parameter design,
robust design, statistical quality control, loss function, dispersion measure, off-target
measure.

1. Introduction and Summary
1.1. Parameter design: Reducing sensitivity to variation

A step in processing silicon wafers for IC (integrated circuits) device fabrica-
tion is to grow an epitaxial layer on the silicon wafers. For one type of AT&T IC
device, the specifications called for a layer thickness between 14 and 15 microme-
ters. Yet, the variation around the ideal 14.5 micrometers was too large to meet
this specification. To reduce this variation, the engineers working with statisti-
cians identified eight crucial process design factors. Then, using a statistically
planned experiment, it was found that two design factors, nozzle position and
susceptor-rotation method, had the most influence on the epitaxial layer’s vari-
ability. The experiment also showed that one factor, deposition time, had a large
effect on average thickness but no effect on variability. Changing the settings
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of these three factors to settings suggested by the data analysis, the engineers
reduced the variability of the epitaxial layer by 60%, as confirmed by a follow-up
experiment. The change to new settings did not increase cost. (See Kacker and
Shoemaker (1986)).

Problems, such as the above, where the aim is to increase quality by identi-
fying special settings of the design factors, were introduced by Taguchi (Taguchi
(1986), Taguchi and Phadke (1984), Taguchi and Wu (1980)) under the general ti-
tle of parameter design. More specifically, following Leén, Shoemaker and Kacker
(1987) (henceforth denoted by LSK), we define parameter design as the operation
of choosing settings for the design factors of a produce or manufacturing process
to reduce sensitivity to noise. Noise is hard-to-control variability affecting per-
formance; for example, the following are considered to be noise: deviations in the
raw materials from specifications, changes in the manufacturing or field operating
environment such as temperature or humidity, drifts in the settings of the design
factors over time, and deviations of design factor settings from nominal settings
due to manufacturing variability.

In parameter design, noise is assumed to be uncontrollable. After parameter
design, if the loss caused by noise is still excessive, the engineer may proceed to
control the noise through relatively expensive countermeasures, such as the use
of higher grade raw materials or higher-precision manufacturing equipment.

1.2, Formulation of on-target parameter design problems

Figure | from LSK shows a block diagram representation of the type of pa-
rameter design problem that includes the wafer fabrication example. Taguchi
(Taguchi and Phadke (1984)) calls this type the static parameter design problem
because the target is fixed. In this block diagram, for given settings of design
factors ©, the noise N produces an output Y'; that is, the output is determined
by some transfer function f(IV;©). The noise is assumed random; hence the out-
put is random. A loss is incurred if the output differs from a fixed target t that
represents the ideal output. The average loss is given by

R(®) = EL(Y, 1),

where L is a loss function. The goal of parameter design is to choose the settings
of the design factors © to minimize average loss. In practice, this minimization
may be subject to a constraint, such as the unbiasness constraint, E(Y) = t¢.
In some situations the maximum loss over the noise conditions may be a more
appropriate measure for R(©) than the average loss. This change does not affect
the results in this paper on R(©O) since they are independent of how R(®) is
defined—as a function of loss.
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Note that this formulation does not include the important problem of “larger
the better” or “smaller the better” characteristics.
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Figure 1. A Block Diagram Representation of the Static Parameter-Design Problem. The
output Y is determined by the noise N through the transfer function f. The transfer
function depends on the design parameters ©. Loss is incurred if the output is not equal
to the target t. )

1.3. Taguchi’s SN ratios and LSK’s PerMIAs

"To find the solution to a parameter design problem, Taguchi generally starts
by dividing the design factors into two groups, © = (a,d), where a and d are
called respectively the adjustament and nonadjustment design factors. Then, to
find the optimal settings of the design factors, ©* = (a*,d"), he recommends a
two-step procedure that can be roughly stated as follows.

Procedure 1 (Taguchi’s Generic Two-Step Procedure)
Step 1. Find d* to maximize a quantity called the Signal-to-Noise (SN) ratio.

Step 2. With d fixed at d*, find a* by identifying the setting of a that adjusts
the output to the target.

For the static parameter design problem with continuous output ¥ the SN
ratio given by Taguchi is

T SN = 10log [(EY?)/VarY). (1.1
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The use of Taguchi’s SN ratios and two-step procedures has been controversial
since it has not been clear to many statisticians under what circumstances they
should be used. More concretely, a theoretical understanding ¢f the modeling
problem that precedes data analysis has been lacking.

Progress in providing this theoretical understanding was made by LSK. They
proposed the following two-step procedure to solve the parameter design problem.

Procedure 2 (LSK’s Two-Step Procedure)
Step 1. Find d* to minimize P(d) = Min,R(a,d).
Step 2. Find a* to minimize R(a,d*).

. LSK called the quantity P(d) in Procedure 2 a Performance Measure Inde-
pendent of Adjustment (PerMIA), since, as discussed above it measures product
or process performance independent of adjustment. Then LSK showed that sev-
eral of Taguchi’s SN ratios including the one given in (1.1) coincided with their
PerMIAs if different specific transfer functions were chosen.

As an illustration, for the static parameter design problem of Section 1.2 the
transfer function LSK identified is : f(N;a,d) = u(a,d)e(N,d), where EY =
p(a,d) is a strictly monotone function of a for each d. This model essentially
says that the SN ratio given in (1.1) does not depend on the factor a.

1.4. Rationals for using two-step procedures

In parameter design problems an adjustment factor can usually be identified
on the basis of engineering knowledge. For example, in many applications there
are scale factors that are used as adjustment factors. Scale factors can be used
to change the “scale” of the product or process. Examples of scale factors are
: mold size in tile fabrication, mask dimension in intergrated circuit fabrication,
and -exposure time in window photolithography. In the silicon wafer example of
Section 1.1 deposition time is the scale factor. (See Section 2.2 of LSK for more
detail on scale factors.)

Methods for identifying adjustment factors based on observed data have also
been proposed (Nair and Pregibon (1986), Box (1988)). But these methods
require more data than is usually available in the highly fractionated experiments
commonly used in parameter design applications, and perhaps more seriously they
do not incorporate the simple engineering knowledge that enables the investigator
to readily identify the adjustment factors. In addition, empirically identified
adjustment factors may not hold outside the region of the data. Thus their use
to infer optimal product or process behavior around a target outside this region
is highly suspect. An illustrative example was given in Wu (1987).

Why use two-step procedures such as Taguchi’s or LSK’s? We think there
are three main advantages in their use in parameter design problems:
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1. Product or process characteristics are used to simplify empirical modeling. As
Phadke (1989) pointed out, it is common to find that there are adjustment
design factors that have no influence on the SN ratio, which is frequently
a measure of variation. As mentioned before, in the epitaxial layer growth
example, the deposition time is such a factor. Modeling the PerMIA as a
function of only the nonadjustment design factors simplifies empirical model-
ing.

2. Nonadjustment factor settings remain optimal if the target is changed. The
settings of the nonadjustment design factors d, identified in Step 1, remain op-
timal if design specifications involving the target are changed; for instance, in

% the epitaxial layer growth example the identified nozzle position and susceptor-
rotation method remain optimal if the layer thickness specification is changed.
To meet the new specification we simply change the setting of the adjustment
design factor, the deposition time.

3. Constrained optimization problems are transformed into unconstrained op-
timization problems. Using these two-step procedures, the constrained op-
timization problems found in parameter design can be transformed into un-
constrained optimization problems. For instance, in the continuous output
static parameter design problem with unbiasness constraint given above the
minimization involves an unbiasness constraint. Yet, the two-step procedure
involves no constrained optimization — the first step of the two-step pro-
cedure involves an unconstrained maximization, and the second step is -an
adjustment. (See Section 3 for details.)

In addition, by using PerMIA we can often infer the behavior around the
target of a product or process from results whose output is off target. Realization
of this advantage may, however, require some more stringent conditions than
those assumed in the paper. See Wu (1987) for an example.

1.5. Goals of this paper

Goal 1. Further Understanding of Two-Step Procedures. LSK’s work leaves
several questions incompletely answered which we address in this paper. Among
them are:

A. How does a two-step procedure turn a constrained parameter design problems
into an unconstrained one?

B. When can adjustment to target be substituted for the second step of Procedure
29

‘Goal 2. Development of Modeling Techniques for Non-Quadratic Loss. The_
quadratlc loss funciton assumed by all previous authors is not adequate for many
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problems of practical interest; for example, the losses for underfilling or overfilling
a container are typically unequal.

1.6. Overview

In Section 2 we give a new definition of PerMIA involving a two-step proce-
dure for solving a constrained minimization problem. The idea is to transform a
high dimensional constrained optimization problem into a high dimensional un-
constrained optimization problem followed by a low dimensional constrained op-
timization problem. We also introduce maximal PerMIAs to describe PerMIAs
that identify all solutions to a constrained minimization problem. We then pro-
cged to give geometric and analytic characterizations of PerMIAs and maximal
PerMIAs.
 In Section 3 conditions are given under which the second step of the two-step
procedure of Section 2 is an “adjustment”. We introduce adjustment functions
to describe functions of the design factors which are used to make adjustments.
So far the only adjustment function used has been the mean. With the work in
this section other adjustment function, such as the median, can be used as we
show in Section 7. In Section 4 we prove a number of results that can be used to
find PerMIAs for constrained minimization problems. In Section 5 the results of
the previous three sections are applied to particular parameter design problems
involving quadratic loss. For example, more general results than those of Box
(1988), Nair and Pregibon (1986) and Tsui (1987) are obtained.

In Section 6 we develop modeling techniques for use in parameter design
problems involving non-quadratic loss functions. These techniques exploit special
properties found in engineering problems. For many products and manufacturing
processes, such as the epitaxial layer growth process of Section 1.1, performance
is best measured in terms of a dispersion measure. This follows since it is often
easy to center output around the target once dispersion is reduced. To exploit
this property when the loss function is non-quadratic, we introduce a general
class of dispersion and location measures that is well suited for parameter design
applications. Roughly, the dispersion measure measures expected loss around an
“ideal” target (location). An associated notion introduced in Section 6 is the
off-target measure. In Section 7 the results in Section 6 are utilized to derive the
dispersion, the off-target measure, the adjustment function, and the associated
two-step procedure for four problems that involve non-quadratic loss.

The techniques developed in Sections 6 and 7 would form the basis for data
analysis strategies for non-quadratic loss functions that parallel those developed
by Nair and Pregibon (1986) and Box (1988) for the quadratic loss. These strate-
gies ‘will be further investigated.

" The results are given in the context of parameter design but can be used for
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more general optimization problems which are beyond the scope of this paper.

2. PerMIAs and Constrained Minimization Problems

Let X be a compact region in R**™ and let A and D be respectively its
projection onto R™ and R", where Rk is the Euclidean k-space. Here A and
D stand for the spaces of adjustment and nonadjustment design factors. The
elements of A and D are denoted by a and d.

Let R be a continuous function from X into R'. Throughout we will refer to
the following optimization problem.

Constmzned Minimization Problem (CMP): Find (a*,d*) € X to minimize R(a, d).

The primary example for R in this paper is the expected loss (i.e. nsk)
in a parameter design problem. As remarked in Section 1.1, other functions
of the loss such as the maximum loss can also be used for R. In practice the
minimization problem CMP may involve constraints on a and d, for example,
through requirements on the mean response. To streamline the presentation, we
will absorb such constraints into the definition of X but still call it a constrained
minimization problem.

In what follows we show that under some conditions the CMP can be solved
using a two-step procedure. To introduce the first of these procedures, we use
the following notation:

Xy = {a:(a,d) € X} forde D; ('21)
Ry(a) = R(a,d)fora€ X;andd € D.

- Throughout, let P be a continuous function from D into R!.
Constrained Two-Step Procedure (C2P):
Step 1. Find d* to minimize P(d) over D.
Step 2. Find a* € X4+ to minimize Ry«(a).

Compactness of X ensures the existence of a*.and d* in CMP and C2P.
We now give a more general definition of a Performance Measure Independent
of Adjustment (PerMIA) than the one originally given in LSK (1987).

Definition 2.1.
(a) The function P is a PerMIA for the CMP if the solutions to the C2P involving
P are solutions to the CMP.

(b) A PerMIA P is mazimal if every solution to the CMP can be obtained with
" the C2P involving P.
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In many problems PerMIAs can be chosen that allows the decomposition of
the CMP into two simpler problems. The first problem deals with d only and
involves no constraint. The second problem deals with a only. Although this
second problem may involve a constraint, the variable a is of low dimension.
Examples are given in Section 3.

We restate the notion of PerMIA in geometrical terms in Proposition 2.2.

Let D*(P) be the minima set of P and X* be the solution set of the CMP,

D*(P) = {d'€D:P(d)=minP(@)},

X* = * d*)€ X : R(a*,d*) = min R(a,d)}.
{(a*,d*) (a*,d*) i (a,d)}

(2.2)

. Let Dx~ be the projection of X* onto D, that is

Dx. ={d* € D: (a*,d*) € X*}.

Proposition 2.2.
(a) P is a PerMIA for the CMP if and only if D*(P) C Dx-~.
(b) P is a mazimal PerMIA for the CMP if and only if D*(P) = Dx-=.

The following theorem provides a method for constructing a maximal PerMIA
for any CMP. We give an application of this construction in Section 4 along
with other approaches for identifying PerMIAs. All proofs are deferred to the
Appendix.

Theorem 2.3. Define the function M to be

M(d) = min R(a,d) for d € D.
a€eXy

Then M s a mazimal PerMIA for the CMP.

In LSK (1987) the PerMIA used throughout is a special case of that given by
Theorem 2.3. The following corollary of Proposition 2.2 and Theorom 2.3 gives
another characterization of PerMIAs.

Corollary 2.4. Let M be as in Theorem 2.3 and let D*(M) be defined as in
(2.2). Then

(a) P is a PerMIA for the CMP if and only if D*(P) C D*(M).

(b) P is a mazimal PerMIA for the CMP if and only +f D*(P) = D*(M).

3. Adjustment Factors and Functions

As mentioned in the introduction, the second step of the two-step procedures
used By Taguchi and subsequent workers, is usually an “adjustment”. In this
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section we develop the concept of adjustability and adjustment function and give
conditions under which the second step of the C2P is an “adjustment”. For
convenience we first restate the CMP in an equivalent form.

Unlike Section 2 in which the constraint is absorbed into the definition of X,
we now write explicitly the constraint on a and d as h(a,d) € T, where h is a
continuous function from X into R* and T is a compact subset of R*. Then the
CMP can be restated as follows:

“Find (a*,d*) € X to minimize R(a,d) subject to the constraint h(a,d) € T.”

The concept of adjustability and of adjustment functions is developed below.

Definition 3.1. For t € T and d € D, the function h is (t,d)-adjustable if t is in
the range of h for fixed d. We refer to the function h as an adjustment function.

~Let Zg be the range of h for fixed d (i.e., Zg is the set of realizable target
values for d) and Z be the set of (t,d) such that ¢ € Zg.

Adjustability Conditions for the Function P:
AC1. There exists a function H : Z — R! such that for (a,d) € X

R(a,d) = H(h(a,d),d).
AC2. The set of m satisfying

H(m,d)=tr€n21§£H(t,d) )

is nonempty and is independent of d* € D*(P), where D*(P) is as defined in
(2.2).

AC3. The function h is (m,d*)-adjustable for all d* € D*(P) and m given in
AC2.

Under these adjustability conditions for P we define the following two-step
procedure.

Two-Step Procedure with Adjustment (2PA)

Step 1. Unconstrained Step
Find d* to minimize P(d) over D.
Step 2. Adjustment Step

Find a* € X4« such that h(a*,d*) = m for some m given in AC2.
In view of Step 2, call any value of m given in AC3 an adjustment point. As
shown in the example of Section 5, m can often be identified without solving a
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Theorem 3.2. Assume the Adjustability Conditions for the function P. Then
(a) The solutions to the C2P and to the 2PA are identical.

(b) Pis a PerMIA if and only if the solutions to the 2PA involving P are solutions
to the CMP.

(c) A PerMIA P is mazimal if and only if every solution to the CMP can be
obtained with the 2PA involving P.

In the important special case of h(a,d) = a, the adjustability conditions
reduce to “The set of m satisfying R(m,d") = ga)i(n R(a,d*) ezists and is inde-
a d*

pendent of d* € D*(P).” In this case the second step of the 2PA is simply to set
a equal to some m given by this condition.

4. M}thods for Finding PerMIAs

In this section we give several results that are particularly convenient for
finding PerMIAs. First, we state a technical theorem that implies all the other
results in this section.

Theorem 4.1. In addition to the Adjustability Conditions for P, assume

1. mintez,. H(t,d") = c is a constant independent of d* € D*(P), where D*(P)
is as defined in (2.3).

2. mingez, H(t,d) > c for d &€ D*(P).

Then

(a) P is a PerMIA for the CMP;

(b) The solutions to the 2PA involving P are solutions to the CMP.

If, in addition, the inequality in Condition 2 is strict, then

(c) P_is a mazimal PerMIA for the CMP;

(d) The solutions to the 2PA involving P and to the CMP are identical.

Corollary 4.2. (Wu (1987)). Let R; : D — R! and Ry : X — R! be functions
such that
R(a, d) = Rl(d) + R2(a, d)

for all (a,d) € X. Let D} be the minima set for Ry. Assume that:
1. minyex, Ra(a,d) = ¢ is a constant independent of d € D%, .
2. mingex, Ro(a,d) > ¢ ford ¢ Dy, .
Then Ry is a PerMIA. If, in addition, the inequality in Condition 2 is strict
R; is a mazimal PerMIA.

Wu (1987) pointed out that R; is not a PerMIA of the form given in Theorem
2.3 (or in LSK), and gave an application of this type of PerMIA.

Corollary 4.3. Assume that:
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1. For each (a,d) € X, R(a,d) = Q(h(a,d), P(d)) for some function Q : RF*1 —
R'.

2. Zg C Zg~ i.e., the set of realizable target values for d is contained in the set of
realizable target values for d* € D*(P).

3. For eacht € T and d € D, Q(t, P(d*)) < Q(t, P(d)).

4. For d* € D*(P), there ezists some m in T that satisfies

Q(m, P(d") = min Q(t, P(d").

5. h 1s (m,d*)-adjustable.

Then

(a)-P is a PerMIA.

(b). The 2PA gives a solution to the CMP.

Condition 2 of Corollary 4.3 would usually be established by showing that
the function @ is increasing in its second argument for each value of the first
argument. The constant m would usually be identified by differentiation of the
function f(z) = Q(z, P(d*)) with respect to z. This is the case in an example in
Section 5.

5. Examples for Quadratic Loss

In this section we illustrate the preceding theory by expanding on results of

previous authors.
Nair and Pregibon (1986), Box (1988) and Tsui (1987) considered the pa-
rameter design problem under square error loss with the model

- VarY = v(u(a,d))P(d)

for the variance of the response. Here p(a, d) is the mean, P is a positive function
and v is a positive convex function. Note that

BE(Y —t)* = y(u(a,d))P(d) + (p(a, d) — 1)
where t is the target. Define
h(a,d) = p(a,d) for (a,d) € X.
Consider in turn the constraint sets
(a) T = {t}

and

(b) T = R
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Case (a) corresponds to an unbiasedness constraint, and case (b) to no constraint
on the mean. In either case we can show that P is a PerMIA if conditions 2 and
5 of Corollary 4.3 hold. ‘

In case (a) the adjustment step of 2PA is to choose a* such that

/,L(CL*, d*) =1,

i.e., to adjust the mean on target.

To find the adjustment step of the 2PA in case (b), consider the function f
given by
f) =v@P@E")+ (y —t)*

From the remark following Corollary 4.3 the adjustment step of the 2PA is to
choose a* such that p(a*,d*) = m where m minimizes f.

In the special case of y(y) = y?, which is the model behind Taguchi’s SN
ratio for the static (stationary target) parameter design problem, the adjustment
point is m = t/(1 + P(d"*)) and the adjustment step of the 2PA is to choose a*
such that

.
M

t
1+ P(d¥)

as LSK showed. Box (1988) coined the term “aim off factor” for m. We prefer
to call it “shrinkage factor” since the “adjustment” is to something less than the
target, not to the target as Taguchi and Phadke (1984) seemed to imply.

This shrinkage phenomenon holds for very general models. Assume that y(y)
is increasing in |y| and strictly convex. Then

p(a®,d")

f'(y) =+ (y)P(d") + 2(y - 1)

has the following properties:
(1) f'(y) is strictly insreasing,
(i) f/(0) <0< f/(t) for t > 0,

f'(0) >0> f'(t) for t < 0.

These properties imply that the adjustment point m satisfies |m| < ||,
and consequently that the adjustment step of the 2PA is to choose a* so that
p(a*,d*) = m which is less than the target in absolute value.

The conditions on v(y) above are satisfied by the class of power function
v¥(¥) = |y|*,a > 1. The adjustment point m can be readily computed in closed
form for several values of a, which are given in Table 1. From this table we see
that the nature of shrinkage depends on the value of a. For example, when o = 1
the shfinkage is additive and when o = 2 it is multiplicative.
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a|m
1 | max{t - P./2,0},t >0
min{t + P./2,0},t < 0

3 9p? [ 64t \/? ]
51t = (1+9P3> ~1{,t>0
or? [ 64t \/* ]
t > -
+ 35 (1+9P3> 1J ,t <0
2 | t/(1+ P.)
_ 30t 3P [1+3P,,t (1+6P.t) ],t_O
Bl t+ 35 [1+3P,.t—(1+6P*t)1/2],t<0

Table 1. Adjustment points m for several values of a in y(y) = y*. We write P, for
P(d").

LSK identified a model leading to Taguchi’s signal-to-noise ratio for a dy-
namic parameter design problem involving a measuring instrument. (Dynamic
means “moving target response”.) They provided an engineering justification,
which we omit, for the model including a physical interpretation of its adjust-
ment factors. Their model for the response is

Y = a(a1, d) + Blaz, d)(1(d)s + (N, d)), (5.1)

where s is the target response and (a1, az, d) are the design factors. The objective
of parameter design is to find the setting of design factors to minimize E(Y — s)?
over a range of targets s, subject to the unbiasedness constraint FY = s.

In our framework write this constraint as h(a,d) € T, where

h(a,d) = (a(a1,d), B(a2,d)) for (a1,a2,d) € X

and
T = {(0,v(d)~!) : d € D}.

Note that
E(Y - 5)? = [8(az,d)]* Varye(NV, d) + [a(a1, d) + B(ag, d)y(d)s — s]*
can be expressed as H(h(a,d),d). Then by imposing the constraint h(e,d) € T,

it follows that v N.d
— P(d) = min-H(t,d) = Varye(NV,d) -
teZy

[y(d))?
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By Theorem 3.2 this P is a PerMIA under condition AC3.
To summarize, the 2PA for the problem is
1. Find d* € D to minimize VL[rh('i)i]éV—dl
~(d
2. Find (aj, a3) such that a(a],d*) = 0 and S(a3,d*) = 1/v(d*).
LSK showed that this PerMIA is equivalent to Taguchi’s SN ratio for a dy-
namic parameter design problem.

6. Dispersion, Location and Off-Target Measures for General Loss
Funcitons

* As discussed in the introduction, for many products and manufacturing pro-
cesses, performance is conveniently measured in terms of a dispersion measure.
This follows since it is often easy to center output around the target once dis-
persion has been reduced. To exploit this property, when the loss function is
non-quadratic, we introduce general dispersion, location and off-target measures.
These measures are used in the next section to develop tractable forms of two-step
procedures for general loss functions. It is important to develop these methods
for non-quadratic loss because quadratic loss is often found to be unrealistic in
practical applications. Use of the Taylor series approximation to justify quadratic
loss, as discussed in Section 1.5, has flaws. Also, for moderate to large deviations
from the target, a quadratic function provides a poor approximation to the true
loss function since it often overpenalizes such deviations. Quadratic loss also
ignores the possible asymmetric nature of loss about the target. . )

The motivation for deriving these dispersion, location and off-target measures
comes from the familiar formula for quadratic loss

R=E(Y —1t)?> = VarY + (EY - t)°. (6.1)

As shown in Section 5, this formula is exploited to derive two-step procedures for
quadratic loss. With the general definition of dispersion, location and off-target
measure, a formula similar to (6.1) is available for deriving two-step procedures
for a general loss function.

Let L(y,t) be the loss accrued when the response is y and the target is z. Let
Y be the random variable associated with the response y and F' be its associated
distribution. Then define the risk R; by

R, = EpL(Y,t).

Define the dispersion measure for Y associated with the loss function L to
be the minimum of R, when the target t is allowed to vary in the space T of
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physically realizable targets, that is,
D = min R; = Ry«
teT

where t* minimizes R; over T. Call t* the location measure of Y associated
with the loss function L. Note that t* is the ideal value of the target when the
distribution is F' and the loss function is L, and that D and t* do not depend on
the target ¢.

Call the excess risk

Ot =Rt—D=Rt—Rtt, (62)
resulting from t* not being equal to the intended target ¢, the off-target measure
of Y from t. Rewriting (6.2) as

Rt=D+Ot9

the risk is the sum of the dispersion measure and the off-target measure, a com-
plete analog to (6.1). Note that for quadratic loss, D is the variance of Y, t* is
the mean of Y and O; = (EY — t)? is the bias square. Now consider two other
examples.

First, consider the asymmetric square error loss La(y,t) = w:(y — t)? with

T = R}, where

)b i oy<t
'wt—{ by if y>t , b1,bo > 0. _ (6.3)

This loss function gives different penalties for deviations above and below target,
as-would be the case in food packaging where an under-fill usually results in a
bigger loss to the manufacturer than an over-fill.

To obtain an expression for the dispersion measure D, differentiate

Ro=b [ -2 +h [ - PR

to get Q;%’“h:t- = (0, which gives

n [ w-t)aF@) b [T -1 dPw) =0,

or, equivalently,
[ oo
, by / ydF(y) + by /t ydF(y)
—_ t* = —=2 _ . 6.
b F (&) + b2l = F (&%) (6.9
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Since 02R;/8t? > 0, t* is the unique minimizer of R;. Note that t* is implicitly
defined but can be obtained by iteratively solving (6.4). It is evident from (6.4)
that t* can be interpreted as a location measure of ¥ for the loss Ly. The
dispersion measure is D = Ry., with R and t* given above. The off-target measure
Ot = R; — Ry can be obtained from the decomposition

wi(y—1t)2 —we (y—t*)? = 2w (y—1t*)(t* ) +wpe (t* =)+ (we—wy- ) (y—2)2. (6.5)

The first term of the right side of (6.5) has expectation zero from (6.4). The
factor w; — w;-~ is zero for y outside the interval (min{t,*}, max{t,1*}). Then by
taking the expectation of the right side of (6.5), we have

1

Do = [T e - 07 - - 07 4wl - 07} aP)

- min{t,t*}
+(t* — )by F (min{t, £*}) + by(1 — F(max{t, t*}))], (6.6)

where w;» and w; in the curly brackets are respectively b; and by (by and by) for
t <t (t* < t).
Another important loss function is the absolute error loss

_ ) bhly—t| for y<it,
Dy t) = { baly—t| for y>t. (6.7)

This loss occurs when the penalty is linear in the deviations from target. Note
that the penalties for above and below target are allowed to be different. It is
proved in the Appendix that the risk R, = ErL;(Y,t) has the decomposition

Rt =D+ Ota (6‘8)

where
t*

D= [ bily-t|dF@)+ [ baly-t1dFQ)

is a dispersion measure of Y,
tt = F_l(bz/(bl + b2)), (6.9)

and
max{t,t*

}
Oy = (b +b2)/ ly — t|dF(y)

min{t,t*}

is an off-target measure which decreases as the location measure t* gets closer to
the intended target t. Note that ¢t* is'the 100by/(b; + by) percentile of Y. When
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b1 # bz (i.e., the penalties for above and below target are different), t* is different
from the median in the direction with the larger penalty.

7. Development of Two-Step Procedures for General Loss Functions

In this section we model the general dispersion and off-target measures as
functions of the design factors. This model allows us to develop tractable forms
of two-step procedures for general loss functions. The results of Section 4 are
used to derive and justify these two-step procedures.

As shown in Section 6, the risk R; is the sum of the dispersion measure D
and the off-target measure O;. In practical applications it is often convenient
to model separately the dependency of D and O; on the non-adjustment and
a‘djustment factors d and a. Assume

- D = Pi(a,d)P(d), O;= Py(a,d), P, >0,P;>0, (7.1)

which is analogous to the assumptions adopted by Nair and Pregibon (1986), Box
(1988) and Tsui (1987) for the quadratic error loss. Then R; = P;i(a,d)P(d) +
Py(a,d) is increasing in P(d); so, by Corollary 4.3, P(d) is a PerMIA and the
two-step procedure holds under appropriate conditions.

In the rest of this section we illustrate this modeling technique with four
examples. In particular, for each example we (1) develop formulas for P, P, and
P,, (2) identify an adjustment function, and (3) use this adjustment function to
derive a two-step procedure, which can be generically stated as follows:

Procedure 8 T

Step 1. Find d* to minimize the PerMIA P(d).
Step 2. Find a* such that h(a*,d*) = t, where h is an adjustment function.

"To give the two-step procedure for each example one only needs to identify

P(d) and h(a,d).

Ezample 1. Additive Model and Asymmetric Square Error Loss
The additive model for the output is

y(a,d) = p(a,d) +£(d), (7.2)

where the error € has distribution Fy and p is an arbitrary function of (a,d).
(Commonly, the dependency of Fy on d is through its standard deviation o(d),
e.g., Fa(e) = F(e/o(d)) but this assumption is not required.) For the asymmctric
square error loss (6.3), the location measure t* given by (6.4) is equal to u(a,d) +
g*, where

-

[ o0
by / e dFy(e) + by / e dFy(e)
* o0 [

- — T TR Fie) + ba(1 = Fa(e)) (7.3)-
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Note that £* depends on d only. Since D = R, the dispersion measure is given
by
e*
D= Pd) =b /
Note that D is a function of d only. Since O; = R,;—R;-, by writing £; = t—pu(a, d),
the off-target measure is given by

(e — €*)2 dFy(e) + by /oo(e —€*)2dFy(e). (7.4)

o0

max{e,e*}

a:g@@:/

min{e¢,e*}

{wt* [(e* — &)} — (e - st)z] + wy(e — et)2} dFy(e)

+(e* — €1)? [b1 Fa(min{es, £*}) + bo(1 — Fa(max{e;,€*}))].

To derive the adjustment function, note that the off-target measure O; has min- _

imum at zero when &; = ¢*, that is, u(a,d) + ¢*(d) = t, where €*(d) is given
by (7.3). We can choose, for a given d, the adjustment factor a to satisfy the
previous equation. Hence, for this problem, use

h(a,d) = u(a,d) +£*(d) (7.5)

as the adjustment function. Since P and h have been identified, we have the
two-step procedures given in Procedure 3. If the function p(a,d) allows step 2
of Procedure 3 to be carried out for any d* in D*(P), then the conditions of
Corollary 4.3 are satisfied. Therefore, Procedure 3 gives solutions to the CMP,
and P(d) is a PerMIA.

Ezample 2. Additive Model and Absolute Error Loss ‘
For the absolute error loss (6.7), the location measure t* given by (6.9) is
equal to pu(a,d) + £*(d), where

- e*(d) = Fy*(ba/ (b1 + b2)). (7.6)
The dispersion measure is given by
e* 0o
D =P(d) = f bile — e*|dF4(¢) +/ bale — e*| dFy(e), (7.7)
-0 e*

which is a function of d only. By writing €; = t — pu(a,d), the off-target measure
O: = R; — R4+ can be shown to be

max{e¢,e*}
Oc = Paa,d) = (ba+ba) | e el dFafe).
min{e,e*}
To derive the adjustment functions, note that O; = 0 if &, = €*, that is, u(a, d)+
e*(d) = t, where €*(d) is given by (7.6). Using

S h(a,d) = p(a,d) + e*(d), (7.8)
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as the adjustment function, results in Procedure 3. Its justification is the same
as in Example 1.

We now comment on the adjustment step in Procedure 3 for Examples 1 and
2. Assume that the error €(d) in the additive model (7.2) has zero mean in the
case of square error loss and zero median in the case of absolute error loss; that
is, assume that p(a,d) in (7.2) is respectively the mean and median of y(a,d). If
by = by, then £*(d) in (7.3) and (7.6) is zero, and the adjustment step is to set the
mean or median p(a,d) on the target t. If by # b, then £*(d) in (7.3) and (7.6) is
in general nonzero and can be either positive or negative depending on whether
by > by or by < by. So the adjustment is to set the mean or median p(a,d) equal
to t — e*(d). Call €*(d) a “location correction factor” driven by the loss function.
Unlike the shrinkage factor in (5.2), it can adjust p(a,d) either above or below
‘the-target t.

Next, consider Examples 3 and 4. In these two examples, assume the multi-
plicative model

y(a,d) = p(a,d)n(d), n~ Fg, (7.9)

where the error 7 depends on d only, y > 0. Practical examples of (7.9) can be
found in LSK.

Ezample 3. Multiplicative Model And Asymmetric Square Error Loss
For this problem the location measure t* given by (6.4) is p(a,d)n*, where

n* oo
by /0 n dFa(n) + by / ndFa(n)
* n*

(7:10)

b1Fa(n*) + b2(1 — Fa(n*))
Note that n* depends on d only. The dispersion measure is given by
D = [u(a, )*P(d),
where o -
P@=b ["(n=n)?dFum) +be [ (- dReln).  (TD)
17'

By writing 7: = t/u(a,d) and using (6.5), the off-target measure can be shown
to be
Oy = [ﬂ'(a) d)]2Qt(aa d)>

where

max{n:,7"}
Qulad) = [ wn” = n0? ~ (1= 10+ wiln — n)?} dF(n)

min{n:,n*}
+(n* = n¢)?[by F(min{n:, n*}) + b2(1 — F(max{n:,7*}))].

r—
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Since [p(a, d)]? appears in both D and O, the two-step procedure with adjustment
can not be simplified.

If the loss function Ly in (6.3) is rescaled to Ly(y, t)/y2, then the risk simplifies
to

R, = P(d) + Q:(a, d).

To derive the adjustment function note that Q;(a,d), the term involving the
adjustment factor a, is zero by choosing a to satisfy 7, = 7*, that is, n* (dp(a,d) =
t, n*(d) given by (7.10). Hence, using

h(a,d) = n*(d)u(a,d), (7.12)

as the adjustment function results in Procedure 3 with P(d) given by (7.11).

Ezample 4. Multiplicative Model And Absolute Error Loss
For this problem the location measure t* given by (6.9) is p(a, d)n*(d), where

n*(d) = F'(ba/ (b1 + b2)). (7.13)
The dispersion measure is given by
D = p(a,d)P(d),

where

P@)= [ bln~n'ldFala) + [ e -rldEe), (1)

and 7* = n*(d) is given by (7.13). By writing n; = t/u(a,d), the off-target
measure is

O = ,U'(a'a d)Qt(av d),
where

max{n:,n"}
Qula,d) = (1 +b2) [ In — m|dF(n), 7" given by (7.13).  (7.15)

min{n,n*
As in the previous example, by rescaling the L; loss to L;(y,t)/y, the risk sim-

plifies to
R, = P(d) + Qt(a, d),

where P(d) and Q:(a, d) are given by (7.14) and (7.15). To derive the adjustment
function, note that Q(a,d), the term involving the adjustment factor a, is zero
by choosing a to satisfy 7, = n*, that is, when *(d)u(a,d) = t where 5*(d) is
given by (7.13). Using

— h(a,d) = n*(d)u(e, d), (7.16)
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as the adjustment function, results in Procedure 3 with P(d) given by (7.14).

If the function p(a,d) allows step 2 of Procedure 3 to be carried out for
any d* in D*(P), then from Corollary 4.3, for the two rescaled loss functions in
Examples 3 and 4, Procedure 3 gives solutions to the CMP and P(d) is a PerMIA
for each problem.

We conclude this section with some comments on the adjustment steps to
Procedure 3 for Examples 3 and 4. Assume pu(a,d) in (7.9) is respectively the
mean and median of y(a,d). Then 7(d) has mean one and median one respectively.
If by = by, then 5*(d) in (7.10) and (7.13) equals one, and the adjustment step is
to set the mean or median u(a,d) on the target ¢t. If by # bg, then n*(d) can be
greater than one or smaller than one, depending on whether b; > b2 or by < ba.
So the adjustment step is to set the mean or median p(a,d) equal to t/5*(d). Call
7*(d) a “scale correction factor” driven by the loss function. Note that unlike the
case with the shrinkage factor in Section 5, it can adjust p(a,d) to a value either
above or below the target t.
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Appendix

Proof of Theorem 2.3. First we show that M is a PerMIA. This is q{the
obvious because for any solution (a*,d*) of the C2P involving M,

} R(a*,d*) = min R(a,d*) = M(d")
aEth
=minM(d) = min R(a,d).
deD (a,d)eX

To prove that the PerMIA M is maximal, one must show that (a*,d*) can
be obtained using the C2P involving M for any (a*,d*) solving the CMP.
First we show that the first step of the C2P identifies d*, i.e.,

M(d") = min M(d).

This follows from

— . > . — * gk
' M(d) z%& R(a,d) > (fii?x R(a,d) = R(a",d")
— = min R(e,d*) = M(d"). -

aEXd.
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From the definition of Rz« the second step of the C2P identifies a*, thus
completing the proof.

Proof of Theorem 3.2. Parts (b) and (c) are immediate from Part (a) and
the definitions of PerMIA and maximal PerMIA. Hence one only needs to prove
Part (a).

Since the first step of the C2P and 2PA are identical, to prove Part (a) it
remains to show that a solution of the second step of the 2PA is a solution of the
second step of the C2P and vice versa. For d* € D*(P) and a* selected in Step
2 of the 2PA.

i R4-(a") = H(h(a",d"),d") = H(m,d")

- : * * < h d* *
_ w S B (hle, &), ) < H(h(a,d"), d")

= Ry (a),

which shows that a* is a solution to the second step of the C2P. To show the
converse, let d* € D*(P) and a* be a solution to the second step of the C2P, i.e.,

R(a*,d*) = H (h(a*,d*),d*) = h(I%{I)leTH(h(a d*), d%)
= min H(¢,d").
tGZd"
From the Adjustability Condition AC2, h(a*,d*) = m for some m given in AC2,
that is, a* is chosen according to step 2 of the 2PA.

Proof of Theorem 4.1. By Theorem 3.2(b), Part (b) follows from Part (a).
By Corollary 2.4(a), to show Part (a) it is enough to show that D*(P) C D*(M),
or, equivalently, that M(d) > M (d*) for d* € D*(P) and d € D. Noting that the
constraint set is X Nh~1(T),

M(d) = h(mj)réTH(h(a ,d),d)
= min H(t, d)>c—m1nH(t d*)
t€2, t€ Zyn
= M(d").

Part (a) follows.

To prove Part (c), note that if the inequality in Condition 2 is strict, then
retracing the inequalities above, it can be seen that d ¢ D*(P) cannot be in
D*(M), or equivalently, D*(M) C D*(P). It follows that D*(M) = D*(P),
which by Corollary 2.4(b) implies Part (c).

" Part (d) follows from Part (c) by Theorem 3.2(c).
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Proof of Corollary 4.2. Since min R(a,d) = R;(d) + min Rz(a,d) for a € Xg,
the result is immediate from Theorem 4.1.

Proof of Corollary 4.3. Let H(t,d) = Q(t,P(d)) fort € T,d € D. Then
clearly the Adjustability Conditions for P and Condition 1 of Theorem 4.1 are
satisfied. We now verify Condition 2 of Theorem 4.1. Let d € D*(P). Then

tnEJjZI(JIH(t,d) = }leﬂizle(taP(d))

> tlenzin Q(t,P(d*)) (by Conditions 2 and 3)
d*

min H(t,d*) = c.
teZd*

-Prciof of (6.8).

For any t', R — Ry = Ep{L1(Y,t)— L1(Y,t')}. For t' < t, L;(Y,t)— L1(Y,t')
equals

bi(t —t') for Y <Y,
—(by + b)Y + (bt + bot') for t' <Y <t,
bo(t' —t) for Y >t.
Therefore
R,— Ry = bi(t—t)F({)+bo(t' —t)(1 - F(t))

+E{(b1t + b2t/) - (bl + b2)Y}I(t'5Y5t)
= (b1 +b)E({—Y)pcy<sy + F(t') (b1 +b2)(t —t) + bo(t' —2).

Similarly for t < ¢/,
}z, — Ry = (b1 + b)) E(Y — t)Is<y<py + F(t') (b1 + b2) (t — t') + bo(t' —2).

By differentiation, it is easy to show that R; — Ry is maximized by taking t' = t*
with F(t*) = ba/(b1 + b2). Then

Ot = Ry — Rp« = (b1 + b2) B |Y — t| I{min{t,t*} <Y <max{t,t*})-
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