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ON DECONVOLUTION USING TIME OF FLIGHT
INFORMATION IN POSITRON EMISSION TOMOGRAPHY
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Abstract: We study an estimation problem in PET when the time-of-flight informa-
tion is available. The continuous idealisation of the PET reconstruction problem,
formulated by Johnstone and Silverman (1990) as a special case of bivariate density
estimation based on indirect observations, is used. A Modified Deconvoluting Kernel
Density Estimator (MDK) is proposed. For densities with mth derivatives satisfying
a Lipschitz condition in Lz norm and in Lo, norm, the convergence rates of mean inte-

I(m+a
grated square error and mazimum mean square error are shown to be O(n~ Wéﬂ_‘*‘:ﬂ%)
where n is the number of counts. These rates are optimal. By comparing our results~

- with those in the literature where no time-of-flight is considered, it is shown that -
although the time of flight does not yield better convergence rates in this model, it
can yield better constants when the noise is small.

key words and phrases: Density estimation, deconvoluting kernel estimator, minimax,
Radon transform, tomography.

1. Introduction

Positron emission tomography (PET) is a medical technology used to recon-
struct the internal structure of an organ of interest by detecting the particles
emitted from injected radioactive material. Since it poses interesting stafjsti-

-"cal reconstruction problems involving incomplete data, there have been several

" papers recently on this subject in the statistical literature. See Johnstone and
Silverman (1990), Shepp and Vardi (1982), Vardi, Shepp and Kaufman (1985)
for references.

The formulation of the PET problem we shall consider is basically the ide-
alised version of that given by Johnstone and Silverman (1990).

1.1. The basic setup of PET

As described in Johnstone and Silverman, we consider a particular PET
experiment, where the patient is injected with a quantity of radioactively tagged
glucose or other metabolite. Emissions are recorded in one or more rings of
detectors put around the patient’s head. The ring of detectors defines a slice
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of the head: we shall regard the slice as a plane or cross-section and consider

~an essentially two dimensional problem in which (see Figure 1) emissions take
place in the plane according to the density of glucose within the slice. We take
the detector ring be the unit circle. Thus we are estimating a two dimensional
density supported within the unit disc. An emission at P_gives rise to a photon
pair whose directions of flight lie in the plane along a line ! through P with
random, uniformly distributed orientation. We assume that the points B and C
of the intersection of ! with the detector circle are observed exactly.

For the PET problem formulated in this way, Johnstone and Silverman es-
tablished the exact minimax rate of convergence of estimation, for all possible
estimators, over suitable smoothness classes of functions. For densities in a class
corresponding to bounded square integrable pth derivatives relative to a suitable
weight function, the rate is =

detector circle

Figure 1. The patient and the detector circle

-

_1.2. New problem and model E

Technological advances now present the option of using photo-electric devices
that are so sensitive that they can record the different times of incidence of the
two photons that come from the original positron-electron annihilation. The

 difference in time allows the approximate position along the line at which the
annihilation occured to be determined (by simple distance-time calculations, since
the speed of photons is the same as that of light). For more information, see
Snyder et al. (1981). Thus, we can detect not only the line where the emission
must have lain, but also the approximate position on the line. See Figure 1,
where P’ is the approximate position of P we detected (cf. Snyder et al.). There
are various sources of error involved, however, so the position can only be found
approximately.
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Given this extra information, is better reconstruction possible? We yge an
—aSymptotic approach to show that the answer is positive.

Model:
Y =X +ed, X,Y €R? (1.1)

Here Y is the approximate emission position (P') detected, X is the original
position (P) of the emission. We assume:

1. X has density g, with support on the unit disc.

2. € ~ N(0,02),0? is known and small.

3. @ = (cos0,sin §) where 8 is uniformly distributed on [0, 2].
4. X,¢,d are independent.

Therefore, the joint density of Y and & relative to Lebesgue measure is:

1 oo ' t2 .
Log(y,d) = f(y,a) = @)% /_oo g(y — ta) exp ("2—05) dt. “(1.2)

Denote

-—

o Tof=g
Problem: Determine g, the density of X, when we can only observe Y and a.

This paper is organized as follows: Section 2 proposes an estimator called
the Modified Deconvoluting Kernel Density Estimator. Section 3 establishes some
asymptotic properties of the estimator and shows that the estimator is optimal in
the sense of achieving the optimal convergence rates for MISE and MMSE. Section
4 compares our results with other recent work and shows that in some cases even
though time-of-flight does not give us better convergence rate, it does give us
better (smaller) coefficients in the leading error term of the error expansiqxi. In

.Section 5, the theorems in Sections 3 and 4 are proved. E

.~ 2. Estimator

Apparently our problem is just a particular kind of deconvolution problem.
We will therefore, begin with some generalities on the deconvolution problem, and
with a particular deconvoluting kernel density estimator introduced by Stefanski
and Carroll (1990). Their estimator is modified for our problem in which use is
made of the extra time of flight information.

2.1. Deconvolution problem

Let U and Z be independent random variables with probability density func-
tions g and h respectively. Then the random variable X = U + Z has the density
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f = gx h where “x” denotes convolution. Assuming h is known, we congider
Sstimation of g from a set of independent observations {z1,...,Z.} having the

common density f.
2.2. Deconvoluting kernel density estimator

Let K be a kernel function and f be the ordinary kernel density estimator of
f based on the kernel K, i.e.,

n

f=@NTY K((=j — )/ (2.1)

i=1

Denote by ¢ P ®h, bg, K the Fourier transformations of f ,h,g, K, respectively.
Let q@n be the empirical characteristic function of zi,...,Za, that is

n

&n(t) = .:'.z. Z e‘itzi .

i=1
Now we have y
T $; = PKPn.
Assume that
|on(t)| >0, VtER (2.2)

and
sup |k (t)/Dn(t/A)| < oo f|¢x(t)/¢h(t/,\)|dt < o0, YA> 0. (2.3)

The deconvoluting kernel density estimator is then defined as

i) = o [0/ i
= (2m! / €712 b (AE) b (£) / 01 (2) L. 2.4

It is straightforward to extend the estimator to the multivariate case.

Like the ordinary kernel density estimator, the deconvoluting kernel density
estimator has some advantages. It is computationally feasible, has good asymp-
totic properties, and, in a broad range of error distributions, is optimal, in the
sense of rates of convergence. See Carroll and Hall (1988), Stefanski and Carroll
(1990), Stefanski (1990), Fan (1991).

Although our problem is a deconvolution problem, the estimator (2.4) should
not be used directly, because we know not only the error density, but also the
direction along which the error occurs. In fact, it can be shown that estimator
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(2.4) (by treating ed as error) does not give the best convergence ratg, The
— question now is how to use the extra information. “—'

2.3. Modified Deconvoluting Kernel density estimator (MDK)

Intuitively, the Deconvoluting Kernel Estimator of Stefanski and Carroll sim-
ply divides the empirical characteristic function of f by that of h, and regarding
that as an estimator of the characteristic function of g, it then applies the in-
verse Fourier transformation. Our strategy is to get a better estimator of the
characteristic function of g with the extra information.

Let the sa.mple be (y1,£1,€1,81),. .-, (YUn &n, €n, c'in), of which we only observe
y;’s and @;’s

Our 1dea is based on the following simple observa,tlons

e If a; Lt, then
t‘f'yj = tT:cj + ejt"'aj — tT(Bj — eJCp(it"'yj) — exp(it"wj).

So, in this case y; gives as much information about ¢,(t) as x;, as if there
were no noise!
“e If d; // t, then
exp(it"y;) = exp(it"z; * |¢;]),
and y; gives the least accurate information about t"z; and hence ¢,(t).

This suggests weighting 1y, : giving larger weight to those y;, such that
< @j,t > is about 7/2, and smaller weight to those y;, such that < d@;,t > is
about 0, or 7. Here, < d@;,t > is the angle between d; and ¢,and 0 << @;,t >< «.
That suggests the Weighted Empirical Characteristic Function,

g (t) = Z w(d;, t) exp(itTy;) §

~ as an estimator of $4(t). Here w(t, @) is assumed to be a positive bounded weight
function, such that w is nonincreasing with |t"@|. To make it unbiased, divide it

by ¢¥(t) such that
E(67(t)/ 8¢ (t)) = ¢4(t).
Thus
oY (t) = E(exp(iet”a)w(a,t)). (2.5)
Finally, Modified Deconvoluting Kernel Density Estimator (MDK) is defined as

o (t)
¢¥(t)

dnn(z 4ﬂ_2/ / exp(—zt"w)qu(th) dtidts (2.6)
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where K is a two-dimensional kernel.

— ~This estimator can be expressed as a sum of ¢.i.d. random variables: —
. 138 1 [ /°° oy w(d;,t) exp(it"y;)
T)=— — exp(—it" @) (th dtidty. (2.7)
@) = 23 g [7 [ exp(-itmaoncten) ==
Selection of w. From now on, use
wo(d,t) = E(exp(iet’a))
_ (t"d)20?
= exp 5
as weight function. (2.5) can be rewritten as
¢ (t) = E(wo(d,t)w(a,t)). (2.8)

We shall show that wp is optimal in the sense of minimizing the global variance
of the estimator. .-

Remark. In model (1.1), the normality assumption on € is not crucial. For any
symmetric error ¢, let ¢ denote its characteristic function. In estimator (2.6),
choosing

wo(G,t) = ¢(t7a),

we can do the same analysis and get the same results.
For simplicity, use gn s for .‘7:,(;;’ b for ¢, b, for ¢5°, and when there is no
confusion about h, use §, for gn a-

3. Asymptotic Properties of the Estimator
The Mean Integrated Square Error of g, is defined as

MISE,(h) = E / (gn(@) — g(e))?de.

For a fixed point &g, the Mean Square Erroris defined as
MSEq () = E |gn(0) — g(20)?

and for a class C of densities, the Mazimum Mean Square Error is defined as

MMSEC (h) = sup MSEq (k).
geC

When C is clear, we simply use MMSE, (h) for MMSEY ().
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In this section, the properties of the sequences {MISE,(hn)} and {MMSEn(hn)}
— are studied. In particular, if g and its kth derivatives satisfy some smoothness
conditions, then using a proper kernel and choosing hn to be ?“1/ (2k+3)  we shall

show that MISE,(h,) and MMSE, (hy) are of the order n~ ZR+3,
3.1. Mean integrated square error

We say that ¢ € Cm a,B if
1. g is a density function on {z:z€ R?, ||z| < 1},
2. g has up to mth order derivatives,
3.Y0<i<m,VAER?,
_9"9
8":::18"‘“":02

o™g

B 3i$13m—i$2 (m + A)

< BllA]*.
2

()

Here, m is a positive integer, 0 < a <1, B >0,and | ||2is the Lz norm.

1
Theorem 1. Let p=m + o and hy, =n 23, Then, as n — o0,

-

2p
o sup Eljn—gll3=0 (n—”’“) : (3.1)
gecm,a,B
Theorem 2.
2p a
lim (n2P+3) inf sup E|T.- gllz >0, (3.2)
n—o0 Tn gecm,a,B

where the infimum is over all estimators Tn.
3.2. Maximum mean square error

We say that g € Cy, , p if
_ 1. g is a density function on {® : @ € R?, ||e|| < 1},

]

E
2. g has mth order derivatives, and |g| < B, o
3.Y0<i<m,VAER?
8™mg amg
—— ——— < a.
Ot 0™ T2 =) Otz 0™y (= +4) < Bllal
Here, m is a positive integer, 0 < a <1, B> %
Theorem 3. Let p=m + o and h, = n"fﬁ}ﬁ. Then
A 2
sup  sup E|gn(eo) — g(@0)* = O(n” 2+3). (3.3)

llzoli<1 g€C,

m,a,B
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And —_
Theorem 4. For every @y inside the unit disc,
2
(%) int sup Blinlao) ~ gla)® > 0 (3.4
Tn gEC;n'a'B

By the theorems, we know that the MDK is optimal in the sense of Stone (1982).

22
Remark. For our problem, estimator (2.4) has convergence rate n?+% for both
2 2

22 22
cases. Also note that n#+3 is slower than n?+?, the convergence rate when we
have direct data (see Stone).

4. How Is Time-of-Flight Helpful?

In this section, we try to compare our results in Section & with those in the
literature in order to understand the effect of time-of-flight information.

4.1. Johnstone and Silverman

The first effort along this direction of research was made by Johnstone atnd
Silverman (1990). They studied the problem when there is no time-of-flight
available. They put a different kind of smoothness condition on their underlying
function class. We say a function g € By v, if g has pth order weak derivatives
which are square-integrable with respect to duy+1(z) = (p + 1)(1 — ||z]|?)P*dz,

and
[ (47@) dupia(a) < .

Here D is the unit disc.
Their main result is that for B, »r, the minimax MISE convergence rates are:

. -2 . . .
(i) (n/logn)” ?»+% for direct case, that is, when we can observe the emission
location exactly. %

e — 22 Lo ) 3
- (ii) n” ?»+4 for the indirect case, that is, when we can observe only the line of
the coincidence pairs.

Note that
C'm,oz,M C B M

and since (p + 1)(1 — ||||?)?*! vanishes near the edge of the unit disc, Cp o 1
is essentially a smoother class. But how much broader is B, ps? By comparing
the direct case with the results of Stone (1982), it seems that as far as con-
vergence rates are concerned, the two function classes differ only by a factor of
log n. Therefore, we previously thought that time-of-flight might give us a better
convergence rate until the recent work of Bickel and Ritov (1990) became known.



DECONVOLUTION IN POSITRON EMISSION TOMOGRAPHY o 561

4.2. Bickel and Ritov

" 1In the case of no time-of-flight, Bickel and Ritov studied the problem of
estimating the linear functionals of densities on the unit disc. They obtained an
estimator of the density at a point by estimating a series of linear functionals
which converge, as n — 0o, to the value of the density at the point. . More
explicitly, instead of estimating g, estimate

——

gh =g * Kj
where Kj(z) = K(x/h)/h%, K is a kernel. By Parseval’s theorem
w@) = [ [~ e 52w, avar (4.1)

Here, ) is the Radon transform of g (see Figure 2, in which A(4, s) equals the
integral of g along the line BC divided by 7) and ;

(¢, t;2) = pp(z1cosy + zosiny —t,9),

~ where L :
pn(wd) & = [ lu| Ry, wh)dw
] o (4.2)
K('l/),w) 2 /ezw(z1 cos P+z2 Sin¢)K(w)dm.
C
=

Figure 2. Radon transformation

Note that
gn(z) = E(®n(,t;2)) (4.3)
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by (4.1) where the expectation is taken with respect to (,t) according to A.
— —Suppose we have the sample (1,11),. .; (¥n,tn). Then an unbiased estima-

tor of gp() is
1 n
a’) = ; Z Qh(d)j,ti;w)'

By letting h — 0 as n — 00, g — ¢, Blckel and Ritov proved that the MMSE of

g is of the order n ﬁi—a for C.. e, M and MISE is of the order n ﬁ-% for Crm,a,M-

By the results in Section 3, we know that Bickel and Ritov’s estimator is
optimal. Thus time-of-flight is not helpful in getting better convergence rate.
One might ask if we can get better constants by using time-of-flight. We show
next that it is true if o, presenting the noise, is small.

4.3. Constant calculation

We shall use the same kernel K for both estimators. For technical reasons,
we assume that K is radially symmetric. It is not an unreasonable assumption,
since it is well known that the best kernel in some cases is radially symmetric,
hke the Epanechnikov kernel (cf. Silverman (1986)). Then we have )

Theorem 5. For large n,

miny, MISE(BR) ) (4.4)

2P
ming MISEh(MDK) < [Uﬂ3/2} Zp+3
where equality holds iff g puts all its mass on the edge of the unit disc.

Therefore, we know that when o is small, we can estimate the true density (image)
better.

In Theorem 5, fix o, and now let o vary to get different results in the following.
‘Theorem 6. Let o =n~?. Then for the MDK, we have E

Q) f B < gk )

2
sip  Elgn - gl3=0 (n‘(l“f"’%%) ,

gecm,a,M

sup sup Elja(e0) — g(eo)? =0 (n~ 0+
lzoll<19€Ch, . 5

(i) if B2 ks,

2
sup  Ellgn—glZ=0 (n*) ,

9€Cm a, M
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— 2 .
| wp  swp Elin(en) — (@)’ =0 (v 7). _
- - Izoll<1 9€C: ~

m,«,B

4.4. Some remarks

1. Snyder et al. (1981) took account of the physical size of the detectors. They
modeled this factor as a zero-mean normal random noise in the transverse
direction. (See Figure 3, in which an annihilation occuring at z is mea-
sured as the point (u,6), where u = z + () and €(f) is a two-dimensional
measurement-error vector with a component ¢, parallel to the center line of
the detector pair and a component €, transverse to this line.) Assume that
the measurement error € associated with an annihilation at z is independent
of z as well as the locations and measurement errors of all other annihilations.

detection location

detection
location

detector circle

Figure 3. Each measurement is a point with coordinates (, ).

Then _,‘
€0) ~T(0)(eres)” Rs)

2
€e g 0
(€b> N(O af)’

T(G):[ cos @ siné?}.

where

—sinf cosf

When oy # 0 (usually %: ~ 3), and because the directional information of ¢
does not help us much, we can simply use the deconvoluting estimator, and
show that the MISE (MMSE) is (log n)~®*2) for Cp 0,8(Cl, o 5)- Fan (1991)
proved that it is the optimal rate for both MISE and MMSE. In this case, the



564 HANG PAUL ZHANG ¢

-

best convergence rate is very slow. For the case in which only the approximate
. lines where the emissions lie can be detected, we do not know how muchtime -
of flight information helps us.

2. O’Sullivan (1989) studied the model proposed by Snyder et al., and in his
practical implementation, the target is g x wj instead of g itself. Here wp
is a two-dimensional spherically symmetric Gaussian density with mean zero
and standard deviation op. Therefore, he actually used model (1.1), except
that g x wp has derivatives of any order. Moreover his Confidence- Weighted
Backprojection estimator is exactly the same as our estimator (2.6).

3. It would be interesting to know other applications of the model (1.1).

5. Proofs of the Results

5.1. Convergence rate for MDK
Proof of Theorem 1

First we prove a lemma.

Lemma 5.1. -

—~—

1 (2 .
Pe(t1,t2) = py /0 exp(—o2(t? + t3) sin® 9)do.

Proof. By the definition, since X and ¢ are independent,

b(t) = B (exp<—ith) exp (—";(t*a)?) /¢g(t>)

o2
= E (exp(—it"(X + €d) exp (—?(t"(i)z) /¢g(t))

[ Eexp(—it"X) it ed) ex _57_2 2 N
N ( 5510 )E(e’“’( oo p( 2(”))) 2

= E(exp(-0*(t7a)?))
1

2r
= 5 /(; exp(—-az(t% + t%) sin? 6)dsé.

Since ]]eii—anr% — 1 as § — km, it is easy to show that

2r
V12 + t /0 exp(—c2(t2 + t2) sin® 9)do
o0
24/t + t%/ exp(—o?(t? + t2)6%)do
-0

as t%+t%—->oo.
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Therefore, we have

““"C‘orollary 5.1. ' —

(aﬁ\/t"{ + t%) be(t) — 1, as y/t2 +1§ — oo (6.1)

Next, choose K to satisfy the following conditions:
(a) K has finite support and is bounded.
(b) fK(t)dt = 1.
(c) [fHEK(®#)dt =0,V1<i+j<m.
By some standard methods (see Prakasa Rao (1983)), we have V g € Cp 0,8,

B @) = s [ [ o(e = i)KW 52)
and
[ [T 1Bz @) - s(@)Pderdzs = Cl@) (W) A +o(1). (53
Here, Ck(g) is a function of g depending on K and satisfies

- sup Ck(g) < oo.
gecm «,B

Note that by (5.2), E(§¥(z)) does not depend on w. Denote

Cnle) = 3 )4 - [ Bk (@)

By (2.7),
[var(@z(@)de

= Z2—ﬂ_1)—4; / var ( f ‘trqu(;f”(:t’;) & Yw(c'i,t)dt) de :

a 2
= (21r 4n [ |/ —it a:‘i;fu((tt};) it” Yw(ii,t)dt‘ _E2(§:(m))j| da

— (277)471 ( |/ —it"x ¢K(th) zt Yw(éi,t)dt2da:> - C,

pu(t)
. 2
= 22—:)—4;13 ((27r)2f %I%((%)-e"t Yw(a,t)‘ dt) - Cn (5.4)
1 gk (tR)[?

= Gnl TP E(w?(d,t))dt — C.

1 |px (th)|
> Ty ] ol O (>
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v-:/here (5.4) holds by the Parseval Equality. To prove (5.5), recall that

m—— e

wo(d,t) = Eexp(iet”a)

and

E(w}(a,t)) = ¢(t).
Thus

6212 = |E(exp(iet”@)w(t,d))|?
|E(wo(t, &)w(t, &)/
E(wi(t,d))E(w(t, @)
(by Cauchy’s inequality)
$e(t)E*(w(t, d@)).

IN

The equality holds iff w & wg, so in fact we have shown that wq is best in the
sense that §, has minimum global variability.
_ By Corrollary 5.1, we have

|9x(th)[?
|¢e(2)]

—

dt = (1+0(1) 25" / 6x (&)[2]1t]] dt. (5.6)

Since

s Cale) =0 (1)

gECm,a,B
it follows that, when A is small,

v [ varlin(e)do = 1+ o) 2 [lexPielae. G

gecm.a.B

“Therefore by (5.3) and (5.7),

MISE,(h) = (h2P)+0( is) (5.8)

Choosing h, = n” yields the best convergence rate n—ﬁ% for MISE, (k).

Proof of Theorem 3. By the Taylor ewpansioh (see Prakasa Rao (1983) for
details), V @g in the unit disc,

|E(gn(®0)) — g(wo)| < DRP. (5.9)
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Let fg be the density of y given . Since Vg € C, , g, l9] < B, we have

vy, falw) = [oly-anend
< /Btbe(t)dt = B,
where ¢. is the density of ¢, it follows that

var(gn (o))

1 _itte, Pk (h) Yy
Gy |/ ) s ¢ wol@ O

< (quE (/l/e“"tf%ﬁx—(t—hze"twwo(a,t)dt
= WE ((27:')2/

2
5e(2) dy)
P (th) —it o5 ¢) : dt)
— B |¢K(th)|2 dt (&.10)

¢ (t)
- @m)2n ) |et)

2

IN

B

So by the same argument as in proving Theorem I,

MMﬂhm%ﬂ%ﬁﬂ+O(ﬁﬁ). (5.11)

2
Choosing h, = ) yields the best convergence rate n” s for MMSE, (k).

5.2. Lower bound on the convergence rate

Recently, there have been several results about the lower bounds in density

estimation problems, (see Donoho and Liu (1991a,b)). For our problem, wg are
.going to adopt the cubical lower bound idea of Fan (1992). =
Let m be an even integer. Denote -

(m) _ o
;") = (-1/2,-1/2) + (i/m,j/m), i,j=1,...,m.

Let {mgen)}ISksz be a sequence of points in [—1/2,1/2]? satisfying

(R) 4w

T(i—1)ym+j — Vig o

V1<i,j<m.

Let H : R2 — R, satisfy the following conditions:
1. [H(z)dz = 0.
2. H is m + 1 differentiable.
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3. H(0,0) > 0 and [|H||eo < min(z;,B - 1), _
=4.”H vanishes outside {z : ||| < 1/2} C -3, 32 ——
Remark. The condition H(0,0) > 0 is for proving the lower bound result for
MMSE at o = (0,0). It should be obvious how to adjust it for a general point
x0.
Let gg be the uniform distribution on the unit disc, that is

1
go(2) ==, ¥ llel < 1.

Let 0 < § < 1, and take m = [%] Then V fm = (01,...,0m2), define

m m

95..(@) = 90(@) + 8 33 6_ymai H (2 = 2(71ym ;) 15) (5.12)
1

i=1j=

f, =Logg, -

Denote

~—

Gn = {95, : 0w is a sequence of 0’s and 1’s},

Fa = {fi,,, : O, is a sequence of 0’s and 1's}.

It is not hard to show that G, C C,, , 5. By choosing H smooth enough, G, C
Cm,a,B, V 0m. Define

é‘jo = (91,...,9j-1,0,0j+1,...,0m2), 6]'1 = (61,...,0j-1,1,0j1+1,...,0m2).

Let fé‘io =Lo 95, fo—j1 =Lo 95, - Suppose G, is such that for some c, i
%
c

max  max xz(f(;jo,f;jl) < -, (5.13)

1<j<m? g, e{0,1}™* n

where

(5, (@, 8) - fg (v, a))2 _
Ui, d5) = (13, @) i

Here “¢” represents the line integral along the unit circle. Then we have

I:emma 5.2. Suppose that (5.13) holds. Set § = n” ¥ . Then for any estimator
Tn(z) of g(®) = T o f(x) based on the n i.i.d. samples from an unknown density
f, we have



(i) for f € Cma,B;
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—

inf E T (@) — g()|*de

i fs;ljg" ) - diEml w(®) — g(2)] |

> lzvi—e™ U IH(m)lzdm} T (5.14)
8 unit disc

(ii) for f € Cp, o p and To = (0,0)

inf sup Ef(ITn(mO) —T o f(=o)[?) >
Tn. fe{flny.fht}

where fjn =Lo 9jin,s J =12, g1n = 9o, g2n(m) = gO(z) -+ 5PH(3/5)
The proof of the lemma is basically the same as in Fan (1992). We omit it here.

—_ — —C
! V; ™ B2(0,0)n" 753, (5.15)

To prove Theorems 2 and 4 by the lemma, we only need to verify condition
(5.13). By the construction of 95, » We know that for any given x, at most ‘one of

the H((z — azg ))/5) is not zero. By condition 3on H,

1
gé‘m("’) 2> o Y @ € unit disc,
2
X (fgjo,fgn)

f/ fg (y,a) y,a)( )) dyda
(n)

- o /<———/< ) (-5)e)

— dyda ~
fé'jo(yaa) v E-
(n) _ ;= B
o — V" —t 2 2
| ((2#)13/20/ H(y m15 a)exP(—éta—z)dt>
< 2521”}{/ T - dyda, (5.16
fO(y’a) v ( )

where fy = L o gg. To bound this distance, we establish, next,
Lemma 5.3. There exists C; > 0 such that for all j, y, @, and 0 < 6 < %,

(n) =
1 oo y—x; —ta t2
(27)3/2¢0 [—oo H( ) )exp( 202 )dt

foly,a)

< C1éb. (5.17)
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-~

Proof. First, assume a:g") = 0. Denote

)

From the definition,

1 oo y —ta (_ _t_?_ )
@n)% [.E & )exp 257 )
fO('y7a)

l/ H (t) exp (———i> dt

2 '
— - |dt
/_wgo(y ta) eXP< 552 )

fi O(y, a’) > 0.
By definition, H vanishes outside the disc centered at 0 and of radius 1 /2. So, if

lyll® - |a7y|* > 6%/4,

Clearly,

then
6 _
Hy,d(t) =0.

In this case, (5.17) is trivially true. Now suppose

lyll? - la"y|? < 6%/4.

‘h’

Let .
g =(@"y)d, and t(y,d)=d"y. %

“Then H5 4(t) vanishes outside [t(y,d) — 6/2,t(y, ) + 6/2]. Since

ly —t@|| <1, when te€ [t(y,ﬁ) —-8/2- é, t(y, @) +5/2+§ ;

and || Hllw < 7,

‘/ H (t) exp (——%) dt

2
[-oo go(y — td) exp (-—2——5) dt
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t2 |
. f ‘Hﬁ -(t)‘exp(———)dt —
—— _ 202 =
< 3
* oly — ta <—i—>dt
/_ _ go(y — td) exp{ —5—3
t(y,a)+6/2 £2
/ B exp(———z—) dt
#(y,4)—8/2 20
= t(y,8)+6/2+% £2
/ - exp(—-—-—2> dt
t(y,8)-6/2-4 20
 P(e€ [t(y, @) — §/2, t(y, @) +6/2])
P(ce [t(y,) —6/2- %, t(y, @) +5/2+ §)

< C1é. (5.19)
(5.19) can be simply derived from the unimodal property of the normal density

(5.18)

function. For general mgn),

1 oo — 2™~ ta £2
@nEs [ a5 Jexe(~q3)
| fo(y, @) |
. 2P(ee[t(y 2™, d) - 6/2, t(y- 2\, )+5/2])
B P(ee [t( a)— 6/2——,t(y,a)+5/2+%]> .
Since [|l2{™]| < v2/2 < 4/5,

[t(y—={, &) ~6/2, t(y—=", ) +6/2] € [t(y,&')— 5/2 —%, t(y, a)+5/2+§] ,

Thus, (5.19) still holds, probably with a different constant. This proves the
lemma. )

(5.20)

R

By the lemma, we have —3 .
2 - -
X (f»eio’fah)
(n) -
< 90, §%+! }{ / 1 / ; 2 )
< 20y (2m)%/%0 _OOH 5 exp | ~53 dt| dyda
20162P+3 (n) " t2
< H _ o
- (27r)3/2g f_/ (/‘ ( ) d'y) eXp | =53 dtda
<

C6%P+3
(27‘_)3/20‘%‘/ exp | -5 dtda (5.21)
= 6%+, (5.22)
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(5.21) holds because H vanishes outside the unit disc and H < =. Since_j is
arbitrary, we know (5.13) holds. —_—

5.3. Comparison of estimators

Proof of Theorem 5

Since we use the same kernel K, we have the same bias terms,
Ck(g)h*"(1 + o(1)). (5.23)

For the Bickel-Ritov estimator, standard computation shows

var(éh(w))

= 1+0(1 / p2(z1 cosy + zosin e —t))\(¢ t)dtdy

= 1+ 0(1) // 1(t Y)A(2, (z1 cos P + z2siny + ht))dtdy

= _(ﬁ-_ogl_))// P2 (t, %) A(1, €1 cos Y + zosinep)dtdy

eSO // w?| ¢k (w cos Y, wsin ) [A(¥, 21 cos ¥ + 2 sin y)dwdy

T 8rnkd
(by Parseval’s equality and (4.2))

= CE2D T[] 16ke ehat] [ [ 7w,21.c08 9+ zasinw)au]

(¢% (w cos 9, wsin 1) does not depend on ).

Globally, we have

; (1+0(1)) -
Awugm(gh(m))dm ~ 8rinhd [/ #®)] Il dt] B(g), (5§‘4)' |

where

= / /w)\(gb,:cl cos Y + zo9siny)dyde,
Jleli<t Jo

and ) is the Radon transform of g. For B(g), we have

Lemma 5.4. For any density g on the unit disc

B(g) >

SR

with equality iff g is concentrated on the boundary of the disc.
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“Proof. Under a change of coordinates:

t, = o1 cos¢+a:2 sin 9,
(5.25)
to = —zxysiny + zgcos. :
Blo) = [ [ aw t)evar
Iitli<1 Jo
x pl
= 2/0 [_1 1- t% A(y, t1)dydt,.
We know that
A(Y,t1) /g(tl cos P — tg sinp, ty siny + tg cos Y)diy.
Thus,
B = / / 1—-t2g(t —tasiny, t + ty cos ¥)dydt
(9 o [ VTRt cosy ~rsing, tsing +trcosy)ay
T = / / \/1— (z1 cos ¥ + zgsiny)? g(z1, zo)dypde
lel<1
= 2 e |[ Vil eosv v de
T Jlje|<1 0
2 k3
> - [ , 1- 2d ] d
2 - Awngg(m z2) [/0 {1 —cosy?dy) de
I
oo
This proves the lemma. .
Therefore, for the Bickel-Ritov estimator, the MISE at g is ;

' MISEA(9) > C(0)A (1 +0(1) + 55— [ [[ 16wl dt] (1+0(1)). (5.26)

By (5.7), for MDK, the MISE is

MISEx(g) > Ci(g)h%(1 +o(1) + gaers [ I9x()Pltl de(1 +o(1). ~(5.27)

Choosing the optimal bandwidths k for both estimators, we have

_2p_
miny, MISE,(MDK) _ omw3/2] B+
miny MISE,(BR) ~ | 2
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This proves Theorem 5.
7i3r-;)of of Theorem 6

By Corrollary 5.1, if o goes to zero not as fast as h does, then (5.6) is still
valid and, therefore,

MISE, (k) = O(h%) + O (%) : (5.28)

2
Choosing h, = n";—vt*% yields the best convergence rate n~ A5 | Note that if
8 < _2p_1+§’ then o > h,. This proves the first assertion.
In (5.6), if o/h — 0, we can treat ¢.(t/h) as 1. So in this case, (5.6) turns
out to be

|9k (th)[? avA / 2
P2 dt = (1+o(1))—5— [ |ox(t)|°lIt]l dt. 5.29
5@ (L+o(1) =7 [ lox @il (5.29)

—_ —22_ y
Choosing h, = n~ 2+? yields the best convergence rate n 2+2. Note that if
g > 5—14-_2’ then ¢ < h,. This proves the second assertion.
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