Statistica Sinica 2(1992), 605-618

CONTRIBUTION OF TIME SERIES ANALYSIS TO DATA
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Abstract: In this paper, studies and applications of Time Series Analysis in China to
data processing of astronomical observations are described in detail. They include
maintaining the stability of an astronomical measurement system, prediction of Earth
Rotation Parameters, identification of disconnected data, improvement of the edge
effects of the series data, detection of implicit periodic terms and narrow-band filtering
of astronomical data.
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1. Introduction

Since publication of Box and Jenkins (1970), methods in time series analysis
(TSA) have been applied widely to scientific and economic fields, and have won
great success. Chinese astronomers have used and studied various techniques of
TSA for data processing. The status of this work is summarized in Table 1.

2. AR Model for Maintaining Stability of a Measured System

The accurate measurement of a physical state is made by using several instru-
ments in order to reduce the random errors in measurements. However systematic
deviations of instruments caused by differences between various instruments must
be eliminated so that the stability of a measured system can be maintained.

In the Chinese Joint Universal Time (UT) System consisting of several optical
instruments, the Auto-Regressive (AR) model has been used by Zheng et al.
(1980) and Luo et al. (1981) in the determination of systematic deviations of
instruments. The adopted AR model for a data series Z, (n = 1,2,...,N) is
described by

P
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where a; is the coefficient of the AR model and is derived by the Yule-Walker
equation consisting of autocorrelation estimates with different time lags of the
data series Z,,, E, is white noise, and P is the order for the AR mode] determined
by the FPE or AIC criteria presented by Akaike (1973).

The results from systematic deviations of instruments by AR models have
been compared with those reduced by the method of Bureau International de
I'Heure (BIH) in Paris, in which systematic deviations are fitted with constant,
annual and semi-annual terms. The differences between real and predicted sys-
tematic deviations obtained by the two methods mentioned above are drawn in
Figure 1.

It is shown that for various instruments (perhaps for various observational
techniques), the predictions of systematic deviations obtained by the AR model
are more coincident with real systematic deviations. In conseqence, AR models
are valid for maintaining the stability of a measured system. Wang and Jin (1988)
constructed a new global solution of Earth Rotation Parameters (ERP) by using
10 data series obtained from new observational techniques. AR models were also
successfully adopted in this work to predict systematic deviations of these data.

3. TAR Model for Predicting Earth Rotation Parameters
The Threshold Auto-Regressive (TAR) model (Tong and Lim (1980)) is a

class of models for nonlinear time series such as

R .
Zn = ag’) +3 a,(;j)Zn—i +EY) Z, 4€Rijc12..1 (2)
=1

where d is a lag parameter for the TAR model, R; is the jth threshold domain
of the data series Z,, P; is the order for the AR model of the series Z;, belonging

to the R;, al?) is the coefficient for the jth AR model, E,(lj ) is the white noise

of the jth AR model, but ,(j )_and E’,(lj ) are independent when j # j'. These
parameters of d, R;, P; and az(-’ ) in (2) can be simultaneously estimated by the
method of minimal AIC.

Using the data series for 1968 through 1981 which was reduced by BIH from
optical observations, Zheng et al. (1982, 1986a) adopted the TAR model to fore-
cast three components of Earth Rotation Parameters. The three components are
the X and Y components characterizing the motion of earth’s pole as well as the
UT component describing the motion of the earth’s rotation. The dispersions
between the predicted values calculated by the three TAR models and the real
ones for X, Y, and UT are listed in Table 2. The results obtained by using the
fitting functions proposed by United States Naval Observatory are also given in
Table 2 for comparison purpose.
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It is seen from Table 2 that the predicted values of ERP by the TAR mod-
els have higher accuracy, especially for the predicted UT. There are sufficient
reasons to believe that better forecasts could be obtained by TAR models if the
data series from the space astronomical techniques, such as Very Long Baseline
Interferometer (VLBI), Satellite Laser Ranging (SLR), and etc. are used.

X and Y Components from 1963 to 1967 are predicted by the same TAR
models mentioned above. The dispersions of the predicted results are listed in
Table 3. It is seen that the predicted values of ERP by TAR models are not only
of higher accuracy but also of more stability in longer periods than that of the
existing other methods.

4. Identification of Disconnected Astronomical Data by the AIC Me-
thod

Disconnected astronomical data may occur when the observation session is
long. For example, the observed data of VLBI are broken into several sections due
to the changes of frequency or phase of the VLBI clock in a 24-hour observation
session (Robertson (1975)). The AIC (Akaike Information Criterion) method is
used to identify and estimate the parameters for the number and the instant of
broken clock and for the models of clock behaviour in separate sections in order
to improve the processing procedure of VLBI (Zheng et al. (1986b)).

In regard to the practical problem for the disconnected astronomical data,
the followed information criterion is adopted:

RSS (K;)

AIC(B,T,K) = min Z(N' ( N’

)+2(KJ-+1)), L=1,2,...,Lm, (3)

where B , T, and K are the optimal estimates for the number, the instant of
clock discontinuities and the orders of clock behaviour models, respectively. L,,
is the maximum number of clock behaviour models possibly existing in the VLBI
observations, RSS is the residual sum of squares after fitting the jth model and
NJf is the number of equations for solving the jth model. From formula (3), the
optimal estimates of B, T, and K must simultaneously satisfy the condition for
a minimum of AIC.

The AIC method is tested by using the data of VLBI observations in 6
different days of 1983 when the changes of the VLBI clock occurred. The results
of the estimated clock models by the AIC method and with the manual method
adopted by the National Geodetic Survey, NOAA, USA are listed in Table 4, in
which N is the sample size of data in each day. Both the data and the results for
two days are also presented in Figure 2.
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From Table 4 it is clear that the clock models and the broken instant esti-
mated by the above two methods are different, and that most of the clock models
have lower orders and the residual mean squares (RMS) are smaller for the AIC
method.

The AIC method is currently in operation in the VLBI software of Shang-
hai Observatory, resulting in saving the processing time and in improving the
accuracy of the results (Luo et al. (1987)).

5. LSAR Model for Limiting the Edge Effects of Data Series

In the processing procedure of observation series, distortion near both ends
of data series may occur when several methods, such as the smoothing, the digital
filter, the fitting function and so on, are used in the data processing. The Leap-
Step Auto-Regressive (LSAR) model has been suggested and utilized by Dong
and Zheng (1985) in order to reduce the edge effects of the data series. The LSAR
model is described as

K; ) )
Z,=S Az, ;+EBY Z,eR; j=1.2,...,L (4)
i=1

where, Z, (n=1,2,...,N) — data series.

R; denote the jth leap-step domain of data series. If N = L x M, then
Zj+(LxK) € Rjand K = 0,1,...,M - 1.

K; and Agj ) denoted the order and the coefficients of autoregressive model in the
jth leap-step domain of data series.
ff ) denoted the white noise of data in the jth leap-step domain.

An artificial simulated series is considered, which consists of 10 sine waves
that have the periods of 0.5, 0.6,..., 1.4 years, respectively. The values of the
amplitudes for most of the terms are taken as 1, but the amplitudes for the
terms of 1.0 and 1.2 years as 10 and 15, respectively. In addition, a normal
noise with N(0,2) is mixed in the series. The edge effects (solid curve) of the
smoothing curve which is obtained from the smoothing artificial simulated series
with Vondrak’s method (Vondrak (1969, 1977)) are shown in Figure 3. The edge
effects (dotted curve) will decrease, obviously, if the LSAR model is adopted in
the smoothing procedure.

It is clear that for denser data series, such as Atmospheric Angular Momen-
tum (AAM) and VLBI intensive data, the accuracy of prediction by the LSAR
model might be better than that by other models of time series analysis. When
this paper was written, we noted, with great interest, the paper of Cleveland and
Tiao (1979) in which the seasonal (or periodic) time series was studied.
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6. AR Spectral Analysis for Detecting the Periodic Signals in Astro-
nomical Data

Since the 1970’s, Chinese astronomers have used AR spectral analysis (i.e.,
MEM) for studies of Earth rotation (Zheng (1978), Zheng and Zhao (1979),
Gu (1986), and Li and Wilson (1987)), polar motion (Zhao and Zheng (1980),
Zhang et al. (1982)), solar activity (Yang and Zhao (1988)), planet motion (Yang
(1988)), and the analysis of systematic errors arising in the data from various ob-
servation techniques (Zheng et al. (1980, 1984)). The resolution and the adopted
order in the AR spectral estimate were also discussed in their work (Zheng and
Zhao (1979), Zhang et al. (1986)).

Recently, Zheng and Dong (1987) compared the Marple (1980) and Burg
algorithm (Smylie et al. (1973)) in the AR spectral estimate by detecting astro-
nomical tidal monthly (Mm) and fortnightly (Mf) terms from UT data of VLBI
intensive observations from April 1985 to March 1986. The spectral results of
Mm and Mf waves are shown in Figures 4 and 5, respectively. From the devia-
tions between the theoretical spectral lines and the spectral peaks obtained by
the two algorithms, it is confirmed that more precise estimates of frequencies will
be from the Marple algorithm. Moreover, it is also noted from their work that
the Marple algorithm will decrease the splitting of spectral peaks.

Using the VLBI intensive UT data for 3 months during the period of April-
June 1984 in international MERIT campaign, the tidal fine signals of high fre-
quency terms are detected by Luo et al. (1987) and are shown in Figure 6. The
tidal waves with period of 9.13-day is found clearly besides the tidal waves of both
Mm and Mf because the noise is obviously limited in the AR spectral estimate.

7. MSF Method for Separating the Signal Process from Astronomical
Data

According to the digital filter theory of time series (Koopmans (1974)) and
the Vondrak smoothing method (Vondrak (1969, 1977)), the Multi-Stage Filter
(MSF) was suggested and utilized by Zheng and Dong (1985, 1986c). The theo-
retical formula for the frequency response function of the MSF derived by Zheng
and Dong (1986c¢) is given by

R=c(1-A(f,eF)", 5)

where c is a real constant, L and M are positive integers, and A(f, e) is the
frequency response of the Vondrak filter provided by Huang and Zhou (1981),
namely,

A(f,e)=(1+ 6’1(27rf)6)-1 (6)
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where f and e are the frequency component and the filtering factor respectively.

The frequency response function for the MSF is characterized by small band-
width of truncated frequency, so it can be treated as narrow-band filtering, Chi-
nese astronomers have separated the Chandler component with the period of
14 months and the annual one from polar motion series successfully (Zheng and
Dong (1986c¢)), and stidied the problem about the mechanism of Chandler Wobble
(Zhao (1988)) by using the MSF method.

The band-pass filter has also been used to study the relationship between the
Length Of Day (LOD) and El Nino events (Zheng et al. (1988)). The interannual
variation after filtering the LOD data from astronomical observations by MSF
is shown in the top part of Figure 7. The monthly departure of Sea Surface
Temperature (SST) in the equatorial eastern Pacific area (180° — 80°W, 5°S
—5°N) is shown in the bottom part of Figure 7.

From Figure 7, it is apparent that the deceleration and acceleration of the
interannual variation of Earth rotation are clearly consistent with the warming
and cooling of SST in the equatorial area. If the interannual variation in LOD is
calculated in time by the MSF method and the minimum of interannual variation
is monitored during routine work, then El Nino events can be predicted in advance

of one year, which corresponds to long range forecast in meteorology (Zheng et
al. (1990a,b)).

8. Conclusions

Astronomical data and other geophysical data, which have been recorded
over time for several hundreds of years, provide a rich source of sample groups
for Times Series Analysis. As mentioned above, Time Series Analysis has been
successful in improving astronomical data processing in China and has become a
very important means of data analysis. With the accumulation of data and the
increasing need of high precision, Time Series Analysis will play a more and more
important role in prediction, identification and control, parameter estimation,
digital filtering, frequency detection and other studies in Astronomy.
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Table 1. Applications of Time Series Analysis to astronomical studies in China

Methods of Time Series Analysis Applications

AR model Keep the stability of measured system

TAR  model Predict the Earth Rotation Parameters

AIC method Identify the disconnected data series

LSAR model Limit the edge effects of the data series

AR spectrum Detect the various periodic terms implied in
astronomical data series

MSF  method Treat the narrow-band filtering of the data

series

Table 2. Dispersions of predicted ERP in 1981 by TAR and fitting function models. The
units of dispersion are seconds of angle for X, Y and seconds of time for UT.

Predicted period TAR models Fitting function models
(days) X Y UT X Y UT
20 07.006 07.006 0°.0028 07.024 07.016 0°.0065
40 07.016 07.016 0°5.0042 07.032 07.026 0°.0117

Table 3. Dispersions of predicted X and Y from 1963 to 1967 by TAR models. The units
of dispersions are seconds of angle for X and Y.

X Y
Predicted year 20-day 40-day 60-day 20-day 40-day 60-day
1963 07.008 07.019 07.032 07.008 07.019 0".030
1964 07.007 0”.019 07.031 07.007 0”.014 07.015
1965 07.007 07.017 07.025 07.007 07.015 07.020
1966 0”.007 07.017 0".025 07.006 07.016 07.025
1967 0”.009 0”7.019 07.030 07.008 07.020 07.032

Table 4. Estimated clock models of VLBI by AIC and manual methods. N denotes the
sample size of the data for each day and the unit of RMS is nanoseconds of time.

code date N N AIC Manual
k1 k2 broken time RMS(ns) k1l k2 broken time RMS(ns)

oCi22 AUG.183 172 12 2%01P24™ o511 2 2 2d06P20™ 0544
0C136 OCT.1783 72 1 1 17923ho7rm " 0399 11 17923b15™m  0.309
0C137 OCT.2283 193 2 2 23%910P16®  0.351 1 2 23910h20™  0.378
0Cla4 NOV.2683 184 2 1 27910B01™  o0.211 2 2 279%e6R00™  0.216
OC146 DEC.683 165 2 1 7d05042m  0.205 2 2 7906R00™  0.205
0C147 DEC.1183 196 2 1 12908h56™  0.206 2 2 12904P15™  0.303
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Figure 1. Comparison of the systematic deviations of instruments for two years obtained
by the AR models as solid curves and by the BIH methods as dashed curves. Zero lines
represent the real systematic deviations for various instruments located in Shanghali,
Nanjing, Wuham and Beijing of China and denoted by the symbols of SP, NP, WA and

BA, respectively.
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Figure 3. The edge effects of Vondrak’s smoothing curve. The solid and dotted curves
are obtained without and with LSAR model, respectively.
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Figure 6. The tidal high-frequency components in UT data detected with AR spectral
estimate of Marple algorithm from the VLBI intensive series during April-June, 1984.



The Relationship between the LOD Varialion and SST

Lk o\

L 1 1 1 i L 1 1 1 1 1 ) 1
1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 19B2 1984 1986 1988 Year

.3
L

]

.2

Millisec of Time
2 0 1
T 1 T
\>
1 1 \

—
.

i ! 1

DAWEI ZHENG AND SHIFANG LUO

—
<

1

Figure 7. The interannual variation of LOD (in the top part) and the monthly departures
of sea surface temperature in the equatorial eastern Pacific area (in the bottom part)
during 1962.0 to 1988.0.

616



TIME SERIES ANALYSIS OF ASTRONOMICAL DATA 617

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle.
2nd Internat. Symp. Inform. Theory (Edited by B. N. Petrov and F. Csaki), 267-281.
Akademi Kiado, Budapest.

Box, G. E. P. and Jenkins, G. M. (1970). Times Series Analysis, Forecasting and Control.
Holden-Day, California.

Cleveland, W. P. and Tiao, G. C. (1979). Modeling seasonal time series. Economic Appliquee
107-129.

Dong, D. and Zheng, D. (1985). The ends effects of Vondrak filter. Ann. Shanghai Observatory
7, 13-25.

Feissel, M. and Lewandowski, W. (1984). A comparative analyses of Vondrak and Gaussian
smoothing techniques. Bull. Geod. 58, 464—474.

Gu, Z. (1986). Analyses of irregular variation of the earth’s rotation. Ann. Shanghai Observa-
tory 8, 99-104.

Huang, K. and Zhou, X. (1981). On essentiality of the Whittaker-Vondrak method as a filter,
and estimations of standard deviation and correlation for digital filter. Acta Astron. Sin.
22, 120-130.

Koopmans, L. H. (1974). The Spectral Analysis of Time Series. Academic press, New York.

Li, Z. and Wilson, C. R. (1987). A damped oscillation model of the 50 day oscillation in the
length of day. Acta Astron. Sin. 28, 29-38.

Luo, S., Zheng, D., Liao, D. and Huang, H. (1981). New chmese joint UT1 system. Acta Geode-
tica et Cartogmphzca Sin. 10, 263-269.

Luo, S., Zheng, D., Zhou, R., Xue, Z. and Chen, J. (1988). Polar motion and UT1 from VLBI.
Ann. Report of BIH for 1987, 29-31.

Luo, S., Zheng, D., Robertson, D. S. and Carter, W. E. (1987). Short-period variation in the
length of day: atmospheric angular momentum and tidal components. J. Geophys. Res.
92, 11657-11661.

Marple, L. (1980). A new autoregressive spectral algorithm. IEEE Trans. Acoust. Speech
Signal Process. 28, 441-454.

Robertson, D. S. (1975). M. I. T. (Ph.D. Thesis for VLBI).

Smylie, D. E., Clarke, G. K. and Ulrych, T. J. (1973). Method in Computational Physics 13,
391-430. Geophysics Academic Press, New York.

Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles and cyclical data. J.
Roy. Statist. Soc. Ser.B 42, 245-292.

Vondrak, J. (1969). Problem of smoothing observational data. Bull. Astron. Inst. Czech 20,

349-360.

Vondrak, J. (1977). Problem of smoothing observational data II. Bull. Astron. Inst. Czech 28,
84-93.

Wang, Q. and Jin, W. (1988). Combined solution of ERP during 1983-1985. Acta Astron. Sin.
29, 79-87.

Yang, Z. and Zhao, M. (1988). An investigation for the cause of formation of the major period
of the relative sunspot numbers with bipolarity. Acta Astron. Sin. 29, 297-304.



618 DAWEI ZHENG AND SHIFANG LUO

Yang, Z. (1988). The orbital motion of major planets and the long periodic change of the relative
numbers of sunspot. Acta Astrophysica Sin. 8, 294-300.

Zhang, H., Han, Y. and Zheng, D. (1982). Chandler Wobble: A result on analysis of observa-
tions. Scientia Sin. Ser.A, 837-846.

Zhang, H., Han, Y. and Li, Z. (1986). Checking of the double-frequency feature of Chandler
main peak for different periods. Acta Geopgys. Sin. 29, 16-27.

Zhao, M. and Zheng, D. (1980). On the discussion of secular polar motion. Acta Astron. Sin.
21, 69-72.

Zhao, M. (1988). On the variation of parameters of Chandler Wobble. Science in China Ser.A,
741-748.

Zheng, D. (1978). An analysis of the short period terms in the universal time. Acta Astron.
Sin. 19, 103-108.

Zheng, D. and Zhao, M. (1979). Application of autoregressive technique to astronomy and geo-
dynamics. Acta Astron. Sin. 20, 301-307.

Zheng, D., Huang, H., Liao, D. and Luo, S. (1980). Improvement of the universal time series
by means of AR series model. Acta Astron. Sin. 21, 123-129.

Zheng, D. and Chen, Z. (1982). Prediction of Earth rotation parameters. Ann. Shangha: Ob-
servatory 4, 116-120.

Zheng, D., Wang, S. and Gu, Z. (1984). Comparison between the Earth rotation parameters
determined by different observational techniques. Scientia Sin. Ser.A, 292-302.

Zheng, D. and Dong, D. (1985). Research on the fine structure in polar motion with multi-stage
filter. In Proc. Internat. Conf. Earth Rotation and Terrestrial Reference Frame, 55-66,
Columbus, Ohio, USA.

Zheng, D. (1986a). Applications of time series analysis to astronomical geophysica. Math.
Statist. Appl. Probab. 1, 15-20.

Zheng, D., Luo, S. and Mackay, J. R. (1986b). An optimal identification of clock behaviour
model for VLBI. The Impact of VLBI on Astrophysics and Geophysics, 525-528, Boston,
USA.

Zheng, D. and Dong, D. (1986¢). Realization of narrow band filtering of the polar motion data
with multi-stage filter. Acta Astron. Sin. 27, 368-376.

Zheng, D. and Dong, D. (1987). Marple algorithm of autoregressive spectrum estimate and its
application to analysing astronomical data. Acta Astron. Sin. 28, 364-373.

Zheng, D., Luo, S. and Song, G. (1988). Interannual variations of earth rotation, E1 Nino events
and atmospheric angular momentum. Science in China Ser.B, 332-337.

Zheng, D., Song, G. and Luo, S. (1990a). Prediction of El Nino events from observations of the
length of day. Kezue Tongbao 35, 1244~1246.

Zheng, D., Song, G. and Luo, S. (1990b). El Nino prediction. Nature 348, 119.

Shanghai Observatory, Chinese Academy of Sciences, 80 Nandam, Shanghai.
Shanghai Observatory, Chinese Academy of Sciences, 80 Nandam, Shanghai.

(Received February 1991; accepted January 1992)



