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Abstract: Based on data resampling techniques, two classes of empirical Bayes es-
timators are proposed for estimating the error variances in a heteroscedastic linear
model. We concentrate primarily on the situation in which only a few replicates are
available at each design point but the total number of observations n is relatively
large. Properties of the empirical Bayes estimators, including invariance, robustness,
consistency, asymptotic unbiasedness and mean squared error (MSE), are studied. In
particular, a second order expansion of the MSE and an upper bound on the bias
of the empirical Bayes estimator are given in terms of the diagonal elements of the
projection matrix. Using these results, we compare the empirical Bayes estimator

- with other existing variance estimators. The MSE of the empirical Bayes estimator

‘ is smaller than that of the within-group sample variance and the MINQUE when n
is large. Applications in inferences are also discussed. Some simulation results are
presented.

Key words and phrases: Data resampling, empirical Bayes estimators, sample vari-
ance, MINQUE, consistency, bias, mean squared error, weighted least squares.

1. Introduction

In statistical applications, the following linear model is widely used:

yij=m$,3+eij, j=1,...,mi i=1,...,k Zmi=n$ ;(1'1)
- .

where y;; is the response of the jth replicate in the ith group, z; isapx1 deter-
ministic design vector and z} is its transpose, B is a px 1 vector of parameters, and
e;; are mutually independent with means zero and variances o2, j=1,...,mi
The o? are unknown and different (heteroscedastic).

Although in most situations the parameter of primary interest is 3, the sta-
tistical accuracy of any estimator of 3 depends on o2. Having good estimates of
o? is necessary for judging the performances of the estimators of § and other sta-
tistical inference such as setting confidence regions for 3. Furthermore, one may
utilize the estimates of o? in improving the estimates of 3. In some situations
estimation of individual o? is also required.
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) When the number of replicates m; is small, the use of the sample variance
within the ith group as an estimator of 01-2 is not adequate. The case of smattm,; -
is important since it is often impractical to obtain more than 4 or 5 replicates
at a design point in the regression problem (Jacquez et al. (1968)). Usually,
the number of groups k is large. Improving the within-group sample variance is
possible by using data in other groups, since very often o2 have some features in
common. _

A considerable amount of literature on this subject can be found. Common
approaches have traditionally fallen into one of the areas described below.

(i) In many practical situations o? is a function of the design (6?2 = H(z;)) or
the mean (0? = H(z!B)). If the function H is known up to an unknown param-
eter 0, one can estimate o? through estimating 6. This is called the parametric
approach. If the function H is completely unknown but smooth, one may use a
nonparametric method (e.g., kernel estimation) to obtain estimates of o2. For
more details of these approaches, see Carroll (1982), Muller and Stadtmuller

(1987), and Davidian and Carroll (1987), which also provide many references.

(ii) In some situations the variances do not vary with the design or there is no
functional relation between ¢? and z;. For example, o7 are random (see Carroll
and Ruppert (1986)) and independent of z; or have distributions depending on z;.
Heteroscedasticity may also be caused by some factor other than the design (e.g.,
day-to-day, person-to-person and batch-to-batch variations). In these situations
nonparametric estimators of o2 such as the MINQUE (C. R. Rao (1970)) and its
modifications (J. N. K. Rao (1973), Horn et al. (1975)) were proposed.

(iii) When an appropriate loss function is available, a decision theory approach
can be used (Das Gupta (1986)) .

The MINQUE has the following well known deficiencies: (a) it may not exis:t;
(b) it requires large computations; and more seriously, (c) it can be negative. -
Because of (c), the MINQUE is not admissible. oo

-J. N. K. Rao (1973) proposed a modified MINQUE: the within-group average
of squared residuals (ARE). The ARE has a smaller mean squared error (MSE)
than the MINQUE but tends to underestimate o? (see Sections 5 and 7). Horn
et al. (1975) proposed an estimator which is called AUE by the authors. The
AUE was proved to have smaller MSE than the MINQUE but under a rather
unrealistic condition, i.e., one can choose correct weights (in the weighted least
squares fitting model (1.1)) before having estimates of o2.

In this paper, we focus on the situation where the variances do not vary
with the design and propose a class of estimators by using the empirical Bayesian
method incorporating data resampling techniques (Section 3). The empirical
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Bayes estimator is generally a compromise between a local estimate using the
_residuals within the ith group and an ensemble estimate. This type of estifffator
is often superior to the within-group sample variance because it incorporates the
auxiliary information provided by the other groups.
In Section 4, we study properties of these empirical Bayes estimators, such
as invariance, consistency, asymptotic unbiasedness and MSE. In particular, a
second order expansion of the MSE and an upper bound on the bias of the
empirical Bayes estimator are given in terms of diagonal elements of the pro jection
(hat) matrix. Using these results, we compare the empirical Bayes estimator
with other variance estimators in Section 5. The MSE of the empirical Bayes

estimator is shown to be smaller than that of the within-group sample variance
and the MINQUE when n is large. We also show that the ARE has the same
second order MSE expansion as the empirical Bayes estimators but generally has
a large negative bias. The performances of various variance estimators in the case
of small n are discussed through an example.
In Section 6, applications in statistical inference by using the proposec‘i em-
pirical Bayes estimators of o2 are studied. Using the estimates of o2 to obtain
~an improved estimate of 3 is also discussed. Section 7 contains some simulation
studies including comparisons between the empirical Bayes estimators and other
variance estimators. An example is given in Section 8.

2. Bayes Estimators

In this section, we assume that the errors e;; in (1.1) have a normal distri-
bution N(0, 0?), j =1,...,mi. Let ;= (20%)~!. Suppose that 7; are indepen-
dently distributed as

mi(m) o TP exp(—aim) >0, i=1,...,k 12.1)

E 3
where p; > 0, a; > 0 are known constants. For the parameter 3, we only aSsume

that B is independent of 7 = (11... ) and has a known prior density m(8) with
respect to a measure g on RP?. Let s? be the sample variance within the :th
group, i.e.,

my my
2 _ -1 =\2 = -
s = (mi — 1) Z(yij -5 Yi=my ! Z’yij- (2.2)
i=1 i=1
Under squared error loss, the Bayes estimator of a? is

vB = (1= M)ai + X1 —m st + N [(@e - 2¢8)*p(Bly) dp, (2.3)
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where a; = Eo? = E(21;)~! = a;/(2pi) is the prior mean of o, A= mi/(2_p,' ~+
m;) and =

—(pi+1+m;/2)
p(Bly) o 7(8) H[a,+2<yu t0?] T
=1

is the posterior density of 3. When m; = 1, the second term on the right side of
(2.3) is defined to be zero. Another form of v?, which is easy to see from (2.3),
is that

vB = (1= A)a; + Mi(1 — m7Y)s? + X[(@; — 2i8B)? + ztVyzi), (2.4)

where 8 and V, are the posterior mean and variance of (3, respectively. From
(2.3), the Bayes eatimator is a mixture of three components: the prior infor-
mation, the within-group variation of y;; and a smooth average of the squared
“residuals” y; — z! which captures the information from fitting model (1.1).
Equation (2.4) further decomposes the third term on the right side of (2.3) into
a squared residual obtained by estimating § by the Bayes estimator B B and the
variance of the posterior p(Bly). Using (2.4), the Bayes estimator may be ap-
proximated by estimating the first two moments of the postenor density p(Bly)-
There is no explicit form for the Bayes estimator v?. Numerical integration
or Monte Carlo integration is necessary in order to eva.luate v?. This may cause
problems when p, the dimension of 3, is large. The empirical Bayes estimators
derived in the next section are analytically tractable and easy to evaluate.

3. Resampling Empirical Bayes Estimators

The Bayes estimator (2.3) depends on hyperparameters a;, A; and the pos-
terior density p(Bly). If some of these quantities are unknown, they can be
estimated from the data. The resulting estimators are known as empirical Bayes
estimators. Two classes of Resampling Empirical Bayes Estimators (REBEs};of _
o2 are derived by (1) estimating the mean of the prior 7;(7;) using the method
“of moments and (2) estimating the mean and variance of the posterior p(3|y) by
data resampling.

3.1. Estimating the prior mean of o?

We begin with the ordinary least squares estimator (OLSE)
f=M"X",

where y = (y11...Y1m; -+ Ykt - - 'ykmk)ftxl’ X=(z1...21...... Tk -- 'mk)f'LXp)
and M = X'X > 0 is assumed. We use the OLSE of 3 instead of a weighted

least squares estimator (WLSE) for the following reasons:
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(i) Since o? are unknown, choosing the appropriate weights is very difficult.

- (ii) The weighted least squares method may not provide a better estimator of
even if one has estimates of o (Jacquez et al. (1968) and C. R. Rao (1970)).

(iii) The inverse of the weight can be thought of as a prior guess of o?. The OLSE
of (3 is essentially an estimate based on a noninformative prior guess of o?,ie.,
the weights = a constant.

Define the residuals by
Tij = Yij -—:1:2,3, j=1,...,m,-, ‘i=1,...,k.

Let hy = otM —1z,, the (z, [)th element of the hat matrix, and h; = hi;. The
marginal mean of r?j is (normality assumption is not required):

k
E,-Er?j = (1 — hi)a; + Zh?,mz(al —ai), j=1,...,mi i=1,...k,
=1

where E, and E denote the expectations taken under w(r) and p(y|r, B), re-
spectively. If a; = a, ie., the prior means are all equal, we have E,.Er?j =
(1-h;)a, j=1,...,m;. Since Y, mi(1 — hi)a = (n — p)a, the moment estimator

of ais
k my

2=(n-p Y 5.1)
i=1j=1

If a; are not all equal, E',-E'[mi'l(l—hi)‘1 > j<m: r?j] = a,-+2,§k(1—hi)’1h?,ml(al

—a;), i =1,..., k. One could obtain unbiased estimates of a; by solving the linear

system

m; k
[mi(1 — h,-)]'1 Zr?j =a; + Z(l - hi)‘lh?,mz(az —a;), i=1,...,k 2(3.2)
i=1 =1 .

However, it may not be possible to solve (3.2). Even if the solution of (3.2) exists,
solving it may involve large computations. In addition, the solution d; may be
negative. Since the off-diagonal elements of the hat matrix are small relative
to the h;, we ignore the second term on the right side of (3.2) and use almost
unbiased estimates

&.i = [mi(l e hi)]_l 27‘,2] (3.3)
j=1

These estimators can be used even if the a; are equal. On the other hand,
the use of s2 requires all a; to be equal.
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3.2. Estimating posterior moments of (3

- From (2.4), the Bayes estimator depends on the mean and variance of the
posterior density p(3|y). We now approximate these moments by the correspond-
ing moments of a resampling distribution. This approximation is valid in some
situations. For example, Lindley and Smith (1972) showed that if o2 are known
and the prior of § is chosen to be noninformative, the posterior mean (variance) of
B is the same as the mean (variance) of a WLSE, which is equal to or very close to
the mean (variance) of a resampling distribution. In general, the approximation
may have a non-negligible error. Nevertheless, we will use this approximation to
obtain estimators of o2 and study their properties in the next section.

There are many different data resampling techniques in the statistical litera-
ture. We describe and use two of them. Again, the OLSE is used for the reasons
given in the previous section.

(i) Bootstrapping residuals (Efron (1979)). For given y, let e* be an n-vector whose
components are i.i.d. samples from {(r,j -7/ -p/n)Y2 j=1,...,mi 1 =

.,k}, where ¥ = n™1 3. ) e Tij. Treat e* as an error vector a.nd y* =
X B + e* as the observed data. The corresponding OLSE is f* = M~ 1Xxty*.
Denote the expectation under the bootstrap distribution (given y) by Ej. We

replace the posterior mean and variance of 8 in (2.4) by the mean and variance
of the bootstrap distribution, which are

E;B* =5 and E}(8* - B)(B* - B)' = siM L,

respectively, where s? = s — n¥2/(n — p) and s? is defined in (3.1). The term
n¥2/(n—p) is of lower order than s2 and is equal to zero when the first components
of z;, 7 = 1,...,k, are all equal to one. For simplicity we ignore this term (or
simply assume there is a constant term in model (1.1)) so that sZ = s2. Thus,
the third term on the right side of (2.4) is approximated by A;[(F; — :z:t,B)2 + h; 32]
Assume that p; in (2.1) are known. Hence ); are known and the resulting REBE '
of g2 is

vP (i) = (1= Aihi)a; + Aihis?, (3-4)

which employs é; defined in (3.3) as an estimate of a;. Note that v2();) is a
convex combination of 4; and s2, a weighted average of a;’s

(i) Weighted resampling (Shao (1986)). We can also approximate the posterior
mean and variance of 3 by the mean and variance of a weighted resampling dis-
tribution. For given data y, select a subset model y, = X, + e, with probability
W, x | X{X,|, where s = {i1,...,i,} is a subset of {1,...,n}, r <n, y,, X, and
es are sub-vector and/or sub-matrix of y, X and e consisting of the %;th, ..., i,th
rows of y, X and e, respectively. The unequal probability W, in the resampling
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procedure takes account of the unbalanced nature of the regression data. More
details of this resampling procedure can be found in Shao (1986). Dengte the
OLSE of 3 under the subset model y, = X,0 + e, by 3, and the expectation
under the weighted resampling distribution (given y) by Ej. Then the posterior
mean is approximated by E;,Bs = (3. In order to match moments, we use a sca}ed
variance of the resampling distribution, i.e., (n—r) "1 (r—p+1)E; (Bs—B)(B,—B)*,
to approximate the posterior variance of 3. We focus on the computationally sim-

plest case of r = n—1. The resulting REBE of o? (again we assume ); are known)
is

k
vP(N) = (1 — Nho)di + ihis, s =R himudr. (3.5)
=1
Note that v¥();) is also a convex combination of G; and a weighted average of
&,”S.

3.3. The hyperparameters J; .

In the above, the hyperparameters ); are assumed to be known. Note that
i = m;/[2(SN; +1) +m;], where SN; = (Eo?)?/Var(o?) is the signal-noise ratio
of the prior distribution of aiz. Thus, an estimate of the signal-noise ratio, SNy,
will provide an estimate of A;. Note that ); is a decreasing function of SN;.
When SN; (or equivalently, p;) is large, the prior is highly concentrated on its
mean a;. Then ); is small and the REBE puts more weight on the estimate of the
prior mean. On the other hand if SN; (or p;) is small, the prior is vague. Hence
); is large and the REBE puts less weight on the estimate of the prior mean.

Alternatively, we can let ); in (3.4)—(3.5) range over [0, 1] to obtain two classes
of REBEs. Then choose a \; in terms of the sampling properties of the REBE
under certain criteria. This is discussed in Section 4.4. Note that 0 < A; < 1
since 0 < p; < co. But for the REBE, we can include the limiting cases X; = 0
and \; = 1. : '

=
3.4. Extensions a

When some of the variances are equal, say af = a?u, T =1y + 1, .. 0441,
where 0 = 45 < 43 < -+ < iy = k, the REBEs can be used with a simple
modification by grouping the residuals. That is, to estimate cr?u, we use (3.4)-
(3.5) with a;, A; and h; replaced by 35, cici... 2 i<m; r?j /(@ — q,), Ai, and
G, / T, respectively, and s? in (3.5) by Y iu<i<ings T 1<k h%ma; /q,, where
My = Eiu<i§iu+1 m; and g, = Eiuo‘siuﬂ mih;.

The REBEs can also be used in the nonlinear regression model

vij = f(zi, B) +eij, =1,...,miy, i=1,...,k
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with r;; = gi; — f(i, B) and hy; = the (i, j)th element of Z(ZZ)~'Z¢, where
_f is the OLSE of 8 under the nonlinear model and Z = X with z; repla,cg by
o[£ (=, B)]/ 98-

4. Properties of the REBEs

Some properties of the REBEs v?(;) and v} ();) with A; € [0, 1] are studied in
this section. The results will be used to compare the different variance estimators.

The REBEs are based on the Bayes estimator (2.3), which is derived under
assumption (2.1) and the assumption that the errors are normal. However, the
results in the rest of this paper are true with or without these assumptions. For
example, the MSE expansion given in (4.1) only depends on the design, the
variances and kurtosis of the error distributions. Hence, the use of the REBEs
is still justified by looking at their sampling properties when assumption (2.1)
and/or the normality assumption on the errors are dropped.

We assume that m; < my for a fixed ms, and n is large.

4.1. Invariance and consistency

All the REBEs obtained in Section 3 are invariant under the translation of
B since they depend on the residuals r;j. For each fixed i, the REBEs are not
consistent (as » — oo) unless m; — oco. In fact, when m; is small and o? is
not smoothly related to the design, no consistent estimator of o? is available.
However it is shown in Section 6 that for estimating linear combinations of o2
(such as the variance of the OLSE), the REBEs are consistent.

4.2. The bias

For a variance estimator v;, let Bias(v;) = Ev; — or? . The following result
gives an upper bound on the order of the magnitude of the bias of the REBE.
The result implies that v2();) and v?();) are asymptotically unbiased if h; — 0
as n — oo. The quantities h; measure the balance of the design of model (I,1).

The condition h; — 0 is weak and is necessary for the asymptotic norma.hﬁ of
" the OLSE (Huber (1981)).

Theorem 1. Let \; € [0,1]. Assume limsup,_ o Amax < 1, where hmax =
max;<k hi, and sup; 02 < co. Then there is a constant ¢ > 0 (independent of i
and n) such that

| Bias(v2(\;)) | < chi and |Bias(v}’(\i)) | < chs.

Proof. Note that Ev®()\;) = (1 — A\;h;)Ed; + A;h;Es®. From (3.3),

m;
E&i=mi_1(1—hi)"lz:Erfj=or1-2 IZh sm; ( a - a?).
. ij=1
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Under the given conditions, there is a constant ¢ > 0 such that for sufficiently

SRS,

- large n,

k
< CZ h?jmj = ch;.
j=1

k
2(1 — h,-)_lh?jmj(aj2 — o?)
j=1

This, together with the boundedness of o?, implies that Es? is bounded and
Ea; = o? + O(h;). Thus, the first assertion of the theorem follows. The proof for
v} (A;) is similar.

4.3. The MSE

The exact form of the MSE of the REBE is complicated due to the nonidenti-
cal distributions of the errors. The following theorem gives asymptotic (n — 00)
expansions of the MSE of the REBEs.

Theorem 2. Assume thatlimsup,_,c Pmax < 1 and p; = Var(e?j), j=1,...,my,
i=1,...,k, are bounded. Then for any X; € [0,1], -
MSE(v?(\s)) = mi (1 — hs)"2(1 = Xihi)*[pi + O(hi)] + O(hibmax).  (4.1)

‘The same result holds if v2();) is replaced by v’ (A;).

Remark. From the proof of Theorem 2, the expansion in (4.1) holds uniformly
in i, i.e., there is an absolute constant ¢ > 0 (independent of ¢ and n) such that
O(h;) and O(h;hmax) in (4.1) are bounded in absolute value by ch; and chihmax,
respectively.

Proof. We first show that there is an absolute constant ¢ > 0 such that if
(3, ) # (t, 1),

ICov(r?j, r2)| € chihy and IVa,r(r?j) - pi| < ch;. {4.2)
Let uiji, =1 — h; if | =4 and j = s, and u;ji,, = —hj; otherwise. Then =
2 2 B | ’
Cov(rd, r2) =S Y ufuiuspt +2 ) ijls UijmolbtrlsUtrmo 0] Ty (4.3)
I=1s=1 (1, 8)#(m,v)

When (i, j) # (¢, r), the first and second terms on the right side of (4.3) are
bounded by (2 + p)peohihs and (2 + p?)os, hihe, respectively, where po = sup; p,
and 0o = sup;o;. Hence the first assertion in (4.2) holds. Also, from (4.3),

k
Va.r(r?j) = [(1 - h’i)4 - h'ﬂpl + Zmlhglpl +2 Z u?jlsu?jmva-?a'?n'
=1 (1,5)#(m, )
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Note that

k k
Y muhfip, < poo Y muihl = poohi
=1 =1

and
Z u?jlau?jmval om < 205 Zmzhzz +05 (Zmzhd) < 302 h;.
(1, 8)#(m, v) I=1 i}
This proved (4.2). From Theorem 1, the bias of v2();) is of order O(h;). Hence

MSE(w?(A)) = (1 — \ihi)? Var(a;) + 2X:hi(1 — Aih;) Cov(ai, s°)
+A2h2 Var(s?) + O(h?).

By (4.2), Var(s?) is bounded. Therefore A?A? Var(s?) = O(h?). Also, from (4.2),

Var(d;) = —2(1—- [Z Var(r lJ)+2 Z Cov(rfj,r,-z,)

i=1 1<i<i<m;

~ = mi'(1 — ki) "2[pi + O(hs)]

and

m; k my

Cov(a;, s%) = [(n — p)mi(1 — ]_ Z ZZ Cov(ru, r8) = O(hmax)-

j=1l1=1 s=1

This proves (4.1). The proof for v}’(A;) is similar.
4.4. The choice of \;
A consequence of Theorem 2 is that for any 0 <s<t<1,

-
~
el

—1[MSE(”§’(S)) - MSE(”?@))] —2m7l(t —s)pi > 0

if hmax — 0 as m — oco. The same result holds if vf is replaced by v}’. Thus, if
0 < s <t<1,the MSE of v}(t) (or v¥(t)) is less than that of v2(s) (or v¥(s))
when n is large enough.

However, in practice the MSE is not the only measure of the precision of
an estimator. The bias of the estimator, for example, is also important in some
situations. When the purpose of estimating o? is to set a confidence interval for
(3, one ought not use an estimator of aiz which has a trend in its bias. If the bias
of the variance estimator is always negative, the resulting confidence interval will
have a too low coverage probability. See the simulation results in Section 7.
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A refined analysis of the biases of the REBEs shows that the REBE_ with
- smaller \; usually have smaller bias. : —

Theorem 3. Let A, = h_1 X<k himy(of — 0?), B, = (n —p)~ ZKk my(l —

hi)(02 —02), and 0 < s <t < 1. Assume the conditions in Theorem 2 and h; — 0
as n — oo.
(1) If iminf, . |An| > 0, then
e [ Bias(oF(®)) |
lim inf - : > 1. 4.4
miat | )

(ii) If iminf, .o | Bn| > 0 and ApBp > 0, then (4.4) holds with v¥ replaced by

b
v;.

Remarks. (1) liminf, o | An| > 0 (or liminf,_,o | Bn| > 0) ensures that the
biases of v}(s) and v¥(t) (or v} (s) and v5(t)) are comparable in terms of their
first order terms. N

(2) The condition A, B, > 0 is satisfied for some balanced models. For example,

any model satisfying condition (5.4) of Wu (1986).
Proof. We prove (ii) only. The proof of (i) is similar. For 0 <t < 1,

k k
Bias(v}(t)) = t(n — p) " h: Y mu(l = hki)(of — 0?) + 3 h2my(o} — o2) + O(h2).

Let &, = h;!Bias(v}(t)), v» = h;!Bias(v}(s)) and ¢ = liminfp_ e |&n/Vn |-

If ¢ = oo, the result follows. Suppose that ¢ < co. Since v, are bounded,

there is a subsequence {n(j)} such that lim; e | €4(j)/¥n(j) | = ¢ and the limits

lim;_, o En(j) and Hmj_,o Yn(j) exist. Since §n(j) = An(j) + tBy(j) + o(1) and

Tn(j) = n(]) + an(J) +0(1), the limits A = lim;_, o0 An(]) and B = lim;_, o Bn(])

exist. Under the conditions in (i), B # 0 and A/B > 0. Thenc=|A+tB| /iA-t-
C sB|=|1+(t-5)(A/B+s)"!|>1.

Hence, if one uses MSE as the measure of accuracy, then the REBE with a
large A; is preferred. On the other hand, if one is concerned about the bias of
the estimator, then the REBE with a small A; is better. In general, one should
balance the advantage of having a smaller bias against the drawback of a larger
MSE.

One may also choose a \; by considering the performances of the statistical
procedures using the REBEs as estimates of o? (e.g., confidence intervals and the
WLSE). See Section 6. Simulation results in Section 7 favor the REBE v%(1) (or
v{(1)). Note that the choice of A\; =1 corresponds to the use of a vague prior of
o? (Section 3.3).



506 ' JUN SHAO

5. Comparisons between the REBE and Other Variance Estimators

We compare the REBE with the other variance estimators, such as the within-
group sample variance, the MINQUE and the ARE, in the case where m; are small
but n is large (Section 5.1). The case where n is also small is discussed in Section
5.2.

5.1. The case of large n
(a) The REBE and the within-group sample variance. For s? defined in (2.2),

MSE(s?) = m; p; + 2m 1 (m; — 1)"to}.
From Theorem 2, for any REBE defined in (3.4) or (3.5),
MSE(s?) — MSE(REBE) — 2m; }(m; — 1)"1o} > 0

if hmax — 0 as n — oo. Hence the MSE of s;? is larger than that of the REBEs
for large n. )

(b) The REBE and the MINQUE. The MINQUE is exactly unbiased, which often
leads to a negative estimate of o?. As usual, a slightly biased estimator (the bias
vanishes as the sample size tends to infinity) such as the REBE may perform
better. The following results show that the MSE of the REBE is smaller than
that of the MINQUE in broad situations. Let us first consider a special case
where _

yij =p+ej, j=1,...,m; 1=1,... k. (5.1)

In this case, the MINQUE of 07 is vI* = mj'(n — 2)"In ¥ cpm. (ij — §)% —

(n — 2)~!s2, where § = n™1 Yi<k 2j<m; Yij and s% is given by (3.2). A direct
calculation shows that

MSE(@W™) = m; }(n — 2)"2n%[p; + O(n"1)] + O(n72).

T

7 Under the conditions in Theorem 2, for any A; € [0, 1],
| n[MSE(s]*) — MSE(x}(A:))] = 2m; (1 + Ag)ps > 0

as n — oo. The same result holds if v?();) is replaced by v¥(X;).

Under the general model (1.1), the MSE of the MINQUE is not easy to
obtain. We consider the special but important case where m; = m for all <.

Theorem 4. Let v[* be the MINQUE of 02. Assume the conditions of Theorem
2 and that m; = m. If m = 1, we also assume h; < 0.5, 1 = 1,...,k, to ensure
the existence of v®. If limp— oo (k2 ,./hi) = 0, then for any X; € [0,1],

lim inf h7HMSE(vf*) — MSE(v?(\;))] > 2m ™ (1 + \;)p; > 0.
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The same result holds if v?(};) is replaced by v}’(Xi).
‘Proof. Let G = (gij)kxk’ where gij = 1 —»2h,' -+ mh? ifj = i, and 9ij 'E'mh?;-
if j # 4. Sincem > 2 (or m =1 and Apax < 0.5), G = (¢") 1 €Xists and
max; ¥ ,< | 97 | < co. Then

k ) 2
Zlg‘p|> < 0. (5.2)

P <
w2 1< g (%

1<p<g<k

From Lemma 4.5 of C. R. Rao (1970), v/* = the ith component of G~1R, where

. . . _1 2
R is a k-vector whose ith component is m™" 3, <, 7;;- Hence,

k
MSE@™) = 3 (¢)*(1 — hy)? Var(a;) +2 > §Pg"2p2Cov(dp, &g), (53)
j=1 1<p<g<k

where &; is defined in (3.3) and z; = 1 —h;. From (4.2) and (5.2), the second. term
of the right side of (5.3) is O(h2,,). Since g > ggl = (1 - 2h; + mhf)—l, the
first term of the right side of (5.3) is not smaller than m~lgx 2[p; + O(h;)]. Thus,
~MSE(v™) > m~1g;;%[pi + O(hi)] up to the order O(h2,,,), which and Theorem 2
imply that '
MSE(s]") — MSE(v}(X:))
> m gz = (1= k)21 = Mihi)?][pi + O(h)] + O(hfra)
> 2m~ (1 + Xi)hilpi + O(hi)] + O(h2,,)-

The result follows. The proof for v’(A;) is the same.
(c) The REBE and the ARE. J. N. K. Rao (1973) proved that the ARE

my

r_ -1 2
of =mt )T

i=1

YR

has smaller MSE than the MINQUE in some situations. Under the same condi-
tions as in Theorem 2, v7 has the same MSE as v?(1) (or v¥(1)) up to the order
O(hihmax). The bias of v}, however, tends to be negative. Since

k
Bias(v]) = —hio? + Z h2mi(o? — o?),
=1

Bias(v) < 0 if sup;|of — 02| < of. The condition sup;|of — 02| < o? is

clearly not necessary for Bias(v]) < 0 (see Section 5.2). The confidence regions
for B constructed by using v} as the estimators of o2 usually have low coverage



508 JUN SHAO ¢

probabilities. See the simulation results in Section 7. In fact, v$(1) and v¥(1) are
_bias adjustments of v}, since : = .

v2(1) = o + his® and v¥(1) = ol + hys?

5.2. The case of small n: an example

When n is small (consequently, m; and k are small), it is hard to compare
variance estimators analytically. The improvements obtained using empirical
Bayesian methods become “small”, since there is little auxiliary information. We
compare the REBE with other variance estimators through the following example.
Consider the model

Yij =Bi+eij, j=1,...,m;, 1=1,2, n=m;+ ms.

This can also be viewed as a two sample problem. If m; are large, the estimators
under comparison perform equally well. The MINQUE and the REBE v¥{)\;)
(0 < A\; £1) in this case are the same as s? and therefore the use of them does
not achieve any improvement on s?>. The ARE v] equals (1 —m; 1)s?. All these
estimators do not use the data from the other group. The REBE v?()\;) equals

vP(A) = (1= ci)s? + cis?, =\ /my,

where sf, = [(m1—1)s?+(mg—1)s3] / (n—2) is the pooled variance estimator when
o? are assumed to be equal or nearly equal. v} 5(X) is a compromise between the
w1th.1n-group sample variance and the pooled estimator 32 When A; =0, v; ()
equals s?

To compare these estlma.tors let us first look at their biases.  s? is unbiased.

The bias of v] is —m; ~152, which is always negative and can be large. The bias
of v2();) is -~

)

- Ailms — 1)(o? ~ 0?)/mi(n - 2) = Ai(o? = 0?)/2m (if my = mg =m), j £

Hence v2();) does correct the negative bias of v}, i.e., its bias does not have any
deterministic trend and is smaller than that of v7. The bias of v2(};) is small if
o7 are close. Also, v?(\;) with a smaller A; has smaller bias.

Next, we consider the MSE of these estimators. For simplicity we assume
that m; = m2 = m, and e;; are distributed as N(0, 0?). The MSE of s? and
v] are 204/ (m; — 1) and (2m; — 1)o} / m?, respectively. Let 6; = 02/01 and
92 =0%/02. For t € [0,1],

MSE(v}(t)) = m™2(m —1)" o} |2(m — t/2)? + 2(26:/2) + (t/2)*(m — 1)(6; — 1)2
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which is decreasing in ¢ when 6; < (3m — 1)/(m + 1). Hence if max(01,02) <
-(Bm-=-1)/(m+1), —=

MSE(+4(t)) < MSE(v2(s)), i=1,2,

for s < t. In particular, the MSE of vi-’ (X;) is less than that of the MINQUE or

2

S
It is not difficult to see that the MSE of v! is generally less than that of v ()
and is therefore less than that of the MINQUE or s2. o7 is further improved (in
terms of MSE ) by v§ = (m+1)"!(m; —1)s?. But v} and v§ are rarely used when

m is small, since they underestimate aiz seriously. For example, when m = 2,

s2 = (yi1 — vi2)2/2, v = (w1 — ¥i2)?/4, v = (yi1 — ¥i2)?/6

and
w2 (M) = (1= 0.25X:) (yir — ¥i2)?/2 + 0.25Xi(yj1 — yj2)%/2, j #+. -

Clearly, vT and v§ are too small. In fact, in this case the silly estimator v; =0
has MSE half that of s? | As we commented earlier, the MSE should not be the
~only criterion for choosing an estimator.

6. Applications to Inference

The use of the REBEs in assessing statistical accuracy, constructing confi-
dence intervals for 8 and improving the OLSE are briefly discussed in this section.

6.1. Estimating linear functions of o7

Some statistical accuracy measures, such as the variance or covariance of the
OLSE, are of the form v = ;! ma, , Where [;, are constants. A natural estimate
of v is obtained by replacing o? by its estimate. Consider the following genera.l

class of REBEs: . -
(

= lin(1 = ¢i)é; + ciai), ~(6.1)
i=1 .
where 4; is defined in (3.3), @; =either s2 or s2, c; possibly depend on data and
satisfy

0<¢ <1 and m<alg(supci(y) — 0 as n — oo. (6.2)
i<k oy

Note that 3, Linv?(X:) and T°; Linv¥ (\;) are special cases of (6.1)-(6.2).

Theorem 5. Assume the conditions of Theorem 2 and that hypax — 0 as n — oo.

IF i lin] = O(n7Y) and 512, = o(n™2), then ¥ defined in (6.1)-(6.2) satisfies
MSE(¥) = o(n™2). (6.3)
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Remarks. (1) (6.3) means that 4 is consistent in a stronger sense that n2E(§ —
)% — 0. The asymptotic unbiasedness and consistency of 4 follow from (6-3).
(2) The REBEs of 0'2 are not consistent if m; are small. However, for asymptoti-
cally unbiased estimators v; of 02 “smooth” coefficients l;, (e.g., l;n satisfies the
conditions in the theorem) will reduce the variance of 3, l;,v; and therefore ¥ is
consistent as n — oo.

(3) For the asymptotic unbiasedness of 4, the condition ¥;/? = o(n~2) is not
required.

Proof. From (6.2), Theorem 1 and ¥, | ;» | = O(n™1),
k k

Y linE(cits) = Y linE(cit;)

i=1 i=1

n|Ey—v| = n + o(1)

< c1(m<ax sup Ci [Z Hin |(Fa; + Ea,)] +0o(1) —0

i=1 -

since Fa; and Ea; are bounded, where c; is a positive constant. Also, from (4.2),

- %a,}Var(ai) =0(1)

and

max |Cov(a, &)] < [mim;(1 — hi)(1 = hy)] }:Zmov s 73) | = O(hmax)-

i#] p=1g=1

Then from (6.2) and 3,12, = o(n"2),

1 in

k 2
n?Var(¥) < cgn? Z 12, + c3n?hmayx <Z | lin l) -0,
i=1 i=1

-

where cg and c3 are positive constants. Thus the result follows. -
-
The conditions in Theorem 5 are quite weak. As an example, we consider
‘the estimation of Var(, the variance-covariance matrix of 3. Let Iff be the
(s, t)th element of m;M ~'z;ztM ~!. Then the (s, t)th element of Varg is v, =

Yi<k I$t02. Assume M~! = O(n™!) and m; < ms. Then there is a constant

m Z
¢ > 0 such that
k k k
Z | lfrt; | < Zmisz—%i <ent Zmihi = pcn_1

and

Z (152 < Zm eiM22)? < ‘ijzh2 < MeoPhmax.
=1
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Hence (7.3) holds if hmax — 0. _
- Monte Carlo comparisons of the REBEs with the estimators of v,; based on

the with-group sample variance, the MINQUE and the ARE are given in Section
7. .

6.2. Confidence intervals

Let 8; and ,éj be the jth components of 8 and 3, respectively, and s;; be an
estimator of the standard deviation of 3;. If

nl/z(s]-j — the standard deviation of B]) 20, (6.4)
then the interval

[B; — 2(1 — @/2)s;;, B; + 2(1 — a/2)s;;] (6.5)

is an approximate 100(1 — )% confidence interval for 3;, where z(a) is the ath
percentile of the standard normal distribution.

From Section 6.1, (6.4) is satisfied with s;; = the square root of the REBE

- %jj- Hence the confidence interval (6.5) based on the REBEs is asymptotically

correct.

One can also use other estimators of o2 in constructing confidence inter-
val (6.5). Monte Carlo comparisons of the coverage probabilities of confidence
intervals based on various estimators of o are presented in Section 7.

6.3. The estimation of 3

The Bayes estimator B in Section 2 does not have an explicit form and is
hard to compute. Lindley and Smith (1972) showed that if o? are known and
7(0) = 1, the Bayes estimator of 3 is

B- = (X'DX)™'X'Dy, D = block diag.(o7*Im,xm, - 0 Imyxmy)-  X6.6)

i Hence if p(7|y) is the posterior of the parameter = (see Section 2), then
Bs = Eyr|y)f; = / [(X*DX)~' X' Dylp(r | y) dr.

If v; is the empirical Bayes estimator of o7 (e.g., v; = v2(\;) or v¥(A;)), then an
approximate empirical Bayes estimator of 3 is

B=(X'WX) ' X'Wy, W = block diag.(w1lm,xm, - WiIm,xm,),  (6.7)

where w; = v 1. Note that ;@ is a WLSE with the reciprocals of the REBEs
as weights. The simulation results in Section 7 indicate that § improves the
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OLSE if m; > 3 and is better than the WLSEs based on other estimators of ___qf.
Asymptotic properties of 3 are studied in Shao (1989). -

This estimation procedure can be used iteratively. Note that 3 is the OLSE
of 8 under the model wi1/2y,~j = wil/zmﬁﬂ + w1-1/2e,-j by treating w; as constants.
Thus, we can obtain estimates of 8 and o simultaneously through an iterative
procedure:

obtain an estimate of 3 — obtain estimates of d,-z — feedback and repeat.

With a fixed number of iterations, however, the estimator of 3 may not be asymp-
totically efficient, especially when m; < 2 (Carroll and Cline (1988)).

7. Simulation Results

In this section, we examine by simulation (a) the finite sample performances
of the estimators of o? considered in the previous sections; (b) the performances
of the estimators of Var3 based on various estimators of o#; (c) the empirical
coverage probabilities of the approximate 95% confidence intervals of 3 using
various estimators of ¢?; (d) the performances of the WLSEs with the reciprocals
of the estimators of o7 used as weights. We consider the following quadratic
regression model:

Yij = Bo + P1z; +,32:1’:,2 +eij, 1=1,2, 1=1,...,20. (7.1)

The values of z; are: 0.4, 0.5, 0.6, 0.7, 0.8, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 7, 8, 10,
12, 15, and 18. The random errors e;; are independently distributed as N (0, a?),
where the values of ¢? are: 0.2, 0.8, 0.5, 0.9, 0.8, 0.5, 0.91, 0.65, 0.77, 0.81, 0.21,
0.81, 0.12, 0.52, 0.9, 0.94, 0.67, 0.53, 0.88, and 1.0.

We study the following estimators for estimating o? and Var,éj: the within-
group sample variance s?, the MINQUE v[*, the ARE v}, and the REBEs v (0)=
v (0),v2(1/2), v2(1),v¥(1/2) and v¥(1). | 2
~ The approximate 95% confidence intervals of 3; (see (6.5)) using v; as an
estimate of o2, ¢ = 1,...,k, are denoted by C(v;). We study the coverage
probability of C(v;) with v; = one of estimators of o? given above. The OLSE
and the WLSE (6.7) with w; = v! are also studied. The “optimal” WLSE (6.6)

with the true o? as weights is included for comparison. The value of 3 in these

studies is (1 4 — 0.5)".
The following is a summary for the simulation study. All the results are
based on 3,000 simulations on a VAX 11/780 at the Purdue University.

(1) The performance of the estimators of o?. Table 1 shows the root mean squared
errors (RMSE) and biases of the estimators of 0. Some conclusions drawn from
this table are:
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(a) In terms of the RMSE, the REBEs are better than the within-group sample

- variance and the MINQUE for all i. The improvement can be as high as43%.
(b) The ARE has smaller RMSE then the REBEs but has a large negative b1a.s
(c) The REBEs with larger A have smaller RMSE and larger bias (in absolute
value).

(ii) The performance of the estimators of Va.rﬁ, The RMSE and biases of the
estimators of Va.r,BJ are reported in Table 2. The REBEs are better than the
with-group sample variance and the MINQUE. The best REBE is 3_;< 178(1)
(see Section 6.1), which improves the with-group sample variance about 30-41%

and improves the MINQUE about 20-36%. The RMSE of the ARE are similar
to those of the REBEs. But the ARE has large negative bias; its relative bias
can be as high as 20%.

(ili) The performance of the confidence intervals. The coverage probabilities and
the average lengths of the confidence intervals of 3; are shown in Table 3. The
results show that C(v2(\;)) and C(v¥(XA;)) have higher coverage probabilities
than C(s?). The coverage probabilities of C(v]) may be even lower than those of
C (32)

(iv) The performance of the OLSE and WLSEs. Table 4 contains the biases and
RMSE of the OLSE and WLSEs. For comparison, we also include the biases
and RMSE of the OLSE and WLSEs under model (7.1) but with three (or four)
replicates in each group (the WLSE using s? or the MINQUE is only studied for
two replicates case). The results indicate that

(a) The performances of the WLSEs are not as good or almost the same as that
of the OLSE when there are two replicates in each group. However, the WLSEs
using the REBEs are better than the OLSE when there are three or four replicates
in each group, although the improvement is not large.

(b) The WLSEs using the REBEs with large A; are better than the WLSEs ysing
~ the ARE. The WLSE using the within-group sample variances or the MINQUE
" has very large RMSE and is not recommended.

8. An Example

We consider the following example taken from the pharmaceutical industry.
To determine the relationship between y, a characteristic of a pharmaceutical
compound, and a covariate z, the concentration of the compound, some assay
results were obtained using several standard concentrations. Usually a simple
linear regression models is appropriate, i.e., y = fo + f1z. The experiment
is typically run on several days with the same z’s on every day, but different
batches of compound on different days. Within each day, it is reasonable to
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assume that the error variances are the same. The error variances for different
days, however, may be different due to batch-to-batch variation. Table 5 disﬁays‘
standard concentrations (z) and peak responses (y) collected in 15 different days.
It is convenient to use two indices d (day) and j (within day replication) instead
of one index 7. Thus,

ydj=,80+/61xdj+edj) d:l,...,15, j=1,...,4,

where Eeg; = 0 and Var(eg;) = o2

In addition to the estimation of 8y and B;, we also need to estimate individual
variances 0'3 for the purpose of quality control. That is, the error variance has to
be kept under a specific value; otherwise we need to modify the manufacturing
process to improve the quality. ,

Since, in this example, the variances do not vary with the z’s, we use the
REBEs v5(1) computed using the formula in Section 3.4. The OLSE Bo = 0.0504
and B; = 0.1026 are used as initial estimates. The estimates of 03‘ (shown in Table
5) are very different for different days. Since there are four observations (with
the same variance) for each day, the WLSE using appropriate variance estimates
is more efficient than the OLSE. The WLSE based on the variance estimates in
Table 5 are By = 0.3799 and F; = 0.1036. Note that Bo and S (estimates of
intercept) are quite different, although estimates of slope are almost the same.
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Table 1. RMSE and biases of estimators of o7
(The biases are shown in the second row for each i.) —

g s? o4 of | wd(0) | wB(1/2) | wp(1/2) | w2(1) | w(1)
1 .2889 .2525 2198 2379 2329 .2337 .2292 .2309
.0004 | -.0025 .0159 .0323 .0476 .0472 .0630 .0622
2 | 1.1611 .8564 7528 .8035 7784 .7806 7534 7578
.0031 | —.0015 | —.0640 | —.0117 | —.0156 | —.0160 | —.0195 | —.0204
3 .6768 .5373 4749 .5058 .4908 .4922 4759 4787
—-.0131 | —.0090 | —.0295 .0021 .0074 .0070 0127 .0118
4 | 1.3443 .9599 .8533 .9060 .8805 .8823 .8551 .8588
.0368 .0220 | —.0490 .0050 | —.0020 | —.0025 | —.0090 | —.0100
5 | 1.1908 .8624 7705 | .8161 7941 .7956 722 7752
.0256 .0238 | -.0325 .0135 .0094 .0089 .0054 .0044
6 7124 .5308 4796 .5050 .4928 .4935 .4807 .4822
.0084 | —.0032 | —.0207 .0051 .0093 .0088 .0135 .0125
7T | 1.2577 .9566 .8828 9145 .9019 .9025 .8844 .8856
.0013 .0116 | —.0372 | —.0001 | —.0050 | —.0055 | —.0099 | —.0182
8 .9369 .6862 .8405 .6631 .6522 .6524 .6414 .6416
-.0014 .0019 .0209 .0017 .0020 .0016 .0024 .0016
9 | 1.1219 .8022 7531 773 .7655 7657 .7538 .7541
—.0101 | —.0040 | —.0322 | —.0079 | —.0093 | —.0096 | —.0108 | —.0114
10 | 1.1766 8705 8167 .8434 .8306 8307 8178 8181
—.0035 .0031 | —.0281 | —.0021 | —.0043 | —.0045 | —.0065 | —.0069
11 .3186 .2428 .2267 .2353 2323 .2323 .2296 2297
.0095 .0035 0117 .0197 .0273 .0272 .0349 .0347
12 | 1.1694 .8871 .8210 .8543 .8388 .8392 .8233 .8241
.0300 .0346 | —.0046 0277 .0245 .0245 .0213 .0213
13 .1651 .1549 1411 .1490 .1489 .1492 .1497 .1505
—.0004 .0026 .0192 .0265 .0394 .0395 .0523 .0525

14 .7604 .5891 .5216 .5560 .5402 .5417 5245 5275 |
.0192 .0154 | —.0086 .0247 .0285 .0287 .0324 0328
15 | 1.2967 .9631 .8391 .8992 .8689 .8720 .8386 8449
.0046 | —.0083 | —.0876 | —.0250 | —.0323 | —.0321 | —.0396 | —.0393
16 | 1.3606 | 1.0102 .8666 .9367 9018 .9059 .8671 .8753
.0081 .0119 | —.0857 | —.0121 | —.0223 | —-.0222 | —.0325 | —.0323
17 .9340 .7395 .6265 .6821 .6546 .6583 6273 6347
—.0005 | —.0001 | —.0563 .0008 .0008 .0012 .0008 .0017
18 7791 .6251 .5261 0774 .5546 .5580 .5320 5390
.0335 .0298 | —.0036 .0459 .0499 .0524 .0540 .0590
19 | 1.1788 .9680 7532 .8555 .8028 .8197 7506 .7860
—.0289 | —.0080 | —.1193 | —.0049 | —.0183 | —.0048 | —.0316 | —.0048
20 | 1.3684 | 1.3109 .8026 | 1.0975 9137 | 1.0461 7369 .9958
—.0176 | —.0088 | —.3845 | —.0419 | —.0933 | —.0506 | —.1447 | —.0593
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Table 2. RMSE and biases (shown in the second row) of estimators of Varg;
Variance estimators
j | Varp; s} vi" vl wf(0) wi(1/2) wP(1/2)  wi(l)  wP(l)
0 | 5.7762 | 2.6545 1.9232 1.8162 1.9018 1.8771  1.8944 1.8541 1.8872
0611  .0409 -.3836 .0434 .0356 .0459  .0278  .0485
1| .7899 | .3648 .3020 .2481  .2772 .2593 2713 2441 2656
.0062  .0047 -.1000 -.0005 -.0089 -.0018 -.0173 -.0031
2| .0030 | .0020 .0018 .0013 .0016 .0014 .0015  .0012  .0015
-.0000 .0000 -.0006 -.0000 -.0001 -.0001 -.0002 -.0001
All the numbers in this table have been multiplied by 100.
Table 3. Coverage probabilities and lengths (shown in brackets) of C(v;)
j | C(si) C(M) CRi) C(0) Ci(1/2)) C(wr(1/2)) Clvw(1)) C(v¥(1))
0| .9207 9353 9223 .9347 9343 9347 .9347 9353
(.9244) (.9329) (.8984)  (.9334) (.9331) (.9338) (.9327)  (.9341)
1 9260 .9330 9163 .9307 9310 9317 9307 .9320
(.3413) (.3436) (.3214)  (.3433) (.3419) (.3432) (.3405)  (.3430)
2 .9037 9120 .8887 9160 .9203 9173 9223 9183
(.0207) (.0209) (.0189)  (.0209) (.0208) (.0209) (.0206)  (.0209)
Table 4. RMSE and biases (shown in the second row) of the OLSE and WLSE
Variance estimators used in WLSE
j | OLSE s? o ol vi(0)  wi(1/2) wF(1/2)  wP(1)  wP(1) o}
Two replicates in each group
0 .2410 | 2.4250 2.0897  .3082 .2524 .2463 .2467  .2453 2459 2121
.0021 | -.0017 .0545 -.0021 -.0006 .0010 .0003 .0011 .0011 .0018
1 .0891 5945 8066  .0977  .1710 .0889 .0891 .0885 .0889 .0765
.0004 | -.0413 .0055 .0006 -.0023 .0012 .0012 .0011 .0012 .0003
2 .0055 .0564 .0680 .0070 .0194 .0055 .0055 .0055 .0055  .0048
-.0001 .0052 -.0005 .0000 .0003 -.0001 -.0001 -.0001 -.0001 -.0000
Three replicates in each group .
0| .1999 - - .2022 .2021 .2008 2009 1999  .2006 J732
-.0006 - - -.0019 -.0020 -.0018 -.0019 -.0017 -.0018 .-.0007
11 0754 - - .0745 .0743 .0739 0739  .0736 0737  .0624
.0006 - - .0014 .0014 .0014 .0014 .0013 .0014 .0006
2 .0047 - - .0046 .0046 .0046 .0046  .0045 .0045 .0039
-.0001 - - -.0001 -.0001 -.0001 -.0001 -.0001 -.0001 -.0001
Four replicates in each group
0 1700 - - .1699 .1700 .1693 .1693 .1688 .1689 .1500
-.0011 - - -.0019 -.0019 -.0018 -.0018 -.0018 -.0017 -.0012
1 .0642 - - .0628 .0627 .0625 .0625 .0622 .0623 .0541
.0008 - - .0009 .0009 .0009 .0009 .0009 .0008 .0007
2 .0040 - - .0039 .0039 .0038 .0039 .0038 .0038 .0034
-.0001 - - -.0001 -.0001 -.0001 -.0001 -.0001 -.0001 -.0001
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Table 5. Example

l

z= standard concentration (ng/ml)

Responses Variance
z=0 =1 z=10 =z =30 | estimates
0.186 0.240 1.400 3.230 0.0358
0.110 0.220 1.360 3.270 0.0277
0.111 0.200 1.290 3.160 0.0137
0.000 0.130 1.100 3.250 0.0051
0.039 0.112 1.060 3.140 0.0011
0.001 0.120 1.000 3.231 0.0055
0.032 0.109 0.920 2.820 0.0309
0.030 0.100 0.919 3.190 0.0084
0.100 0.202 1.270 3.080 0.0117
10 | 0.032 0.100 0.920 2.809 0.0328
11 | 0.030 0.110 0.920 3.090 0.0075
12 | 0.003 0.100 0.870 3.380 0.0283 -
13 |} 0.049 0.150 1.030 3.020 0.0040
14 | 0.051 0.130 1.210 3.210 0.0068
15 | 0.038 0.140 0.980 3.010 0.0064
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