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Abstract: Recent methodological development in three-way array analysis allows
unique resolution of multicomponent linear mixtures in the absence of noise. When
noise is present, an iterative linearization procedure based on a least squares formu-
lation was proposed by Appellof and Davidson, but it requires good initial guesses
which may be difficult to find in practical situations. In the paper, we describe an
alternative procedure based on eigenanalysis, and we discuss the relationship between
the two procedures. Even though the alternative procedure does not aim to minimize
the squared residuals, it is, however, non-iterative and may be used to find initial
values for the least squares procedure. An example using phase-resolved fluorescence’

- spectroscopy data seems to indicate that only minor improvement may be expected’
from using the least squares procedure, and, for practical purposes, the estimates from
the eigenanalysis procedure may be close enough to dispense with the least squares
procedure.

Key words and phrases: Nonlinear least squares, eigenanalysis, resolution of trilinear
mixtures, phase-resolved, fluorescence spectrometry, alternating least squares.

1. Introduction

In analytical chemistry and other related areas, a mixture can often be rep-
.resented by a linear combination of rank one multidimensional arrays thag are
. characteristic of the individual components in the mixture. For example, in-fluo-
rescence spectroscopy or gas chromatography/mass spectrometry, the represenfé.—
tion occurs as a matrix, i.e. a two-way array. To resolve the mixture and identify
the constituents, it is necessary to determine the individual arrays from that of the
mixture. Over the years much attention has been paid to these two-dimensional
data representations of mixtures and the associated bilinear model. However, the
two-way analysis is limited because constituents which overlap in spectra cannot
be uniquely resolved from a two-way mixture array (Warner (1982), Warner, et
al. (1985), Borgen and Kowalski (1985), Burdick and Tu (1989)).

The inherent nonuniqueness of the two-way array approach has stimulated
recent interest in the analysis of three-way array data. In contrast to two-way
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arrays, noise-free three-way arrays can be uniquely resolved into their rank one

_constituents. However, there is a price to be paid when noise is present; the-moise-
handling methods for three-way arrays are more complicated than for two-way
arrays. ,

A natural approach is to estimate the constituent spectra of a three-way array
by least squares, but minimization of the squared residual objective function is
complicated by non-linearity and non-parametric forms of the constituent spectra.
Appellof and Davidson (1981) developed an algorithm based on a linearization
procedure which sets partial derivatives equal to zeros and linearizes the resulting
equations by substituting the current best estimate of the solution. This iterative
procedure, however, requires good initial values for each of the constituent spectra
and considerable amount of computation because of the size of the data matrices
involved. Furthermore, as noted by Appellof and Davidson, the procedure may
perform poorly if the initial estimates are not close to the final least squares
solution. i

An alternative approach based on some intrinsic algebraic properties of the
three-way arrays and the alternating least squares procedure has been recently
proposed by Burdick et al. (1990) and, independently, by Sanchez and Kowalski
'(1990). This alternative procedure requires no initial guess and is non-iterative
even though a few iterations are needed in the case of noise to reduce the amount
of noise in the data matrices. The procedure, on the other hand, may not mini-
mize the squared residuals. It is, therefore, interesting to see, whether for prac-
tical purposes, the estimates are close enough to the least squares solution and,
if not, how much gain can be expected by using the least squares procedure.

In the paper, we first describe the formulation of the three-way model and
the scientific background of phase-resolved fluorescence spectroscopy, which pro-
vides real-life examples of data arrays for the model. In Sections 3 and 4, we
describe the linearization and eigenanalysis procedures and, finally in Section 5,

_we discuss the relationship between the two estimation procedures using a ¢a.l-

~sample mixture from the phase-resolved fluorescence spectroscopy. -

2. The Three-Way Array Model

A general N-way array A is an array of real numbers which is subscripted by
N indices i,, i.e.,

A= (a'il ) oee ,iN) )
where ¢, < I, and I, are some positive integers for 1 < n < N. The vector space
of all such arrays will be denoted by R**"*IN A norm || - || can be defined on

RI1 X XIn as
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for any A = (ai,,....iy) € ROXIN,
Let a, be vectors in RI» for 1 < n < N. The tensor product of these vectors,
which we denote by

a1®..-® a'N,

is an N-way array A = (a;,,...iy) for which
Qiy iy = @iy """ iy

An N-way array A is of rank one if there exist vectors an (1 < n £ N) for which
A=a1® - ®ay-

The one-way, two-way and three-way array models are often used in fluores-
~ cence spectroscopy to display and represent the intrinsic spectral propertles of
a fluorescent species, which in turn also uniquely characterizes the species. For
example, shown in Figures 3/(a) and (c) are the excitation and emission spectra
of a fluorescent species as a function of wavelength. Here, the excitation spec-
trum characterizes the way the species absorbs the energy of light at different
wavelengths and the emission spectrum displays the relative amount of energy
released by the species afterwards at various wavelengths. Because these spectra
are unique to each fluorescent species, they are often used as a “fingerprint” in
identifying different species in a sample mixture. Even though the one-way array
model for the excitation or emission spectrum is useful for characterizing a single

component or one-species mixture, the two-way array model -
E
R =
M = z Tr @ Yr
r=1

where z, and y, denote the respective excitation and emission spectra for the
rth component, is more useful for extracting constituent spectra from a multiple-
component sample mixture (Warner (1982), Warner et al. (1985), Borgen and
Kowalski (1985)). The observed data matrix for this model, which now is a func-
tion of both excitation and emission wavelengths, is referred to as the Excitation-
Emission Matrix (EEM). However, as indicated in Section 1, this two-way array
model still does not permit a unique resolution for the constituent spectra when
there is overlap in spectra among constituents. Recent focus has been shifted



580 XIN M. TU AND DONALD S. BURDICK ¢

to the three-way array model which has been shown to have a unique decom—

_position of rank-one arrays. This result is quite remarkable, consxdermg' the
non-parametric form of the spectra and the arbitrary number of components in
the model (Burdick et al. (1990), Sanchez and Kowalski (1990)).

The three-way array model was recently used to fit the Excitation-Emission-
Frequency Array (EEFA) which was built upon the EEM by adding another
independent dimension: the fluorescence lifetime, which is the time required for
fluorescence emission intensity to be reduced to 1/e of its initial intensity (Mc-
Gown and Bright (1987)). The fluorescence lifetime, like the excitation and
emission spectra, is another intrinsic property of a fluorescent species and when
implemented through the phase modulation technique, which exploits the life-
time differences through the use of modulation frequency (McGown and Bright
(1987), McGown and Millican (1988)), the measured relative emission intensity
becomes a function of excitation, emission wavelengths and the modulation fre-
quency. So if the relative intensity is recorded in a discretized range of excitation,
emission wavelengths and modulation frequencies, the data can be expressed as
a three-way model (assuming no interaction among the excitation, emission and
modulation frequency):

R
S=Z¢r®yr®zr (2)
r=1
where z, € R!, y» € R’ and 2z, € RE are the excitation, emission spectra and
modulation frequency vectors.

In fluorescence spectroscopy as well as in many other areas of analytical
chemistry, interests often lie in resolving a multiple-component sample mixture.
Of course, given an unknown mixture, it is first necessary to determine the num-
ber of components, R, in model (2). Even though this is by no means trivial and,
as a matter of fact, is still a research topic under intensive investigations (Rossi
and Warner (1986), Malinowski (1990), Tu et al. (1989), Wold (1978)), we il
“confine ourselves to the resolution problem below, assuming that we know-the
“number R. So, given the observed data array S and R, to resolve the mixture
we need to find the vectors z,, y, and 2, to satisfy Equation (2). In practical
situations, the model always requires the addition of a noise term to reflect the
random noise (either due to the instrument or the random behavior of molecules)
contained in the data, which leads to the following model:

A=> "2,y ®z +N (3)

r=1

where S = % |z, ® y» ® 2, is the signal array from the ideal model (2) and
N € RIXJXK i5 the noise term. To facilitate the discussion, we will refer to the
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 _three dimensions of the array, namely, I, J and K, as “rows”, denoted By AW,
“columns”, denoted by A and “layers”, denoted by AB) | respectively. Using
this definition, the ith row of A, for example, is the J ® K matrix obtained by
fixing the first index at 1, i.e.

(AM);e = aiji. (4)

Because of the noise term the measured array A will typically not be express-
ible in the form (2). The objective of the resolution analysis is to estimate the
constituent vectors z, ,y» and z, (or the signal array S) from A. Adopting least
squares (LS) as the estimation criterion, we seek the three-way array

R
S =3 (L9 @ §ES) @ 5(£9)

r=1

which minimizes the residual errors

|4 - §E9)|? = min |4 — T|| - (5)

over all three-way arrays T' = YR . ¢ ®1, ®(,, where the norm || - || is as defined
in (1).

3. The Appellof-Davidson Linearization Procedure

The Appellof-Davidson linearization procedure tries to minimize (5) by set-
ting to zero its partial derivatives with respect to the components of z,, y, and
2z, and attempting to solve the resulting equations. This approach leads to the
following three sets of equations

R J K : JK .
2 Tir [(Z Yir yj,r’) (Z Zkr zk,r’) = Z Ai,j,k Yjr Zkp! §
T j k - ik =
R -, I K 1 LK

e[ (i v ) (S shr )| = gz e
= L\ k ] ik

R N § J - I,J

Z o L(Z Tiyr :Bi,r') (Z Yir yj,f,> = E Airj»k Zip Yjr -
T 1 J - 1,]

The nonlinearity and high dimensionality of these equations make them difficult
to solve directly, but if initial values are available for y» and z,, then the first set
of equations can be solved for z,. Similarly, the second and third sets of equations
can be solved for y, and z,, respectively, given initial values for the other vectors.
By repeating this process with the current values in place of the initial values for
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the vectors z,, yr and z, we obtain an iterative scheme for finding a solution,

——

_which can be put in the following matrix form =

X(H"l)l =~ QY 7, A)(P(Y(i), Z(i)))—l |
yi+) = Q(X(i), AQN A)(P(X(i), Z(i)))—l (6)
() = Q(X(i), Y-(i), A)(P(X(i), Y(i)))—l.

Here

P(Y,Z2) = (Y'Y)x(2'2)
P(X,2) = (X'X)*(2'Z)
P(X,Y) = (X'X)(¥'Y),

where X = (z1,...,ZR), Y = (¥1,...,¥r) and Z = (z1,...,2R) and * denotes
elementwise multiplication. Q(Y, Z, A) is a I x R matrix with its ith row given

by the diagonal elements of Y’ A( Z,Q(X,Z,A) is a J x R matrix with its jth
row given by the diagonal elements of X A(z)Z and Q(X,Y,A) is a K X R matrix

—with its kth row given by the diagonal elements of X’ A(3)Y, where A( ") is defined
as in (4).

The above iterative scheme was proposed by Appellof and Davidson (1981).
They observed that the procedure converges slowly and may not converge to the
global minimum of (5) unless the initial values are made close to the final solution.
It may be difficult in practice to obtain such starting values. How to find good
starting values to guarantee convergence and to speed up convergence can be
a difficult problem. A possible solution is given by the eigenanalysis procedure
described in the next section. It yields estimates which can be used as the initial
values for the iterative Appellof-Davidson procedure. In fact, estimates from the
exgenana.lyms procedure may be so close to the least squares estimates thaf we
"can dispense with the Appellof-Davidson procedure altogether. An 111ustra§1ve'
‘example with real data is presented in Section 5.

4. The Eigenanalysis Procedure

An alternative approach is the eigenanalysis procedure proposed by Burdick
et al. (1990) and by Sanchez and Kowalski (1990). It eliminates the need for
initial values by utilizing the tensor structure of three-way arrays. An important
property of a three-way array of rank R is its ability to be resolved uniquely into
its rank one constituents, provided that R is not too large. Resolution of a rank
R array into its constituents is a major part of the eigenanalysis procedure. The
other part is essentially a noise reduction procedure. It is accomplished by fitting
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a rank R array to a measured array of higher rank containing signal plus noise.
~We begin this section by describing the resolution methodology in the absace of
noise and continue by describing the methodology for finding a rank R fit to a
measured array. ,
The crux of the eigenanalysis procedure is the unique decomposition of the
signal array S in (2). Let X = (z1, ---»ZR), ¥ = (¥1, .-+, yr) and Z =
(z1, ..., zr). Let S,(ca) be the kth layer of S. Then it can be easily established
from (2) that
() = X diag(ze, )Y’ (M)

where zj , denotes the element of Z on its kth row and rth column and diag(zx,—)
is an R x R diagonal matrix with 2, in the rth diagonal position. It follows that
the layers of S have the same column space Col(X) and row space Col(Y).

Now let U = (u1,...,ug) and V = (v1,...,vR), where u; and v; are or-
thonormal bases for Col(X) and Col(Y'), respectively. It therefore follows from
(7) that there exist matrices P and Q such that N

X = UP .
- - | v - vQ ®
diag(zk,—») = P L@,

where Ly = U’ S,(c3)V. A little algebra shows that P and Q can be determined by

diag(z;, —)(diag(zj~)) " = P'L;L;'P
= Q'LY(L))™Q, 9)

for any i # j. Note that the columns of P and Q are eigenvectors of L; L_,,--1 and
L;(L;)’1 respectively. So, if L; Lj—l has distinct eigenvalues for some ¢ and j then
- such P and @ are unique. E

This eigenanalysis procedure can be applied to any appropriate pair of layers
from an array which has the form (2). Unfortunately, it cannot be applied directly
to the measured array A. The presence of noise in A will generally cause its rank
to exceed R, the number of components in the mixture. Before the eigenanalysis
just described can be applied, we must extract an estimated rank R signal from
the measured array containing signal plus noise.

There are two steps to the signal extraction process. As a consequence of (2),
the layers of S are I x J matrices which have a common R-dimensional column
space, spanned by the z,, and a common R-dimensional row space, spanned by
the y,. The measured array will not have this property because of noise. The
first step, therefore, is to replace the measured array A by a fitted array A whose
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layers have a common R-dimensional row space and a common R-dimensional
~column space. Using least squares as the criterion of fit yields 7

14 - AJ* = min |4 - B| (10)

over arrays B whose layers have a common R-dimensional column space and a
common R-dimensional row space. It can be shown that such an array A always
exists (Tu (1989)).

The fitted array A may or may not have rank R. If not, then as a second step
we must find an estimated signal S of rank R which fits A as closely as possible.

The first step is accomplished by the method of alternating least squares
(ALS) (Kroonenberg and de Leeuw (1980)). Let U be an I X R matrix whose
columns span the common column space and V be an J x R matrix whose columns
span the common row space. The ALS minimizes (10) by alternating between
the two conditional maximizations

i ( A(s)) PyA® Pv} ‘(11)

Lk=1

-

trace {PV

given U and

(X 7]
trace {PU Z A;es)PV (Ag)) PU} (12)

Lk=1 J

given V, where Py = U(UTU)~U7 denotes the projection matrix. The maxi-
mums in (11) and (12) occur when the columns of V' and U are the eigenvectors

of
K T
E [A;ea)] PUAgcs)

k=1
and X -
om0 *
o k=1 '

corresponding to their R leading eigenvalues, respectively. The procedure is ini-
tiated by using either the eigenvectors of

40 [ 417
>4 (4D
k=1

as the starting value for U, or, alternatively, those of

K T
3 4] A0

k=1
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as that for V. This iterative procedure is guaranteed to converge (Tu (1989)).
—Qur experience seems to show that only a-few iterations, usually three-e four,
are needed for the procedure to converge.
After A has been obtained, we can find matrices Urxr and Vixr whose
columns are arbitrarily chosen orthonormal bases for the respective common col-
umn and row spaces of the layers A§f). From U and V we get L by

Br =0 AD7.

At this point we can apply eigenanalysis to the Lj as in (9) to find P and
Q. However, in contrast to the noise-free case, it now may make a difference
which pair (f}i, f),) is selected for the eigenanalysis. If K = 2, there is only
one pair available, but if K > 3, there are multiple possible pairs that could be
" used in the analysis. Using a pair of linear combinations of the Ly is also an
option. Sanchez and Kowalski (1990) have recommended using 2 pair of linear
combinations derived from a singular value decomposition of the L array. ~
The Sanchez-Kowalski procedure can be described briefly as follows. Let B
denote the K x R? matrix whose kth row is obtained by unfolding the R x R
“miatrix Ly into a 1 X R2 row vector. Let b; and bo denote the eigenvectors of
BB' corresponding to the two largest eigenvalues. Let LI and lig be the R x R
matrices obtained by refolding ) B and b5B, respectively. Obtain P and Q by
applying eigenanalysis to L% and L%, as in (9). Then substitute P and Q into (8)
to get X, Y and Z.

5. Results and Discussion

In this section, we compare the LS estimates and the estimates obtained
from the eigenanalysis procedure using a real sample mixture, which consists of
two fluorescent components: 9, 10 diphenylanthracene (DPA) and anthracene

-~ (ANT). The observed three-way EEFA is a 30 x 30 x 5 array with 30 exci#ation

. wavelengths from 330 to 448 nm, 30 emission wavelengths from 380 to 498 nm
and 5 modulation frequencies at 5, 10, 20, 40, 80 MHz. For comparison purposes,
the EEFA’s for each of the individual components are also obtained in the same
format. Shown in Figure 1 are four of the layers of the mixture corresponding to
frequencies at 5, 10, 40 and 80 MHz. Plotted in Figure 2 are the layers of ANT
and DPA at 10 MHz. Strong spectral overlap between the two components is
easily seen from these plots.

Using the three-way model in (3), the vectors z, and y, represent the exci-
tation spectrum and emission spectrum for the rth component, and the vector
2, represents the phase-resolved emission intensities for the rth component cor-
responding to the different modulation frequencies. Theoretically, the elements
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of the Z matrix should be described by

)

Wk T

Zkyr = Crm
where 7, denotes the fluorescence lifetime for the rth component, w; denotes the
kth modulation frequency, and ¢, depends mainly on the concentration of the
component (Burdick et al. (1990)). It can be easily verified that if 7, # 7+ and
Wk F Wk
~ diag (s, (diag(z;,)) !

will have distinct elements on the diagonal. So the matrices P and @Q can be
uniquely determined at least in the absence of noise. In practice, if the noise
level is relatively low, this property will still be preserved (Tu (1989)).

The resolved vectors from the eigenanalysis procedure are plotted in Figure
3. Note that the overall agreement between the resolved and standard (resolved
from the single compound EEFAs) is very good but slightly better for DPA than
for ANT.

The LS estimates were obtained from the iterative linearization procedure
i (6) using vectors resolved from the eigenanalysis procedure as starting values.
The iteration was continued beyond the (i + 1)st step unless the maximum of the
average squared residuals of

le(’i‘l-l) - X(l')”2/60

Hy(i-i-l) _ Y(‘i)“2/60
”Z(i+1) _ Z(z)“2/10

fell below 0.5 x 1078, By this criterion the procedure converged at step 15. So

w£.15), y1(.15) and z,(- 5) were taken to be the LS estimates. : §

=

-* The sum of squared residual errors

2 2
“A - Z ) @yl @ z()

r=1

was also checked at each iteration. Table 1 lists these values for some of the
iteration steps.

It is of interest to compare the starting values obtained from the eigenanal-
ysis procedure with the end result of the iterative linearization procedure. This
comparison can be made in at least two ways. First we can look at the sum of
squared residuals

14 - 5%
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_This value for the eigenanalysis procedure (S S(EA)Y is 0.706641, Wh.lCh com-

— pares to the least squares value 0.706377 (S = S(L9)). As expected, these—~values

are very close, which is important to ensure convergence of the linearization pro-
cedure. :

In addition, we can calculate a bound for the amount of improvement in the

criterion that can be achieved by the iterative linearization procedure. If Ais
defined as in (10), it follows that

|4 — A2 < |4 = §EI)2 < A4 - SEY2.

In our example these values are:

A — Al 0.700349
|4 - SEN2 = 0.706377
|4 —SEM2 = 0.706641.

Since A is obtained in the first step of the eigenanalysis procedure, we know before
starting the linearization procedure that the maximum reduction in the criterion

~ that it can achieve is 0.006292. We thus have the option of aborting the iterative
linearization process if we decide that the maximum possible improvement is not
worth the extra effort.

Second, we can compare the differences between the eigenanalysis and least
squares estimates of the spectral vectors. Plotted in Figures 3 and 4 are these es-
timated vectors, together with the standard vectors, which are obtained from the
single compounds. Visual inspection shows that the eigenanalysis procedure gives
good estimates that are indistinguishable from the least squares estimates. Note
that there is still some discrepancy between the LS estimated and the standard
excitation vectors. The same estimated excitation vector was obtained at conver-

~ gence of the LS procedure (with the same convergence criterion as before), even
" with the standard vectors as starting values. So, it seems that this dlscrepancy
is attributed to the noise in the mixture EEFA, not to the starting values.

To compare these estimated vectors quantitatively, we used the Uncorrected
Array Correlation (UAC), which is defined as

> @y eing Dig i
A.C A B — 214..0,IN 1 N™¥u1 N
UAC(4, B) 1A TBI

for any N-way arrays A = (a;,..iy) and B = (b;;..iy) € RIvxxIn The UAC is
a generalization of the uncorrected correlation between vectors.

An interesting and useful result about UACs of rank one arrays is given by
the following theorem.
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Theorem 1. If A and B are two rank one arrays, t.e. —_

A= 19 --Qay
B = bh® --Qby

then N
UAC(4, B) = [] UAC(an, bn).

n=1
Since the proof is straightforward, it is omitted.

The UAC’s between the vectors obtained from the eigenanalysis alone and
eigenanalysis plus linearization estimation procedures are listed in Table 2. Listed
in Table 3 are the UAC’s between the estimated vectors obtained from the single
compounds (standard) and the mixture by both procedures. Also listed are the
UACs for the entire EEFAs, which, by Theorem 1, can be calculated as the prod-
ucts of the UACs of the corresponding vectors of the arrays. These tables confirm
that the eigenanalysis estimates are quite close to the least squares estimates.

In summary, the eigenanalysis, although it uses least squares as a method of
noise reduction, does not produce the least squares fit of rank R to a given array.
It is reasonable to expect, however, that the eigenanalysis estimate will be close to
the least squares estimate and that it will therefore be useful, either as it stands
or as a starting estimate for the Appellof-Davidson linearization procedure, which
seemed to be confirmed by our example.
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Table 1. The squared residual errors ||A — v, P ey ® 2|12 and the convergence

o 589

—criterion determined by the maximun of the average squared residuals between suctessive

estimated vectors for some values of the iteration steps.

Iterations 1 2 3 10 15
Sqd res

errors 0.7066407 0.7063781  0.7063771 0.7083770  0.70683769
Convergence

criterion 0.7x 10~* 0.2x10"%* 0.7x10"% 05x10™°® 0.3x 10~%

Table 2. The UAC’s between the estimated vectors and EEFA’s from the eigenanalysis

(EA) and eigenanalysis plus linearization (LS) procedures.

UAC
Phased-resolved
Component Excitation  Emission emission EEFA .
(jEA’ i.LS) (gEA, ﬁLS) (EEA, iLS) (SvEA, SLS)
ANT 0.999992 0.999992 0.999996 0.99998 -
- DPA 0.9999995 0.9999996  0.99999999 0.999999

Table 3. The UAC’s between the estimated vectors and EEFA’s obtained from the single

compounds and the mixture by the two estimation procedures.

Phased-resolved

Component Excitation Emission emission EEFA
Eigenanalysis
ANT 0.991754 0.998657  0.999889 0.99031
DPA 0.999929 0.999510 0.999919 0.99936 -
Least squares -
-7 ANT 0.991781 0.998664  0.999890 0.99034 5
- DPA 0.999929 0.999516  0.999919 0.99936 -
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Fiqure 1. Plots of the layers for the mixture of ANT and DPA (a) at 5 MHz (b) at 10
MHz (c) at 40 MHz (d) at 80 MHz.
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Figure 2. Plots of the layers at 10 MHz for the single compounds of (a) ANT and (b)
DPA.
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Figure 3. Plots of the standard vectors (solid line) and the estimated vectors from the
eigenanalysis procedure (broken line). Excitation: (a) ANT (b) DPA; Emission: (c) ANT
(d) DPA; Phase-resolved emission: (e) ANT (f) DPA.
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Figure 4. Plots of the LS estimates (solid line) and the estimates obtained from the
eigenanalysis procedure (broken line). Excitation: (a) ANT (b) DPA; Emission: (c)
ANT (d) DPA; Phased-resolved emission: (e¢) ANT (f) DPA.
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