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ON THE KADANE-DUNCAN CONJECTURE

Gang Li

State University of New York at Binghamton

Abstract: Let X; and X, be two independent, nondegenerate and symmetric random
variables with centers of symmetry u; and pu, respectively. This note proves the
Kadane-Duncan conjecture that X; X; is symmetric if and only if pius = 0.
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Let X; and X3 be two independent and unskewed random va;ria.bles_(i.e.
EIXi* < o and E(X; — EX;)® = 0, i = 1,2). Kadane and Duncan (1980)
proved that W = X)X is unskewed if and only if at least one of X; and Xo is
degenerate or at least one of F(X;) (i = 1,2) is zero. They proposed the following
conjecture:

Theorem (Kadane-Duncan). Suppose X, and X5 are independent and sym-
metric with centers of symmetry p; and py respectively. Then W = X1X5 1s
symmetric if and only if either

(i) at least one of X1 and X3 is degenerate, or

(ii) at least one of w1 and ps is zero.

Chen and Slud (1984) and Hamedani and Walter (1985) proved independatly

R ‘that X1X3 is symmetric about pyp2 if and only if 32 = 0 under the condition

‘that X; and X, are nondegenerate. This statement differs from the origirfa.l

Kadane-Duncan Conjecture by the additional condition that X; X3 is symmetric
about pypus. Chen and Slud (1984) note that one cannot assume that

(X1 — p1) (X2 — p2) + (X1 — p1) + (X2 — o)

has to be symmetric about 0 based on the facts that (X; — 1) (X9 — po), (X1—p1)
and (X2 — p2) are all symmetric about 0, because Chen and Shepp (1983) find
two random variables W and Z such that W and Z are symmetric about a and
b, respectively, and W + Z is symmetric about ¢, but a + b # c. Therefore, the
proofs of the Kadane-Duncan Conjecture mentioned above are not complete.
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_ _In this note, we give a proof of the “necessity” part of the theorem, whi_l:_-the

“sufficiency” part is obvious.
Frist we introduce functions f,, a > 0 and gs, b > 0 which are vital in our

proof. The function f, is defined on R x R by

ful ) = u+v+uv—a u—v—uv—a
YT Tt v+uv —a 1+ |u—v—uv—aq
+ —u+v—uv—a + -y —-v+uUv-—a uuveR.
l+|-—u+v—w—a| 1l+|-u-v+tuv-—a
The function gp is defined on R X R X [0, +c0) by
( 1) u -+ v+ uv + U—v—Uv
u,v,t) =
it ¥ 1+tutv+uww+b  L+tu—v—uv+b
n —u+ v —uv —u —v+uv ww€ER t>0.

1+t|—-u+v—uv+bl+1+t|—u—v+uv+b|’

Note that fo(|u|, |v]) = fa(u,v) = fa(v,u),and go(|u|, lv], t)= gp(u,v,t)= gp(v,u,t).
Moreover, they have the following properties.

Lemma 1. For each a > 0, fao(u,v) < 0, f2(0,v) < 0, and fo(u,0) <0 for all
u#0 andv #0.

Lemma 2. For each b > 0, |gy| is bounded.
The proofs of Lemma 1 and Lemma 2 are given in the Appendix.

Proof of The Theorem. The “sufficiency” part is obvious.
We need only to show the necessity part of the theorem. For this, let U =
X1 —p1, V = Xo — pa. Denote the cumulative distribution functions of U and V.
by Fi and Fy, respectively. Note that U and V are symmetric about 0. -
_+  Suppose pip2 # 0. Without loss of generality we assume p1 = pg = 1. Hen.
. .we can write Rl
X1Xo=U+V+UV +1.

Let Y =U+V+UV.
Suppose that neither F nor F3 is degenerate and suppose that Y is symmetric
with the center of symmetry a. Then Y —a is symmetric about 0; and so is

Y —-a

—_— t .
T ¢ — for every t >0

Consequently,

Y—-a
E|l———— ) =0 forall ¢ )
<1+t|Y—a|> or a >0 (1)
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. Case 1. Suppose a > 0. Set t = 1. Then. =
Y —a
—_—] = o(u, v)dFy(u)dF:
() = S, heonwane
+5PO=0) [ £0,0)dR)
2 v>0
1
+—HV=®/ falu, 0)dFy ()
2 u>0
a
—P(U=0)P(V=0)1+a, (2)

where the function f, is as in Lemma 1. Since we have assumed that neither Fy
nor F3 is degenerate, by Lemma 1, we obtain

E (—Kl> <0, o

a contradiction to (1).

Case 2. Suppose a < 0. Let b = —a then b > 0. Denote the indicator function of

~ set A by I4. For gy as in Lemma 2, we have

Y -a Y
E(l + Y - al) - E(1 +tY +b] (Uw>0v>0 + Tiwso,v<o + fw<ov>g
+liy<o,v<o)) + (Tr=o,v>q + liy=o,v<q) + (I[U>0,V=0]

1
+ I[U<0,V=0]) + I[U:o,v:o])) —aF (—‘_)

1+ ¢V +b|
= / / 95(t, v, £)dFy (u) dFy (v)
u,v>0

2

+ lP(U =0) /1,>0 gb(O,’U,t)sz(‘U) ‘
+3P(V =0) / o BWONdEE

1
—aB(—1
¢ <1+t[Y+bl)

2 Hi(t)+ %P(U = 0)Ha(t)
+ 2PV = 0)Hy(t) - aHa(t), (4)

2

say. By Lemma 2, g; is bounded. Since lim,_,o+ gy(u,v,t) = 0 for all » and v, an
application of the dominated convergence theorem yields

lim Hy(f) = / / lim gy (u, v, t)dF} (u)dFs(v) = 0,
t—0+ u,v> +

0 t—0

e o At e e
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l

2= lim Hy() = / lim g5(0,v,t)dFs(v) =0,
t—0t v>0 t—0t

and

lim Hs3(t) = f lim gp(u,0,t)dFi(u) =0.

t—0+t >0 t—0t
Applying the dominated convergence theorem to the bounded random variable
—— —— we have
1+t]Yy +b|

1 = i —_— =
Jlim Hy(t) = B (t_i’% 174y + b|>

Then, taking limits on both sides of (4), we have

. Y —a
tl—l»Ig}l-E(1+t|Y—a|>

: 1 :
lim Hi(t) + 3P =0)- lim Ha(t)

1
SpP(V =01k —a- i t
. +5P(V 0) ;gﬂdﬂ atgng)
i = —a>0. (5)

This contradicts (1).
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Appendix: Proofs of the Lemmas

Proof of Lemma 1. Fix a > 0. We only show that fo(u,v) < 0 for u,v ; 0
- here. 2

When u + v + uv — a < 0, obviously, fa(u,v) <0.

When u + v + uv — a > 0, we consider eight cases classified by the signs of
u—v—uv—a, —u+v—u —aand —u—v+uv—a. Because at most one of
u—v—uv—a, —u+v—uv—aand —u—v+uv—acan be nonnegative, we need
only consider the following four cases.

(i) If
ut+v+uv—a>0
u—v—uv—a<0
—u+v—uw—a<0
—u—v+uv—a2>0,
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— then : -

2u
(1+u+v+uv-—a)(1+|u—v—uv—a])

—2u
(1+l—u+v-—uv—a|)(1+|-u——v+uv—a|)
—2u(4v(1+uv)+4au)/{(1+u+v+uv——a)(1+Iu—v——uv—a|)
-(1+|—u+v—uv——a[)(1+[—u—v+uv—-a|)}
< 0.

falu,v) <

-+

IA

(i1) If
u+v+uv—a>0
u—v—uv—a<0
—u+v—-—uw—a>0
—u—v+uv—a<0,

then v > u, so

-

2(u — a)
falu,v) < (l+u+v+uv—a)(l+|u—v—uv—al
+ —2(u + a)
I+|—u+v—uw—al)(l+|—u—v+uv—a
< -—2u(4uv(1+v)+4au)/{(1+u+v+uv-—a)(1+Iu—v—uv—al)
-(1+|—u+v—uv—a[)(1+|—u—v+uv——a|)}
< 0.
(iii) If

- u+v+uv—a>0
* u—v—uv—a2>0
—u+v—uw—a<0
—u—-v+uv—a<0,

i/“'y.

then, similar to case (ii), fa(u,v) < 0.

(iv) If
u+v+uv—a>0
u—v—uv—a<0
—u4+v—uw-—a<0
—y—v+4+uv—a<0,

we consider the following three subcases.
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— —Subcase 1. Suppose a > u. Then . S

u+v+uv—a + U—V— UV —Q

falu,v) < l+u+v+uw—a 1—(u—v—uv—a)
_ —2(a — u)
(1+v+uv)?— (u—a)?
< 0.

Subcase 2. Suppose a > uv. Then

u+v+uv—a —Uu—v+uUv—a

<

.fa(u,'U) = 1+u+v+uv._a+1..(—u—v+u'v—a)
3 —2(a — uv)
T I+ (+v+uw—a)(l-(~uv—v+uv—a))
< 0.

Subcase 3. Suppose a < u and a < uv. Since f,(u,v) is a symmetric function
of u and v, we assume u < v. Then

—2(a —u)

(14 v +uv)? - (u— a)?
2(—u—a)—=2(—u+v—uwv—a)(-u—v+uv—a)
(14+u+a)?—v2(1l—u)?
2u —2u

falu,v) =

+

< (1+v+uv)? - (u—a)? + (1+u+a)?—v2(1—u)?
_ 4 (2 — u?) + (u?v? — a?) + (v — u) + (uv — a)

(L +v+uv)?— (u—a)?)(1+u+a)?—v2(1—-u)?)
) -

E

- Therefore f,(u,v) < 0 for u,v > 0. .
Proof of Lemma 2. Let b > 0 be fixed. It is easily seen that |gs(:, -, t)] _<
4/min(1, %) for ¢ > min(1, %) Since

gb(lula I'Ul,t) = gb(u7vat) = gb(vau,t):

we need only show that |gp(u,v,t)| is bounded for 0 < u < v and for 0 < t <
min(1, %)
For u =0, and 0 < v,
v —v

2
T Ftwsd) 1+t -vtbl

l96(0,v, )|
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t((v+8) — |v — b))

)

- - = 2

(1+t(v+b))(1+tlv—b|)
2 .
| P T o)A + o) if v2b
- 2v

e sy

< 4b.

It remains to prove that |gs(u,v,t)| is bounded for 0 < u < v, and for
0 <t < min(1, %) We consider the following eight cases classified by the signs of
u—v—uv+b —u+v—uv+b, and —u — v+ uv+b.
(i) I
u—v—uv+5b>0
—u+v—uv+5b>0
—u—-—v4+uv+b2>0,

then, by adding the three inequalities together, we have u + v + uv < 3b. Thus

~—

) lgs(u,v,t)| < 4(u + v +uv) < 12b.
(ii) If

u—v—uv+b2>0
—u+v—uv+b>0
—u—v+uv+b<0,

then, by subtracting the third inequality from the first one, we have v — uv > 0,
so 1 > v(>u > 0). Thus

lgs (%, v,t)| < 4(u + v + wv) < 12.
_-(ii1) If %
u—v—uv+b>0
—u+v—uv+b<0
—u—v+uv+b2>0,

then, by adding the first and the third inequalities together, we have —v+b > 0,
so b > v(> u > 0). Thus

lgs(u,v,t)| < 4(u + v + uv) < 4(2b + b?).

(iv) If
u—v—uw+b<O0
—u+v—uv+b2>0
-u—v+uv+b2>0,
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then, by adding the second and the third inequalities, we have b > u(X 0).
The second inequality implies v — uv 2> —(b — u), and the third one implies
v — uv < b — u, together we have |v — uv| < b—u < b. Thus

Igb(u,v,t)l < U+ v+ uv + U— v —uv
l+tlu+v+uv+bd) 1—tlu—v—uv+b)
+lu| + v — wv| + |u| + |v — wv|

< 12u + 2bt(—v — uv)| o
= A+t +v+uv+5)(1 +tu—v—uv+b)
t(v + uv)
< 8b.
(v) If
u—v—uv+b20
—u+v—uv+b<0
h —u—v+uv+b<0,

then, by subtracting the second inequality from the first one, we have u —v > 0,
impossible as assumed 0 < u < v.

(vi) If
u—v—uw+5b<0
—u+v—uw+b2>0
—u—v+uv+b<0,

then, by subtracting the third inequality from the second one, we have v—uv > 0,
and therefore 1 > u(> 0). Thus

Y

u+ v+ uv U—v— U =
lgp(u,v,t)] < |1+t(u+v+m+b)+1—t(u—v—uv+b) )
—u+ v — uv —u — v+ uv
+ll+t(—-—u+v—uv+b)+1—t(~u—v—|—uv+b)‘
B 2u + 2bt(—v — uv)
T Q@ +tlu+v+uv+b) (1 +tlu —v —uv+ b))
. —2u + 2bt(—v + uv)
A+t|—u+v—uv+b)(1l—t(—u—v+uv+b))
2bt(v + uv) 2bt(v — uv
< 2u+1+t(u+v+uv+b)+2u+1—t(—u—-v+3v+b)
< 242b+2+2b ty — wv)

(1 — tb) + tu + t(v — uv)
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t(v — uv)

2+42b+2+ 2o —s

)

4 4 4b,

b

u—v—uv+5b<0
—u+v—uv+b<0
—u—v+uv+b2>0,

then, by subtracting the second inequality from the third one, we have uv—v > 0.
Note also the assumptions that 0 < ¢t < min(1, %), and that 0 < u < v, we have

‘gb(U, v, t)l

(viii) If

IN

IN

IN

IN

IA A

2u + 2bt(—v — uv)
(1+tlu+v+uv+d)(1—tlu—v—uv+b))
—2u + 2bt(v — wv)

+(1_—-t(—u+v—uv+b))(1+t(—u—v+uv+b))| i
1
2u (1+tu+v+uv+b))(1—tlu—v—uv+b))
1
_(1—t(—u-{—v—uv+b))(1+t(—u—v+uv+b))‘
12+ 2bt(uv — v)

(1—t(~u+v—uv+b)(1+t| —u—v+uv+b|)
) ‘ (1+ tv + tuv)? — t2(u + b)2 — (1 — tv + tuv)? + t2(u — b)?
1+tlu+v+uv+b)1—-tlu—v—wv+b))
t(uv — v) :
((1 - bt) +tu+t(—v+uwv))(l+t| —u—v+uvkb|)
[4tv(1 + tuv) — 42ub) %

+2b +2b

2u(1 +t(u+ v +uv+ b)) (1 - th) + t(—u + v) + tuv) b
8tuv (1l + tuv) 8t2bu?

(1 +t(u+ v+ uv + b))tuv tuv b

8 + 8bt + 4b

8 +12b.

u—v—uv+b<0
—u+v—uv+b<0
—u—v+uv+b<0,
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then, by adding the second and the third inequalities, we have b < u and Eom
~the-second and the third inequalities, we have |[v —uv| < u —b < u. -

Subcases:
(a) If 2 > v(> u > 0), then

Igb(u)v)t)l < 4('"1 + v+ U'U) < 32.

(b)va>2,then—u—-v+"u'u+b<0impliesO<u<vT11+1<2. Thus

0w, 0,8)| < 2u + 2bt(—v — wv)
gl @ - 11 +tlu+v+uv+b))(1+tlu—v—uv+b|)
+(u+ jv — uv|) + (u + |[v — uv|)
2u + 2bt(v + uv)
242)+(2+2
1+t(u+v+uv+b)+( )+ )
< 12 4 2b.

Therefore Lemma 2 holds.

—
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