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OF BILINEAR TIME SERIES MODELS
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Abstract: One of the commonly used techniques in establishing ergodicity of a
Markov chain has been developed in a series papers by Tweedie (1974, 1975) and his
associates. The present paper intends to demonstrate a useful alternative technique
originated by Benes (1967) in the context of continuous time Markov chains. This
technique can be adapted to the case when a time series model observed at discrete
time points is under consideration. One of the advantages of such a technique is
that it enables us to drop off the crucial assumption of ¢-irreducibility as require&
by Tweedie’s technique. Examples showing how to obtain stationarity conditions for
bilinear models are given under finite and infinite variance assumptions on the noise
sequence. Existence of moments is examined and finally, a central limit theorem and
a law of the iterated logarithm concerning sample moments of some bilinear time
series models are established.
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the iterated logarithm, moments.

1. Introduction

Following Granger and Andersen (1978) and Subba Rao and Gabr (1984),
a time series {X;} is said to be a bilinear time series, denoted by BL(p, ¢, m,1),

if it satisfies the following equation, -

P q m ’
Xe=Y ¢iXeei+ Y 0;Zej+ D O bisXi-iZij, t€Z, (L1
i=1 j=0

1=1 j=1

‘where {Z:} is an independent identically distributed (iid) sequence of random

variables, Z = {0,+1,...} and 6y = 1. Clearly, a special case of the bilinear
model is the well-known ARMA(p, ¢) model. As shown by many authors such as
Subba Rao and Gabr (1984), the bilinear model is particularly attractive in mod-
elling processes with sample paths of occasional sharp spikes. Such phenomena
are often found in seismology, econometrics and control theory.

A bilinear time series defined by (1.1) is said to be causal if there exists a
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measurable function g : R® — R such that

Xt = g(Zt,Zt..l,. ..), Vt € Z.

The structure of the paper is as follows: Section 2 displays the usefulness
of Benes’ (Benes (1967)) technique in deriving stationarity conditions for bilin-
ear time series models under both finite and infinite variance assumptions on
the noise sequence; (It should be mentioned here that such a technique is also
applicable to the so called threshold ARMA models proposed by Tong (1983).)
Section 3 focuses on a recursive algorithm useful in deriving governing condi-
tions for the existence of higher order moments of some bilinear models; the last
section gives proofs of both the central limit theorem (CLT) and the law of the
iterated logarithm (LIL) for the sample mean and sample covariances of a class
of bilinear models.

2. Strict Stationarity

In this section, it is intended to demonstrate a useful alternative technique
in establishing strict stationarity of a general Markov chain. This technique was
first introduced by Benes (1967) for continuous time Markov chains and was
adapted to the discrete time case by Liu and Susko (1992). For convenience, the
technique is summarized in the following theorem.

First, let {X;,t = 0,1,...} be a discrete time Markov chain defined on a
locally compact complete separable metric space & with homogeneous transition
probabilities

P™(z,A) = P(X, € A|Xo =2), z€X,A€B,

where B is the Borel o-field on X. Assume further that P"(-, A) is B-measurable
and for fixed z € X, P™(z,-) is a probability measure on the o-field B. ~

Y

-

“Assumption. Assume that the open and closed sets of the metric space (X, p)
are all B-measurable and for every compact set K in &,

lim sup {P'(z,A)} = 0. (2.1)
Alp zeK

Theorem 2.1. Suppose that assumption (2.1) holds. Then there ezists a strictly
stationary Markov process { X} with the above transition probabilities if and only
if there ezist a nonnegative measurable function g(+) satisfying

1Enlt<' g(z) — o0, as some compact sets Kn T & (2.2)
TEKZ



ON STATIONARITY AND ASYMPTOTIC INFERENCE ¢ 481

-

and an initial probability measure Py for Xo such that __

sup [/X [Yg(y)Pt(x,dy)Po(dz)] < . (2.3)

>0

Remark. The advantage of this technique is that it does not require the as-
sumption of ¢-irreducibility as required by Tweedie (1974, 1975). It should also
be mentioned here that Tweedie (1988) has extended his previous results to deal
with second order stationarity by dropping off the ¢-irreducibility requirement.

For a proof of this theorem, see Benes (1967) and Liu and Susko (1992).

Now let us apply the above theorem to the bilinear models. To do so, we
need to write the model under consideration into the framework of a Markov
chain or some sort of state space form. Without loss of generality, we assume
here that p = m and ¢ = l. By introducing the state vector | -

fft = (Xh e ,Xt_p+1, Zt, ceey Zt—q+l)'1
T we canbexpress (1.1) in the following equivalent form,
f’t=§(?t—1)+(1,0,--- ,0,1,0,... ’0)’Zt’ (24)

for some appropriate measurable function §(-) mapping from RP*? to itself.
Hence {Y;} is evidently a Markov chain. Thus, to verify Theorem 2.1, we only
need to examine the scalar case with some suitable scalar function g(-).

It should be noted here that though the handy Markovian representation
(2.4) can be used directly in the application of Theorem 2.1, it is generally
not suitable for Tweedie’s (1974, 1975) results since ¢-irreducibility is generally
difficult to verify with such a representation due to possibly over-dimenston of
the state vector. Recently, in a series papers of Pham (1985, 1986), he dérives
the so called bilinear Markovian representation using the predictor space as a
basis. He shows that the general bilinear model can be represented as h

{Xt =HY(@t-1)+ Zi,

P(t) = AV (- 1)+ E(2), (25)

where A(t) and £(t) are finite order polynomials in Z; and H is a constant vector.
Let || - ||, be a vector norm and define, for each y > 0, the associated L”-norm
(It is not a norm in the usual sense if v < 1.),

{EN Az}
121l

}, 7 € RF,

IA®)llory = sup {
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provided that the right-hand-side is finite, where k is the dimension of the square
mmatrix A(t). Under the assumption of ¢-irreducibility of the second equation of
(2.5), which is clearly a Markov chain, Pham (1986) shows that

Ao,y <1 (2.6)

implies geometric ergodicity. If ¥ > 1, by iterating the second equation of (2.5)
and using Minkowski’s triangular inequality, one can easily see that the norm
condition (2.6) is sufficient for the existence of a strictly stationary and ergodic
{Y(t)} and hence {X:}.

As shown in Pham (1985, 1986), writing a general bilinear model into a
bilinear Markovian form is not an easy task and the matrices involved in the
representation (2.5) are in general quite complicated. In Example 2.1, we show
how to derive stationarity condition using the simpler state space form (2.4)
and in Example 2.2, we apply Theorem 2.1 to Pham’s (Pham (1986)) bilinear
Markovian representation (2.5) for a general 0 <y < 1. i

Example 2.1. Consider the general subdiagonal BL(p, ¢, m,[) defined by

P m
Xt = Z¢:'Xt—i + Z: + E Zbijxt—izt—j, teZ, (2.7)
=1

i=1 j=1
where {Z;} are iid with possibly infinite variance, fp = 1 and b;; = 0 for 2 < 5.

Case 1. Assume that {Z;} has finite fourth moment and E(Z:) = E(Z}) = 0.
Write (2.7) in the following equivalent vector form,

l .
Xt = CZt + AX:—I + ZBth—th‘-j7 (2:8) '

i=1

where X; = (X3, Xt-1,--- »Xt—p+1)’ With p redefined as p = max(p,m), C =
(1,0,...,0) is a p x 1 vector, A and B; are p X p matrices defined by

$1 P2 0 Pp1 ¢p b:; - byp; 0 -+ 0

1 0 -~ 0 0 . 0 0 0
A= 0 1 0 0 a,nd B]_

0 0 1 0 0 0 0 0

It follows from the above theorem that to derive a stationarity condition,
one only needs to select a function g(-) so that (2.2) and (2.3) are satisfied. One



-

-

ON STATIONARITY AND ASYMPTOTIC INFERENCE ¢ 483

of these choices is g(#) = ||£||*, the Euclidean norm of a p x 1 vector. Set

RS

e { 0, ifn <0,
T\ CZn+ ARy + Doy BiX_jZn-j, 020,
for any t € Z,
. 0, ifn <0,
Sn(t) = { - l = . . (2‘9)
CZy+ ASn_1(t = 1)+ Loy BiSn—i(t — 3)Zt-) ifn>0

and
An(t) = Sn(t) = Snoa(2).

Clearly, for each fixed n > 0, there exists a measurable function g,(-) such that
S‘n(t) = gn(Z¢, Z¢-1,-..). Noting that f(;‘; = S'n(n) for n > 0 and for each fixed
n and arbitrary t,t' € Z, Sn(t) and Sn(t') have identical distributions, so X*and
5.(0) have the same distribution. Though it is possible to derive a stationarity

condition by using an argument similar to that of Liu (1989Db) to show that

sup E[5,.(0)'5,(0)] < oo,

we shall employ the results already established in Liu (1989b), namely,
E[An(0)'An(0)] < const.A™?,  V¥n > 1,

where A = p(T'), the spectral radius or the maximum eigenvalue in absolute value
of T, is assumed to be less than 1 and T'is defined by

-

ry Ty -+ L Iy =
I 0 - 0 0

r=|0 Lz -~ 0 0 [,
0 0 - In 0O (2.10)

F1 = A®A+02(B1®Bl)a

j-1

I = GZ[Bj ® (iAiBj_i> + (ZAiBj_i) ® B; + B; ® Bj}, j=2,...,1
i=1 i=1

where I, denotes the k x k identity matrix. Thus, if A < 1, E[An(0)' AL (0)]
decays to zero geometrically as n tends to infinity. Hence, it follows from the
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Cauchy-Schwarz inequality that

E[g(X})] = E[54(0)'54(0)]

]
< const. + const. [Z \/7||A (0)“2)]

< const. + const.( Z,\J’/‘i)
Jj=1

< const. + const.E H

< 0.

This shows the boundedness of (2.3). Hence, there exists a strictly stationary
time series {X,} satisfying (2.7) and (2.8), provided that A < 1, E(Z{) <-00
and E(Z;) = E(Z}) = 0.

Case 2. Suppose that {Z;} are iid with finite 2yth moments for some v € (0,1].
Define g(z) = |2|" for any z € R and set X! = Z: + U;, where X[ is the first
component of Xt Then for any initial random variables Xg,... ,X{_, which
are independent of {X7,s > p} (here p is assumed to be max(p, m) for notational
convenience),

P
E[g(X})] £ constant + E E{l é; + Zbijzt_jlq}Eg(Ut_i).

i=1 5<i
This implies that )
? ) i
E[¢(Uy)] < constant + EE{‘@ + Zb,-,-zt_j| }Eg(Ur-s). o
i=1 i<i .

So the sequence { E[g(U:)]} is bounded provided that

L4 ¥
ZE{ éi + Zbijzt_j} } < 1. (2.11)

i=1 i<t

This in turn will be sufficient for the boundedness of { E[g(X[)]}. Hence, there
exists a strictly stationary bilinear time series { X} satisfying (2.4).

Example 2.2. General Bilinear Models '
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Again, we consider the general bilinear model (1.1). As shown by Pham
- (1986), (1.1) has an equivalent bilinear Markovian representation (2.5)-—Define

7r) = (V) 2, €(0) = (1), 2,

At) 0
0

A*(t) = ( 0) . H*=(H'1).

Then (2.5) can be rewritten as

=HY*(t-1
{).(t BY( 1), _ (2.12)
(1) = A"V (t - 1) +£°(1).
Let || - || be some vector norm and || - ||m be the induced matrix norm. Define
g(-) = || - |lv- Assume that E{[JlE*®)||,]"} < oo for some v € (0, 1]. Then a direct

application of Theorem 2.1 yields strict stationarity of {Y*(t)} and hence that
of {X:}, provided that hy

E{[JlA®)In]"} = E{llA*®)lIm]"} < 1.

3. Moments

For the general bilinear model, it has been shown by Liu and Brockwell
(1988) that the second order moment of the observable time series { X} is finite
if the iid innovation sequence {Z:} has finite 2/th moment, provided that the
stated stationarity condition is satisfied. This requirement can be substantially
simplified when the bilinear model reduces to the so called subdiagonal model
(i.e. bj; = 0 for all 7 < 7). In this case, the existence of finite fourth moment of
the innovation sequence {Z;} is sufficient for the existence of finite second order
moment of the bilinear time series {X;} again under the stationarity assumption
p(T) < 1, where T is defined in (2.10). A proof of this result in more génetal
context of a subdiagonal multiple bilinear model is given in Liu (1989b). For-the
detailed causality conditions, see Liu and Brockwell (1988) and Liu (1989b).

As shown by Liu (1989a, 1990), the existence of a causal and ergodic solu-
tion does not necessarily require the existence of higher order moments of the
innovation sequence. In particular, as demonstrated above, for any v € (0, 1], the
existence of finite 2yth moment of the iid innovation sequence will be sufficient
for the existence of finite yth moment of the subdiagonal bilinear time series,
provided that the stated stationarity condition in Example 2.1 is met.

Another approach to study the existence of higher order moments is given
by Pham (1985, 1986) using the bilinear Markovian representation (2.5). Though
his approach often leads to a more general (implicit) sufficient condition for the
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existence of higher order moments, in view of difficulties involved in obtaining
{2.5) for a general bilinear model, we shall not proceed further along thisdirec-
tion. Instead, our attention will be focused on deriving some simpler sufficient
conditions under which higher order moments exist.

As is well known, the existence of higher order moments of a bilinear time
series normally requires additional restrictions on model parameters as well as
possibly even higher order moments of the innovations. As an example, we shall
examine the fourth moment of the vector-wise subdiagonal model,

Xt =CZt+(A+BZt_1)Xt_1, (31)

where A and B are arbitrary p X p matrices, C is a p X 1 constant vector and
{Z;} are iid. Assume that

E(Z)=E(Z}) =0, o®=E(Z}), and 7*=E(Z{)< . (3.2)

Also assume that the causality (or ergodicity) condition

-

A=p[(A® A)+d*(B®B)] <1 (3.3)

is satisfied. To establish existence of the fourth order moment, we introduce S, (t)
and A, () as in (2.9) and the subsequent equation. Clearly, A,(t) is measurable
with respect to the o-field 0(Z,,s < t) and satisfies the equations,

An(t) = (A+ BZ:_1)An_1(t - 1).

By the LP-theory, p > 1, the problem of existence of the fourth order moment
reduces to the convergence of {S,(t),n > 0} in L*. The quantity of interes:i in
_determining the L*-convergence is -~

Vo = E[(An(t)An(t)") ® (An(t)An(t))].
It is not difficult to show that

Va=(AQ A)Vo_1(A'® A")
+ 0 [(A® B)Va_1(A'® B') + (B ® A)Vo_1(B' ® A")]
+0*[(A® A)Va1(B' ® B')]
+ 0 [(A® B)Vao1(B'® A') + (B® A)Vn1(A' @ B)]
+0*(B® B)Va_1(A'® A') +v*(B® B)V,_1(B' ® B'),
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which can be written in the vector form,

V= {(A® A)® (A® A)] + P*[(A® B)® (A® B)|
+?(B®A)®(B® A)] +*[(B®B)® (A8 A)
+0*(B® A)® (A® B)|+ ¢*[(A® B)® (B ® 4)]

+*[(404)0 (Be B)+1'(B®B)8 (B9 B)} Va1
= A.‘_/;.—lv

where, for a matrix M, M denotes the vector obtained by stacking the columns
of M one on top of the another. Thus,

p(A) < 1 (3.4)

is sufficient for {Vn} converging to zero geometrically. It then follows froin the
following relation,

' £ 20T < [SeEnaao1ov],

(3.3) and (3.4) that {S,(t)} is a Cauchy sequence in L* and hence its limit X,
is also in L%, i.e., X; has finite fourth order moment.

/

Remark. The condition (3.4) is usually different from (3.3), since at least (3.3)
does not contain 7%, the fourth order moment of {Z;}. But condition (3.4)
implies (3.3).

To this end, observe that in the definition of Sn(t), the initial vector So(t)
could be chosen as any arbitrary random vector 50 which is independedt of
 {Z,,s € Z} and has finite fourth order moment. By proceeding exactly thé same
as above and letting C = 0, one can derive the same relation for V;,. This shows
the L*-convergence of 5,(t) for any initial So(t) independent of {Z,,s € Z} and
havmg finite fourth order moment provided p(A) < 1. This in turn shows that

Sn(t) is also L%-convergent for any initial So(t) independent of {Z;,s € Z} and
having finite fourth order moment. Also, for any two initial vectors So L= dy

and S5, = d,, denote the corresponding {S.(t)} sequences by {5,1(t)} and

{S.2(t)}. Then it is easy to show that W, = = E[Sn1(t)5n2(t)'] satisfies the
equations,

‘/—t}n = (A ® A+ U2B ® B)v—V)n—l = FWn-l = 1_‘,r"—lﬁ})l = Fnﬁ—%’ (35)
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where Wo = d1d}. Since (3.5) holds for any dy,d> € RP and hence for arbitrary
_Wo and : = -

e

lim W, =0,

we conclude by Jordan decomposing I' that p(T') has to be less than unity.
4. Limit Theorems for Subdiagonal Bilinear Time Series
We shall consider the simple subdiagonal bilinear model,
Xe=CZi+ AXi1 + BXem1Zeo1, (4.1)

where {Z;} areiid and A, B and C are arbitrary nonrandom matrices. Obviously,
(4.1) is a special case of (2.7) with I = 1. In this section, it will be shown
that under appropriate conditions, the sample mean and the sample covariances
satisfy the central limit theorem (CLT) and the law of the iterated logarithm
(LIL). -

Let the iid innovation sequence {Z;} be defined on the probability space
(Q, F, P) and set F; = 0{Z,,s < t}, the o-field generated by {Z,,s < t}. Define
T to be the shift operator in R*®, i.e. for Z = (...,z_1,%0,%1,...) € R%,
T(Z)=(...,Z0,%1,Z2,---)-

Throughout this section, it is assumed that

E(Z}) < oo, E(Z*)=0, form=1 and 3, (4.2)
and
A=p(A® A+d*B®B) < 1. (4.3)

Then there exists a measurable function g(-) mapping from R* to R such that

Xt = g(Zt,Zt—l’- ..), a.S., vVt € Z, .&

“i.e. {X:}is causal. Furthermore, {X:} can be written in the form of an almost
surely convergent as well as L2-convergent infinite series,

oo n-—1

X =Cz:+ Y [[(A+BZ:;)CZ:n. (4.4)

n=1 j=0

For a proof of this, see either Bhaskara Rao et al. (1983) or Liu and Brockwell
(1988).

Lemma 4.1. For any real p X p matrices A and B, if

p(AR A+ B® B) < 1,



ON STATIONARITY AND ASYMPTOTIC INFERENCE ‘ 489

then p(A) < 1. —-

p——

Proof. Consider the subdiagonal bilinear model (4.1) with {Z.} iid N(0,1) and
C = 0. Then the condition p(A® A+ B ® B) < 1 implies that (4.1) is ergodic
and causal. Furthermore, if {S (t),n > 0} and A,(t) are defined as in Section 3
except that the initial vector So(t) is now redefined as Z7_ ,d for arbitrary d € R?,
then it is easy to show that for n > 1,

Dy = E[An(t)An(t)] = ADp_1A’' + BDr_1 B,
or equivalently,
D.=(A® A+ B® B)Dy_1.

Hence A, (1) converges to 0 geometrically in L? as wellasin L'. So {Sn(t),n > 0}
converges to X, =0 both in L? and in L! since X, = 0 is the unique stationary
solution of (4.1) (Bhaskara Rao et al. (1983) and Liu (1989b)). Now, observe
that

771; = E[gn(t)] = A’F]n_.]_ = e = An(i'

This together with the fact that X'_t = 0 is the unique stationary solution of (4.1)
and hence lim, o0 Tn = 0 for all d € R? implies that

lim A"d =0, Vde€R*.

n—00

Finally, we conclude by Jordan decomposing A and using the above relation that
p(A) < 1.

For the univariate bilinear time series generated by the first components of
{X:} which satisfies (4.1), set Y; = g(Z¢, Z¢—1,...) — p, here p = E(Xo) and-g(-)
is the measurable function determined by (4.4) so that X, = ¢(Z;, Z¢—15...).
~ Then E(Yp) =0, E(Y#) < oo and Yy is Fo-measurable. Also, Y; = Yo(THZ)),

- where Z = (...,Z_1,20,21,...) is strictly stationary and ergodic. The first

partial sum of interest is
= YW= Y-

Theorem 4.1. Consider the bilinear model (4.1) with {X:} defined to be the
first component of {X:}. Under the causality assumptions (4.2) and (4.3), the
following limit laws hold:

4, N(0,0™%), as n— o, (4.5)

S
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where 0* = \/limp—o0 ESZ/n < 005 if, in addition, 0* > 0, then -
lim sup ———;5-"—-— =o*, as., (4.6)
n—oo V2nlnlnn
and
. . S'n *
liminf —=—= = -0, as.. (4.7)

n—oo +/2nlnlnn

Proof. After some algebraic computation, we have, for each t > 0,

t—2
E(Xi|Fo) =0 A'BC+ A" (A+ BZy)Xo. (4.8)

=0

To establish the above theorem, we only need to verify the conditions of
Theorem 5.5 of Hall and Heyde (1980). Set

y. = E(Yi|Fo) — E(YilF-1)-

-—

Th(-an y: = 0 a.s. for t < 0 and for t > 0,
ve = WA [0?BC + (A + BZo)Xo + A(A+ BZ_1)X_1],

where A = (1,0,...,0)' € R?. Noting that (p(A))? = p(A® A) < 1, we have, by
Proposition 2.1 of Liu and Brockwell (1988), that

Ey? = h'A*"'E{[6* BC + (A + BZo)Xo + A(A + BZ_1)X_i]
[0?BC + (A + BZo)Xo + A(A + BZ_1)X_1]}A* VA

< const.\f

for t > 0. It then follows from above and the Cauchy-Schwarz inequality that

i 2
E[Zyj] < const.A™, forsome0<A<landV0<m<n.

j=m
This establishes (5.24) of Hall and Heyde (1980), namely,
i {limsuPE[ i yj]2 +1imsupE[ 2": y_j]z} < 0o.
m=1 " j=m o j=m

Finally, we need to show that

E(Yo|Fo) = Yo, as.,and E(Yo|F-x) =0, as.,
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where Foo = 0{UF:} and F_o = Ny F;. The first relation is obvious since Yy is
Fo-measurable. To show the second relation, observe that for Y; = X, =%,

E(Yol|F-m) = E[Xo — il F-m]

m-—2
=0’ Y ABC+A™ YA+ BZ_p)X-m -} Ym>0,
=0
and
i=a) A'BC.
Jj=0

These, together with the Cauchy-Schwarz inequality, imply that
E{E[Ys|F-]}’ = E{E[E(Yo|F-m)|F-c]}’
< E{E[[E(Yo|F-m)I*| F-w]} :
-0

as m — oo. This completes the proof.

Similarly, we may consider the conventional moment estimates. For example,
one of the frequently used estimates for y(k), the covariance at lag k, is

. 1 & > &
(k) =~ Z (X; = X)(Xj-k — X).
I=k+1
This motivates the consideration of the following partial sums,

Sa(k)= > X;Xj—k—(n—kuk), k>0, ,
j=k+1 T

- where p(k) = E[X;X,). In addition to assumptions (4.2) and (4.3), if con-‘c‘li’téion

(3.4) is satisfied, similar limit theorems hold.

Theorem 4.2. Let {X,} be the first component series of {X;} defined by (4.1).
Assume that (4.2) and (3.4) are satisfied. Then the following limit laws hold:

5\"/(5'“) L, N(0,0(k)?), as n — oo, (4.9)

where o(k) = \/liMp_oo ESn(k)?/n < 00; if, in addition, a(k) > 0, then

lim sup _5ak) = o(k), as., (4.10)

n—oo V2nlnlnn
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and

O

So(F) —a(k), a.s. (4.11) |

liminf ———
lﬂ—'°° Vv2ninlnn

Proof. Similar to the proof of Theorem 4.1, it suffices to show that
| E[X 6 Xt Fol — E[X. X])| < 621C(Fo), VE> 1, (4.12)

where the matrix C(Fo) is Fo-measurable and in L?, the nonrandom constant
0 < 6 < 1 and the matrix relation < is defined to be elementwise.
Without loss of generality, we consider only k = 1. Since

E[Z.X:X!|Fo] = 6*CE[(AX -1 + BXi-1Z:-1)'| Fo]

+ P E[(AXi-1 + BX:.1Z:1)|F)C
-3 o >
=orc{[s* S AT BO+ AT A BZo)Xo| +0*C'B'}

j=0
t-3

ro?{[o? Y AIBC + AT (A BZo)Xo| + 4 BC}C’
}=0

= const.(t) + (A*71Th) + (A1), (4.13)
we have

E[X 1 X! Fo) = AE[X.X!|Fo] + BE[Z:X:X{|Fo]
= AE[X.X!|Fo] + const.(t) + (A1) + (A" L)',

here U; is Fo-measurable and in L?, const.(t) is nonrandom bounded constant
sequence, and p(A) < 1. It thus suffices to show that .

-~

|E[X:X}|Fo) - E[XX])| < 87C(F), Yt>1, (4.14)

for some (other) nonrandom constant 0 < § < 1 and some matrix C(Fp) mea-
surable with respect to Fp and in L%.
Set

M = AR A B® B
1=\ 62AQA 0’B®B)°

Then by Lemma 4.1, condition (3.4) implies the ergodicity condition

p(T)=p(A® A+ 0*’B® B) <1,
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which in turn implies that p(M;) < 1, since the characteristic polynomial-ef M;

- is
|z — M| = :z:pzlzz:I— T.
Define
F, = E[X,X!|Fo], and W; = E[Z}X,X]!|F0].
In view of (4.13), it is easy to see that, for t > 3,

F, =d*CC' + AF,_1A' + BW,_, B’
+ AE[Z;_1X:_1X!_{|Fo]B' + BE[Z:_1 X1 X|_{| Fo] A’
= const.(2,t) + AF;_1A' + BW;1B' + (A7) + (A*1U,)

and -

W, =~4*CC' + 6*E[(AX_1 + BX:_, Zi 1 )(AX_q + BXt—lzt—l)'|-7:o]
= const.(3,t) + 0?[AF;_1A' + BW,_1B'] + (A'"1U3) 4 (AYU,),

-~

Va,nd their vector forms are
F, = (AQA)Foes +(B® B)Woo1 + (IQ A ) Ty + (A*Y @ I) T + comst.(2, )1,
Wi=02(A®A) Fi-1+0*(B® B)W;_1 HI® A1) Ts + (A" @ 1) Ty+const.(3, 1)1,

where both U, and Us are Fp-measurable and in L2, coﬁst.(2,t) and const.(3,t)
are constant sequences bounded above and 1 is a column vector with all elements
being 1 and dimension compatible with F; and W;. Hence if D; = [?{ ,Wt’]’,
then .

N o 52t t—1—> ' n |
Dy = My D;_y + M;™ " my + (const.(2,t)1’, const.(3,t)1'), (4.15)

here Mo is Fo measurable and in L? and p(M;) < 1. Finally, we have

t—-1
D - E(Dy) = Mi7' Dy + Y MiMi~ 1, + M5,
1=0

for some constant vector &. This clearly implies (4.14) with § chosen to be § < 1
and 6 > max(p(M),p(M3)), completing the proof.

Acknowledgement
The research is partially supported by NSERC grant No. 80490. The author
would like to thank the Edinburgh Nonlinear Time Series Workshop and the



z

494 JIAN LIU

British NSERC for providing partial support and the three referees for their
valuable comments. —

References

Benes, V. E. (1967). Existence of finite invariant measures for Markov processes. Proc. Amer.
Math. Soc. 18, 1058-1061.

Bhaskara Rao, M., Subba Rao, T. and Walker, A. M. (1983). On the existence of some bilinear
time series models. J. Time Ser. Anal. 4, 95-110.

Granger, C. W. and Andersen, A. (1978). An Introduction to Bilinear Time Series Models.
Vandenhoeck and Ruprecht, Gottingen.

Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic
Press.

Liu, J. and Brockwell, P. J. (1988). On the general bilinear time series model. J. Appl. Probab.
25, 553-564.

Liu, J. (1989a). A simple condition for the existence of some stationary bilinear time series. J.
Time Ser. Anal. 10, 33—40. -

Liu, J. (1989b). On the existence of a general multiple bilinear time series. J. Time Ser. Anal.
10, 341-356.

Biu, J. and Susko, E. (1992). On strict stationarity and ergodicity of a nonlinear ARMA model.
To appear in J. Appl. Probab.

Liu, J. (1990). A note on causality and invertibility of a general bilinear time series model. Adv.
Appl. Probab. 22, 247-250.

Pham, D. T. (1985). Bilinear Markovian representation and bilinear models. Stoch. Proc. Appl.
20, 295-306.

Pham, D. T. (1986). The mixing property of bilinear and generalized random coefficient au-
toregressive models. Stoch. Proc. Appl. 23, 291-300.

Subba Rao, T. and Gabr, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear
Time Series Models. Lecture Notes in Statistics 24, Springer-Verlag, New York.

Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis. Lecture Notes in
Statistics 21, Springer-Verlag, New York. .

Tweedie, R. L. (1974). R-theory for Markov chains on a general state space I: solidarity .prop-
erties and R-recurrent chains. Ann. Probab. 2, 840-864. s

" Tweedie, R. L. (1975). Sufficient conditions for ergodicity and recurrence of Markov chains on

a general state space. Stoch. Proc. Appl. 3, 385—403. -

Tweedie, R. L. (1988). Invariant measures for Markov chains with no irreducibility assumptions.

Appl. Probab. 25A, 275-285.

Statistics Department, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

(Received November 1989; accepted August 1991)



