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Abstract: A hypothesis testing problem is considered where the distribution of a
random sample is specified only up to a nuisance parameter. Under the notion of
asymptotic efficiency according to Bahadur, an adaptive test statistic is asymptot-
ically efficient regardless of the value of the nuisance parameter. An adaptation
condition is derived and the form of adaptive test statistics is discussed.
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1. Introduction

Let x = (21,... ,Z») be a random sample drawn from one of two different
probability distributions, P or @, so that the hypothesis P versus the alternative
Q is to be tested. We start here with simple hypotheses for conceptual simplicity.

If T, = Tn(x) is a test statistic which rejects P for large values and has the
null distribution function Fy,(t) = P(T, < t), then the level attained by T, is

L(T,) = LP(T,) = 1 = Fo(Ta(x)).
It is known (cf. Bahadur (1971, Theorem 7.5)) that with Q-probability one
nler;oinf n~log L(T,) > -K(Q, P), (1.1)

where K(Q,P) = E?logdQ/dP is the information number. The limit in the
left-hand side of (1.1) is proportional to the so-called exact slope of T),.

Equality in (1.1) is attained by the most powerful (likelihood ratio) test,
and a test statistic is defined to be asymptotically Bahadur efficient if it attains
equality in (1.1).

Suppose now that the different distributions P and ¢ are not known exactly
but only up to a nuisance parameter a, so that for any fixed (but unknown) value
of a one has to test the hypothesis P, against Q.
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A test statistic T, is called adaptive if for every a

lim infn"log Lo(Tn) = —K(Qo» Pa)

n-—+00

with Qq-probability one. Here Lo(T,) = LE(T,) is the observed level of Ty,
calculated under P,.

In other words an adaptive test statistic is asymptotically Bahadur efficient
for every value of the nuisance parameter and is independent of this value. This
problem can be also viewed as that of hypothesis testing of the family P, versus
the family Q, when a Bahadur efficient test is desired for specified pairs (Pa, Q«)-

A notion of an adaptive test in the case of an infinite dimensional nuisance
parameter has been introduced by Stein (1956). A related definition has been
given by Rukhin (1982), and a necessary and sufficient condition for the existence
of an adaptive test when asymptotic efficiency is defined by exponential rate of
probability of type I error was obtained in Rukhin (1986) (see Mak and Rukhin
(1991) for a more general adaptation definition).

It follows from the results of this paper that the existence of an adaptive test
statistic is implied by the existence of an adaptive test in the sense of Rukhin
(1982).

The present notion of an adaptive test statistic is based on stochastic com-
parison of tests which has been an important tool in asymptotic testing theory
for the last thirty years. The value of the constant C,, which determines the
critical region {x : Tn(x) > C,}, does not enter our definition of adaptation (as
it does not enter the definition of asymptotic efficiency according to Bahadur),
but this constant is involved in the definition of an adaptive test. For practical
implementation of adaptive test statistics there remains the problem of specifying
significance levels for different values of a.

In this paper in Sections 2 and 3 we derive sufficient conditions for the exis-
tence of an adaptive test statistic. These conditions are derived from asymptotic
study of weighted likelihood ratio tests. Using some results of linear inequalities
theory a simple condition for the existence of an adaptive test statistic is deduced
in the case of a finite-valued nuisance parameter. In Section 4 a generalization
of these results for composite hypotheses is provided.

2. Asymptotic Study of Weighted Likelihood Ratio Tests

We start with the situation where the nuisance parameter a takes only a
finite number of values, say, o = 1,... , A.

Let px, gx denote densities of (different) distributions Py and Qk, k =
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1,...,A, all of which are supposed to have common support. Also let

— : _ Ah. P ) s;
palbry - sbase) = max, - inf { ;s.(b,+c>+log Ef I;[[qk(X)m(X)] }.

Asin Bahadur (1971, Lemma 3.3) it is easy to show that, for fixed by,... ,ba,
the function p, is a continuous function of ¢ taking values in an open interval.
For fixed real constants by,... ,bs define a test statistic T}, as

To(x) = n " log { 3w T[] ax(e3)/ 3 we [] pr(e5)}, (2.1)
k ji=1 k 7=1

where wi = exp(nbi) and ux are fixed positive numbers.
The asymptotic behavior of (2.1) is provided by the following result.

Lemma 2.1. With Q. probability one
lim n~!log La(Tn) = pa(b1,.-- b4, Ba),
=00
where
Ba = mgn[Ko,g - bg], Kaﬂ = K(Qa,Pp). (2.2)
Proof. Lemma 5.1 in the Appendix implies that

lim ! log Po(Tn(x) > 1)

= lim n~" log Po{max u; 1:[ gk(z;) 2 €' maxwy IIIPk(zj)} .

=pa(b1, e ,bA’t)°

Here t is any number such that (5.2) holds with ¢ = t. For every a with Qq
probability one the law of large numbers implies that

nleoo To(x) = nlergo n~! {m;?x Zlog qk(z;) — m]?x[nbk + Zlog pr(z;)}
j j
= max EZ log gx(X) — max[bi + EZ log pi(X)].
Because of the known properties of information numbers one obtains

lim 7,(x) = min{ EF log Z—"’(X) — by} = B,.
k(Zand e el k

The conclusion of Lemma 2.1 now follows from Theorem 7.2 of Bahadur
(1971), which, for completeness sake, is also given in the Appendix. Indeed, we
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have only to verify that with ¢ = B, for any probabilities v;
qk . _
Pa(Zv,[log H(X) - b,] > c) >0, k=1,...,A.

Since all distributions P, and @, are mutually absolutely continuous it
suffices to show that

- . _qa — .
Qa( E V4 [log i(X) b,] > c) > 0. (2.3)
Because of the definition of B, one has

ES Z [v,-log ;—T(X) - b,' —C] = Ev;[Km- - b,' - Ba] Z 0.

Since the support of Q, has at least two points, (2.3) follows.

Corollary 1. An adaptive test ezists if for some by,... ,bg andalla=1,... A

mgn[Kag - bp] = Kaa - ba.

Proof. The condition of Corollary 1 means that for all «
By = Koo — bav
so that

palbis- - b4, Ba) < maxinf {—s(ba + Ba) +10g EX[ge(X)/pa( X)]*)
< =by— By = —-Koua.

Since always
lim infn"log Lo(Th) > — Koo,

n—00
one concludes that because of Lemma 2.1 test statistic (2.2) is adaptive.

To obtain an analogue of Corollary 1 in a more general situation we introduce
the following:

Assumption A. The set © of nuisance parameters is a compact topological
space and the function E,f log g (X), 7 fixed, is a continuous function of a.

Notice that Assumption A can be replaced by the condition of existence of
a suitable compactification of © as in Bahadur (1971, Section 9).

Theorem 2.1. Under Assumption A an adaptive test statistic ezists if there
ezists a continuous function b on © such that

min[Kap = b(B)] = Koo = b(a). (2.4)
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Proof. Let
Tu(x) = 0™ log [ max I1 ¢e(z5)/ max "8 T palz))-

As in the proof of Lemma 2.1 we see that with probability one
lim T,(x) = min[Kas — b(8)] = Ba.
n—00 B
For any positive € and any fixed v one can find points a;,... ,a4 of © such that

max EP loggo(X) < max EFlogg.(X)+€/2.
[ 4 v Q] yeee yOXA 7

It follows from our assumptions for all sufficiently large n

n n
- -1
max ! El logga(z;) < max = El log ga(z;) + €

and
P’Y(Tn(x) > t)
= P, (max 3 log ga(zs) 2 nt + maxinb(8) + 3 logs(z;)))
1 1

<Py max_ ;bg a(2;).2 n{t = ) + max [nb; + zljlogpﬁ(zj)]),
where f1,...,04 are arbitrary elements of © and b; = b(f;).

Now Lemma 5.1 in the Appendix implies that

lim sup n™! log P,,(Tn(x) > 1) < py(bry ... ,ba,t —¢)

so that

lim sup n ™! log La(Tn) < palbry... b4, Ba —€).

n-—+0oo

Because of continuity of the function p,

limsup n~' log Lo(T,) < max inf[—s(ba + Bs) + log Ef[gi(X)]’]

n—oo k s20 Pa
< —by — Ba = -Kaa

and, as in Corollary 1, we conclude that T, is adaptive.

3. Linear Inequalities and Adaptive Test Statistics

We prove here the following result for the finite case.
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Theorem 3.1. Let © = {1,...,A} be a finite parameter set. An adaptive test
statistic ezists if for any permutation o of {1,...,A}

ZKia(i) > ZKn‘- (3.1)

Proof. To prove Theorem 3.1 we use Corollary 1, whose condition can be written
in the form of simultaneous linear inequalities

b; — by > K;; — K. (3.2)

According to Theorem 1 of Ky Fan (1956, p.100), the system (3.2) has a solution
if (and only if) for any matrix C' with non-negative elements c;x, the identity

Ecik(bi —bx) =0, | (3.3)

ik
which holds for all b;,...,b4, implies that

Ecik(Kﬁ - K,'k) S 0. (34)
i,k

Clearly (3.3) means that for any k
Z Cik = Z Cki- (3.5)

It is obvious that if (3.4) and (3.5) are satisfied for a matrix C then these
conditions are also satisfied for a matrix with zero diagonal and all other elements
coinciding with those of C. Therefore one can assume that ¢;; = 0. The set of
all matrices C' under condition (3.5) and, such that ¢;x < 1, ¢;; = 0, is a convex
compact subset of the space of all A X A matrices. The set of its extreme points
is formed by matrices of the form, F,, = {5,-,,(,-)} where o is a permutation of an
r-element subset of {1,...,A}, such that for all ¢, 0(i) # ¢ and 6;x is Kronecker
symbol. '

By the Krein-Milman Theorem (see for example Rudin (1991)) any matrix
C under condition (3.3) and with zero diagonal can be represented as a convex
combination of the matrices F,, above.

It follows that (3.4) is equivalent to (3.1), which proves Theorem 3.1.

A heuristic interpretation of condition (3.1) is that summarily the hypotheses
testing problems P, versus ¢}, are at least as difficult as problems of testing P,

against Qg for a # B.
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Theorem 3.2. Under Assumption A an adaptive test statistic ezists if
Koo = mgn K.p. (3.6)

Proof. Put
b(a) = Kua
and observe that condition (2.4) is satisfied because of (3.6).

Corollary 2. If P, = P for all o, then an adaptive test statistic ezists.
Proof. Indeed, in this case Koo = Kqap for all a, 3, so that (3.6) is met.

Formula (3.6) coincides with the condition for the existence of an adaptive
test in Rukhin (1986) for asymptotic efficiency defined by the exponential rate
of Type II error with guaranteed significance level. It implies (3.1) and one can
take b; = Kj; in (3.2). However an adaptive test statistic can exist when there
is no adaptive test. The choice of the function b in Theorem 3.2 corresponds to
the traditional maximum likelihood ratio test statistic.

We also note that an argument similar to the one used to prove Theorem
3.1 has been used by Kendall (1960), who extended the representation of double
stochastic matrices by means of permutation matrices to the infinite-dimensional
case.

To conclude this Section let us consider the following example studied earlier
by Cox (1962).

Let Ps be the Poisson distribution with parameter B3, and let @, be the
geometric distribution with probabilities

a:c

Qa(z) = AFaye ©7 0,1,...,

so that its mean is equal to a.
One has

Kop = alog(a/B) — (a+1)log(a+ 1) + E%log(X).
It is easy to check that (3.6) is satisfied and the likelihood ratio test for testing the
Poisson distribution against the geometric distribution is fully Bahadur efficient

as a test of P, versus Q, for any a. It can be shown that under any other
parametrization of the family @, there is no adaptive test statistic.

4. Adaptation for Composite Hypotheses

In the case of a composite hypothesis P versus Q, where P and Q are disjoint,
the level attained by a test statistic T,,, whose large values are significant, is
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defined as
L(Ts) = 1 = Fa(Ta(x))

where F,(t) = inf{ P(T,.(x) < t), P € P}.

It is shown in Bahadur (1971) that for any test statistic T,, with ¢ proba-
bility one .
liminf n~" log L(T,,) > —K(Q,P) (4.1)

where K(Q,P) = inf{K(Q, P),P € P}.

Under some regularity conditions equality in (4.1) is attained by the likeli-
hood ratio test statistic of P versus Q.

Assume now that the hypotheses are determined only up to a finite-valued
nuisance parameter «. In other terms one has to test P, against Q, with some
unknown a. Define L, as above with P replaced by P,. A test statistic T, is
called adaptive if for any a with @), probability one

lim inf n"'log Lo(Th) = —K(Qu, Po)-

n—oo

Let
A (P|x) = sup{N7p(x;) : p € P},

7,(x) = 0™ log{max An(Palx)}, (4.2)

where w, = exp{nb(a)}. Also suppose that the following quantities are finite

Koo = sup{K(Qaapa)aQa € Qa}a
Kaﬁ = inf{K(anpﬁ)’Qa € Qa}, a # B.

In the following theorem we assume that for all a, B the likelihood ratio
test statistic for testing the hypotheses P, versus Qg satisfies conditions 1 and
2 from Theorem 5.2 in the Appendix and that the assumptions of Theorem 2.1
are met.

Theorem 4.1. Under the assumptions above, an adaptive test statistic ezists if

Koo = mﬁin K.p.
If® ={1,...,A} is a finite set, then an adaptive test statistic erists if

D [Kao(a) — Kaal 2 0 (4.3)

for any permautation o of {1,...,A}.
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Proof. We consider here only the case of finite ©. By Theorem 1 in Ky Fan
(1956), (4.3) implies the existence of real numbers by,... ,bs such that

Kap— Koo > bp — ba. (4.4)

We now show that the test statistic (4.2) is adaptive with this choice of b’s.
Indeed, for each P,

Po{Tn(x) >t}
< Pm{rn;;uxn‘1 log[An(Qplx)/waAn(Palx)] > 1}

< Z Pa{n_l log[/\n(Qﬁlx)/)\n('Po,Ix)] > t+ba}
B
<A max Po{n 1 log[An(Qp|%X)/ An(Palx)] > t + ba}.

Hence
sup{Pa(Tn(x) >1),Py € Po}
<A max sup{ Pa(n"1log[An(Qs|X)/An(Palx)] = t + ba), Pa € Po}

= Am[zjxx[l — GB(t + b)),

where
GE(t) = sup{Po(n ™" log[An(Qp|x)/ M (Palx)] 2 t), Pa € Pa}.

For fixed positive € and 7,0 < 7 < 1, Condition 2 of Appendix implies that
for some positive constant C, independent of t,

1-GA(t) < C[(1+ €) exp{—Tt}]"™
It follows that

lim inf n™! logsup{ P (Th(x) > t), Py € Pa} < —7(t + ba) + log(1 + ¢).

n—oo

Letting ¢ — 0, 7 — 1, one obtains

lim inf n~! log sup Po,(Tn(x) >1) < —t—bg.

n—oo

Also for any o
Ta(x) 2 17 108 {An( Qof)/ maxfwarn(Polx)]

> minfn ! log(An(Qul)/An(Polx) ~ bsl. (45)
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By Theorem 5.2 of Appendix with @, probability one as n — oo
n”~" log(An(Qalx)/An(Pplx)) — K(Qa,Pp)
and, therefore, (4.5) implies
lim_inf To(x) > min[K(Qa,Ps) = bs].

It follows that

lim infn " log Lo(Ty) < — mgn[K(Qa,’Pﬂ) — bg] — ba.

n—oo

If
min[K(Qa, Pp) = bg] = K(Qus Per) = b

then
lim infn~!log Lo(Th) € —K(Qa,Pa)-

n =00

Therefore with ), probability one
lim infn~'log La(Th) < ~Kaa < ~K(Qu,Pa),

n—+00
so that T}, is indeed an adaptive test statistic.

We notice that the main assumption of Theorem 4.1 concerns the asymptotic
Bahadur efficiency of the likelihood ratio statistic for each testing problem P,
versus Q. Validity of this assumption has been studied by Hsieh (1979) and

Kourouklis (1988). Kallenberg (1978) and Kourouklis (1984) investigated the
role of this condition for exponential families.

Appendix

In this appendix we collect the results needed in the proofs of Theorems 2.1
and 4.1. We start with the following theorems due to Bahadur (see Bahadur
(1971)).

Theorem A.l. Assume that for any o with Q) probability one as n — o
T(x) — Bs
and the limat
f() = - lim n™"log Pp(T(x) 2 1)
exists for t taking values in an open interval, which contains the set { B,,a € O},
and 1s a continuous function there. Then under distribution @,

nlingo n~1'log Loa(Tr) = f(Ba)-
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The next result is due to Bahadur and Raghavachari (1972, p.139).
Introduce the following two conditions:
Condition 1. For any a with @, probability one

lim inf T, (x) > mﬁin Kap. (A.1)

n—r 00

Condition 2. For any n and any positive numbers € and 7 there exists a
positive constant k, = kn(€,7) such that

P(Tp(x) > t) < exp(—nTt)(1 + €)"kn

for all positive t and such that as n — oo

n~!logk, — 0.

Theorem A.2. If statistic T, satisfies conditions 1 and 2 then (A.1) is an
equality, i.e. Ty, is Bahadur efficient.

Now we state a proposition whose proof is similar to the one of Lemma in
Rukhin (1982).

Lemma A.l. Let c,, n = 1,2,... be a sequence of positive numbers such that
n~1log ¢, converges to a finite limit c. Assume that u; are positive probabilities,

p; and ¢; are positive measurable functions, i = 1,... ,A and for real numbers
bi,... b4

w; = exp(nb;).

Also suppose that for all positive probabilities v;

PVI‘{ Z’U,’ [log(pk(X)/q,-(X)) - b,’] > C} > 0, k= 1,. .o ,A. (AQ)

1

If z1,22,... is a sequence of i.i.d. random variables, then
n n
nlgr;o n~1log Pr{ ;uk qu(zj) > cn Ew‘k Hpk(zj)}
1 k 1

n n
= lim n"'log Pr{ max g qu(zj) 2 Cn MAX W I:ka(mj)}

n—00 k

= max inf {-—Zs;(b,-+c)+logEH[qk(X)/pi(X)]s"}.

1<k<A s1,..,8420
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