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i Abstract: Robust parameter design, originally proposed by Taguchi, is a very useful
“tool for reducing variation and improving product/process quality. By exploiting the
relationships between control parameters (design factors) and noise variables, it re-
duces the effect of uncontrollable variations on the response. This is done by using
statistically designed experiments in off-line situations where the settings of the noise
variables are controlled and systematically introduced and their relationships with
design factors studied.
Frequently, however, it is too expensive or not practically feasible to control the
noise variables, even in off-line experiments. Variations in the noise variables can
then invalidate the usual methods of analysis. In this paper, we develop alternative
methods of analysis for situations where the noise variables are uncontrolled but can
be observed. Our approach involves treating the noise variables as covariates and
modeling both the location parameters and the regression coefficients as functions of
the design factors. These coefficients can be viewed as the equivalent of Taguchi’s S/N
ratios for reducing variability induced by the observed noise variables. We propose a
general data-analysis strategy for determining various dispersion and location effects
and improving performance under this framework. The approach is also applicable
to experiments where there are covariates, and one must remove the effects of these
nuisance variables before identifying the location and dispersion effects of the design
Factors. The ideas are illustrated by applying them to an experiment for thermal
design of cabinets for telecommunications switching systems.

Key words and phrases: Design of experiments, dispersion effects, location effects,
quality improvement, S/N ratios.

1. The Problem

Let Y denote a quality characteristic associated with a product or process of
interest. Following Taguchi (1986, 1987), we can express

Y = f(z;n) (1.1)

where @ denotes control/design factors, i.e., factors that are easily controlled
by the process/product engineer and are fixed during manufacturing and/or op-
eration, n denotes variables that are not easily controlled and may vary during
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manufacturing and/or operation, and f(-) denotes the functional relationship. We
shall call  and n “design factors” and “noise variables” respectively. Variations
in the noise variables n lead to variations in Y, the measure of product/process
quality. Traditional approaches to controlling or reducing this variability, such
as acceptance sampling and tolerance design, are costly and do not lead to any
real improvements in quality. The novel idea behind Taguchi’s robust parameter
design is to first try to reduce the effect of the variations in the noise variables on
the response, instead of using costly measures to actually control variations in the
noise variables. This is done by exploiting the functional relationship f(-) to de-
termine the setting of the design factors, not only to get the average performance
on, target but also to minimize variability around this target value.
For robust parameter design to be successful, the functional relationship f(-) -

in (1.1) must be such that the design factors and noise variables “interact”. For
if an underlying additive model

9(Y) = fi(®) + f2(n) (1.2)

holds, the settings of & have no influence on variability.

In practice f(-) is either unknown or, as in the case of computer experiments,
very complex. Thus one conducts statistically designed experiments, either phys-
ical or computer experiments, and obtains the responses at the experimental
settings of the design factors. For robust parameter design experiments, the
noise variables are also usually controlled, typically in off-line environments, and
their effects studied systematically. More specifically, in these experiments

_ }/ij:f(m'i;njaeij))i=1>°"am,j=1,'°',ka (1.3)
where Y;;’s are the responses, ; is the ith row of the design matrix (corresponding
to the design factors), the identified noise variables n are controlled at fixed levels
and the settings n;, j = 1,...,k, are repeated for each of the m design settings,
and ¢;; denote the remaining, unidentified noise variables, including measurement
error.

The usual analyses of location and dispersion effects are based on

k
Vi =k Y (1.4)
i=1
and
k —
. St =15 (v - Y0)? (1.5) _
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respectively. Taguchi actually recommends, instead of (1.5), a different measure
(S/N ratio) for the “on-target” problem. His measure implicitly assumes a multi-
plicative model where the variance is proportional to the square of the mean (see
Léon et al. (1987)). In such situations, we prefer the use of the approximately
equivalent procedure of applying a logarithmic transformation to the data and
using (1.5) based on the transformed data. See Nair and Pregibon (1986) and Box
(1988) for more details. Throughout, we assume that when variance-stabilizing
transformations are necessary, they have been carried out and that we are dealing
with the transformed data.

The analyses above depend critically on the fact that the same values of the
poise variables are repeated across the m design settings. In many situations,
however, some of the important noise variables cannot be carefully controlled.
This is certainly true for on-line experiments. Even in off-line situations, it may
be too expensive or not practically feasible to control the noise variables. For
example, in studying performances of computer or communication networks, the
primary noise variables are system and network load conditions. (See Phadke
(1989) for an application to tuning the performance of a computer system.) These
load conditions cannot be controlled in most experiments. Variations in the noise
variables can then invalidate the conclusions obtained from the usual analyses
based on (1.4) and (1.5). If the mean levels of the noise variables vary from one
design setting to another, they can confound estimates of location effects based
on (1.4). Similarly, differences in their variances will confound the estimates of
dispersion effects based on (1.5). These problems will be demonstrated explieitly
in the next few sections when we consider specific models and data.

In this paper, we consider situations where the noise variables can vary but
are observable. (In the computer/communication network applications, for ex-
ample, it is possible to measure the various load conditions and so adjust for
the changes in the noise variables.) We propose a general data analysis strategy
which is based on modeling the responses directly. Our approach involves treat-
ing the noise variables as covariates and modeling both the location parameters
and the (regression) coefficients as functions of the design factors. This allows us
to determine the interactions between the design factors and the observed noise
variables and to exploit them to reduce the effect of this source of variability.
Variability due to unobserved noise variables can be identified by analyzing the
squared residuals from the fitted model. The approach presented here is also
applicable to experimental situations with covariates, where one has to remove
the effects of these nuisance variables before identifying the important location
and dispersion effects.

~_The paper is organized as follows. In Section 2, we use a real application
on thermal design of cabinets for telecommunications switching equipment to
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motivate the problem and the issues. Section 3 develops the underlying concepts
and models for a single observed noise variable. The proposed data analysis
strategy is outlined in Section 4 and is illustrated by applying it to the thermal
design experiment. Section 5 deals with several generalizations, including the
case of multiple noise variables.

The direct modeling of responses as a function of design factors and noise
variables has also been considered by Welch et al. (1990), Shoemaker et al. (1991),
and Lucas (1990). Our approach simplifies to the formulations discussed by these
authors when the noise variables are controlled and the models are all linear. In
general, however, there are differences in modeling, analysis, interpretations, and
applications. The methods developed here remove the need to strictly control
the moise variables, and hence one can do robust parameter design experiments
more easily in on-line environments, provided the noise variables can be observed.
Observing and measuring noise variables during on-line production and operation
have other benefits and can result in better insights on the causes of variation.

2. An Illustrative Example

An experiment was conducted at AT&T Bell Laboratories to study the sur-
face temperature within cabinets in telecommunications switching equipment.
Recent technological advances have considerably increased the power dissipated
by circuit packs in these switching equipment, well beyond original guidelines.
The goal of the experiment was to determine if circuit packs can be kept within
their temperature limits by designing the cabinets appropriately with suitable
numbers of fans and shelves and by careful placement of high power dissipation
circuits. We shall use the context of this real experiment but with synthetic data
to motivate and illustrate the problem and issues.

A 2% full factorial experiment was conducted with four factors and four repli-
cations. The four factors were: A — power dissipation on the shelf of interest; B
- cumulative power dissipation on all the shelves below the shelf of interest; C —
number of fans; and D — the shelf of interest. There are six shelves in a cabinet,
numbered from the lowest to the highest. The fans are located below shelf 1.
Table 1 shows the levels of the four factors.

Table 1. Factors in thermal design experiment

Factor Code Factor Levels
A Power Dissipation (watts per circuit pack) 0 - 40
B Cumulative Power Dissipation (watts per circuit pack) 0 - 200
C Number of Fans 1-3
1D Shelf Location ) 2-6
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Surface temperatures were measured at three locations in the cabinet — backplane,
center, and faceplate. We shall restrict attention here to just surface tempera-
tures measured at the center. Table 2 gives the (synthetic) surface temperature
data used in our analyses. The temperatures (in celsius) have been centered
by subtracting the overall mean of the ambient temperatures. The order of the
observations corresponds to the order of the standard 24 factorial design matrix
with the factors A — D in Yates’ order.

Table 2. Surface temperature

Replicate

i Run 1 2 3 4 Y; S?
~01 -03 -10 =101} -057 0.22
15.8 14.4 16.7 16.0| 15.75 0.93
2.1 3.1 0.8 2.9 2.25 1.09
23.0 24.1 233 245 | 23.75 048
0.0 0.4 1.2 1.4 0.78 0.44
13.9 13.4 13.1 12.8 | 13.33 0.22
9.4 8.6 10.2 9.0 9.33 047
27.1 25.9 26.6 27.1| 26.70 0.32
-1.1 =15 0.7 0.4 | -0.35 1.18
10 17.8 180 172 185 | 1790 0.29
11  15.0 11.9 21.0 189 | 16.73 16.42
12 23.7 22.0 29.8 26.0| 2540 11.39
13 1.1 2.2 2.5 3.2 2.28 0.76
14 167 16.2 183 17.7| 17256 0.90
15 9.3 6.9 9.8 6.7 8.20  2.57
16 24.0 248 281 27.3| 26.08 3.84
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The usual approach to identify important dispersion effects is to fit a log-
linear model to S? in (1.5) as a function of the design factors. Figure 1 is a
half-normal plot of the effects computed from this analysis. It suggests that D,
the number of shelves, and to a lesser extent B, the cumulative amount of power
dissipated, are important factors in controlling variability in surface temperature.

In reality, however, the four observations at each design setting were not
true replications. The surface temperature within the cabinet is affected by the
ambient temperature, and it was not possible to control the ambient temperature
at fixed levels. Instead their values were recorded. Table 3 gives the actual
ambient temperatures that were observed during this experiment, centered by
subtracting their overall mean. We have reordered the observed values slightly
for illustrative purposes. We shall regard the data in Table 3 as the observed
_ values of the noise variable.
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Figure 1. Half-normal plot of effects of log (variance) of surface temperature. The 15
effects are the result of an analysis of variance fitting the full factorial model log(S5?) =
AxBxC=x*D.

Table 3 shows that S?(n), the “within-run” variances of the ambient temper-
atures, range over two orders of magnitude. To understand how these differences
could have potentially confounded the analysis in Figure 2, we analyzed the
S%(n) ’s as a log-linear function of the design factors. Figure 2 shows the half-
normal plot of the effects obtained from this analysis, and it suggests that the
effect of factor D is strongly confounded with the differences in S?(n). Hence the
conclusion from Figure 1 that D has a large dispersion effect could be misleading.

One quick-and-easy way to try to account for the differences in S?(n) is
to analyze, instead of (1.5), the ratio S?/S?(n). (In the next section, we will
consider a model under which the use of this measure can be justified.) Figure
3 is the half-normal plot of the effects computed by fitting a log-linear model
to this ratio. We see that the conclusions from this analysis are different from
those from Figure 2. D is no longer the most important effect, and we might
even conclude that there are no important effects. We shall see in the next two
sections, however, that the conclusions from this analysis can also be misleading,
and that B,C, and BC are important dispersion effects for this data set. Another
disadvantage of this approach is that it does not extend easily to multiple noise
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variables and other more complex situations.

Table 3. Ambient temperature

Replicate
Run 1 2 3 4 i;  S%(n)
-0.57 -0.77 -0.67 -0.67 | —0.67 0.01
-0.47 -0.57 0.33 -0.37 | -0.27 0.17
—2.47 -1.87 =257 -2.27 | -2.30 0.10
-0.97 -0.77 -0.87 -0.67 | -0.82 0.02
0.23 0.23 1.13 0.83 0.60 0.20
-2.67 -2.87 -3.27 =297 | =295 0.06
-0.57 -0.87 0.03 -0.77 | -0.55 0.16
0.83 0.53 0.53 1.23 0.78 0.11
-0.77 -1.07 0.93 1.03 0.03 1.22
10 2.63 2.03 1.73 2.73 2.28 0.23
11 1.43 0.53 3.43 3.03 2.10 1.85
12 -0.77 -1.17 1.23 -0.17 | -0.22 1.10
13 2.13 2.23 2.73 3.43 2.63 0.35
14 0.73 0.33 2.13 1.33 1.13 0.61
15 -0.57 -2.67 -0.67 -287 | -1.70 1.55
16 -0.77 -0.87 1.63 -0.17 | -0.05 1.34
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Figure 2. Half-normal plot of effects of log (variance) of ambient temperature. The 15

effectsare the result of an analysis of variance fitting the model log(S?(n)) = A*BxCxD.”
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Figure 3. Half-normal plot of effects of log (ratio of variances). The 15 effects are the
result of an analysis of variance fitting the model log(S?/S?(n)) = A* B+ C % D.

What alternative measure to consider will depend on the situation of inter-
est. One extreme case, (a), is where ambient temperature is the primary noise
variable, i.e., most of the variation in surface temperature is caused by variations
in ambient temperature. The focus of the analysis should then be on modeling
the relationship between surface and ambient temperatures and choosing the set-
tings of the design factors to minimize the effect of this relationship. The other
extreme case, (b), is where ambient temperature is only a covariate in the ex-
periment and is not a noise variable in practice. This will be the case if, during
operation, the switching equipment is located in air-conditioned buildings and the
ambient temperature does not vary much. So, the ambient temperature in the
experiment is just a nuisance variable whose effect on the observed surface tem-
peratures must be removed. We can then analyze the variances of the residuals
from the fitted model, instead of (1.5), to determine the dispersion effects. The
intermediate case, (c), is where ambient temperature is just one of the important
noise variables and there may be other, unidentified noise variables whose effects
we should also understand. In this case, we should do both (a) and (b). In sub-
sequent sections, we consider these issues in more detail and propose a general
data analysis strategy. ’
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We can examine in a similar fashion how the differences in the mean levels
of the ambient temperatures affected the analysis of location effects based on
(1.4). It turns out, however, that the differences in mean ambient temperatures
were small in comparison to the differences in surface temperatures, and did not
influence the analysis significantly in this case.

3. Models for a Single Noise Variable
3.1. Constant variance

Suppose that, after a suitable transformation of the response if necessary, we
have the model

i Yij = pi + g(nij; Bi) + €45, (3.1)

fori =1,...,mand j = 1,...,k, where g(-) is a fixed function. Further, for
suitable link functions hg(-) and ki (),

ho(pi) = =, (3.2)
hi(Bi) = =i, (3.3)

and :
Var(e;;) = o?. (3.4)

Here “i” corresponds to the design setting @; (i.e., ith row of the design matrix)
and “j” corresponds to the “replications” within the ith setting, and n;;’s are
the observed values of the noise variable. We assume that there are at least two
replications, i.e., k > 2.

The constant variance assumption in (3.4) will be relaxed later. Note, how-
ever, that this assumption implicitly implies that other unidentified noise vari-
ables do not interact with design factors, so that we cannot choose the settings
of the design factors to reduce the effect of these noise variables on the response.
This assumption may be reasonable if most of the important noise variables are
identified and studied explicitly during the experiment.

We shall assume that the function g(-) in (3.1) is centered at the mean of
the noise distribution, i.e., g(0;3;) = 0. So, p; = p(®;) measures the mean of
the response distribution at the design setting @;. The effect of changes in the
noise variable on response is measured by 8; = B(=;), together with g(-). We
should, therefore, choose the design factor setting (and hence ;) appropriately
to minimize the effect of potential changes in this noise variable during manufac-
turing/operation. Thus, f; is the appropriate measure for assessing variability in
this situation, where the noise variable is uncontrolled and varies from one design
setting to another. We can thus view it as the analog of Taguchi’s “SN-ratio” for
this problem. ‘
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Consider the special case of a linear regression in (3.1), that is
Yi; = pi + Binij + €45- (3.5)

If the ¢;;’s are small,
B = S%/St(n), (3-6)

where S? is the “within-run” variance of Y;; given by (1.5), and S2(n) is the
“within-run” variance of the noise variable. In the special case where the n;;’s
are fixed and the same settings, n;; = n;, j = 1,...,k, are repeated across the
m design settings, S?(n) = S%(n) = constant. So, analyzing f; is equivalent to
analyzing 52, the usual measure in (1.5). When the noise variables vary, however,
the two are not equivalent. But in this case, the relationship (3.6) suggests that
one could use instead the ratio S2/S?(n). This provides a justification for the
analysis in Figure 2 in the last section. The problem with this ratio, however, is
that it actually estimates 8? + 02/S?(n). So unless o2 is small, the measure can
still be affected by the variations in S?(n).

Going back to the general set-up in (3.1), equations (3.2) and (3.3) specify
the relationships between the design factors and the p;’s and f;’s respectively.
Let a = (@, 1,...,2p—1), Where p is the rank of the design matrix, and let the
¢;’s be defined similarly. We call a;j, j > 1, the location effects and ¢;, 7 > 1,
the dispersion effects of the design factors. More precisely, the ¢;’s are dispersion
effects associated with the noise variable n;;. The magnitudes of these ¢;’s mea-
sure the deviation of (3.3) from the null hypothesis Hy : §; = constant (¢o), i.e.,
there is no interaction between the design factors and the noise variable. Thus,
#j, J > 1, represent the (generalized) interaction between the design factors and
the noise variable in this setting. When the models in (3.1)—(3.3) are all linear
and the noise variable is controlled at nj, j = 1,...,k, these parameters specialize
to the usual interaction effects, and our approach then reduces to that discussed
in Welch et al. (1990), Shoemaker et al. (1991), and Lucas (1990).

3.2. Unequal variances

So far, we have assumed that there are no important dispersion effects that
can be attributed to other, unobserved noise variables. To allow for this more
general case, we let

Var (g;;) = 02, i=1,...,m (3.7)

where
v(o;) = ;. (3.8)

So, for j 2 1, 7v;’s measure the deviation from the null hypothesis of constant
variance (0; = 7o), and indicate which of the factors are influential in reducing
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variability caused by unobserved noise variables. In practice, it may be difficult
to estimate these effects unless we have pure replications or effect sparsity, i.e.,
only a small proportion of the effects are active.

There is one important situation where the primary dispersion effects of in-
terest will be ~v. This is the case where the n;;’s are covariates in the experiment
but do not vary during manufacturing or are otherwise do not affect the variation
in practice. In our thermal design application, for example, if the equipment is
located in air-conditioned bulidings, ambient temperature does not vary much
during operation. The ¢;’s in (3.3) are then not relevant for reducing varia-
tion; they are only important for estimating the B;’s and removing the effects of
ambient temperatures on the observed surface temperatures in the experiment.

-

4. Data Analysis Strategy

We first outline the proposed strategy and then illustrate it by applying it
to the thermal design experiment. The strategy relies extensively on the use of
data-analytic techniques for model identification. These are discussed in the final
sub-section. Some of these recommendations are tentative in nature, and-further
work is needed to refine them. '

4.1. The steps

1. Determine the functional form of g(-) in (3.1).

2A. Estimate the 8;’s and g;’s in (3.1) separately for:=1,...,m. )

9B. Treating the f;’s and fi;’s as responses, fit the models (3.2) and (3.3) re-
spectively and obtain preliminary estimates of the location and dispersion
effects.

2C. Use graphical methods to identify the active location and dispersion effecté,
and hence the appropriate submodels in (3.2) and (3.3).

3. Substitute these identified submodels for location and dispersion effects in
the combined model

Yij = hyl(@ia) + g(nij; by (2i9)) + €35 (4.1)

re-estimate the parameters using (non-linear) least-squares, and compute
fitted values Y;; and standard errors.

4. To identify any dispersion effects associated with unobserved noise variables
in (3.8), compute the studentized residuals r;; from the fitted model in the
previous step, and let 62 = Z;’___l r?j /k. Treating &; as the response, fit the

. model in (3.8) as a function of the design factors and identify the important
effects. ' B
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5. If the previous step reveals that the variances are unequal, refit the model in
Step 3 using weighted least-squares to allow for these unequal variances, and
compute the new fitted values and standard errors. (It may be necessary
to iterate this process.)

6. Use the conclusions of the data analysis to determine improved settings of
design factors and to predict the improvements in performance.

4.2. Illustration of the strategy
We illustrate the strategy by reanalyzing the data in Section 2.

Step 1. Figure 4 is the plot of the surface temperatures versus the ambient
temperatures, Y;; vs nij, j = 1,...,4 for each of the 16 design settings. The
separate least squares lines have been superimposed.

 This figure suggests that the linear model in (3.5) is reasonable for settings
where the range of ambient temperatures is relatively large. For other settings,
the slopes of the least squares lines are not well determined as they have large
variances. The functional relationship for these settings cannot be determined
precisely in any case. So we will conclude that the model in (3.5) is adequate
here. We also see from Figure 4 that the estimated slopes vary over the design
settings, suggesting that the §;’s are not constant and that there are dispersion
effects.

Step 2A. In general, the parameters must be estimated by nonlinear least-squares.
Here, because the assumed model is linear, we can fit least-squares lines to the
data at the individual design settings and estimate the parameters as )

k
Bi = kY {[Yy — ¥il[nij — A}/ SE(n) (4.2)
i=1

and

i = Yi = Bi s, (4.3)
Step 2B. We assume here that ho(-) and h;(-) are known and are the identity
functions. (See, however, the discussion in the next sub-section.) Let X be the

design matrix corresponding to a 2% full factorial design and let @; be its ith row.
To get at the dispersion effects, we fit the model

Bi = i + v, (4.4)

where ;¢ is the expected value of B; and v; is the random component. The
variance of f; is inversely proportional to S?(n) in Table 3. Since these range
over two orders of magnitude, we should take these differences into account by
fitting (4.4) using weighted least squares. Therefore, if D is a diagonal matrix
with entries D;; = Sf(n),
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Figure 4. Surface temperature vs ambient temperature for the 16 design settings. Identification

above each subfigure gives levels of the factors. The presence of the letter denotes the high level

of the factor, its absence denotes the low level. Thus subfigure ab shows the data for the setting
with high levels of factors A and B and low levels of factors C and D. Within each subfigure
the four replicates are coded 1 to 4. The least squares line for the four points in each subfigure

is skown. The y-axis is scaled to have the same range of 10 units for all subfigures.
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¢=(X'D7'X)"(X'D7'P) (4.5)
with variance-covariance matrix
COV(¢) = o*(X' D1 X)L, (4.6)

In the preliminary (model-identification) stage, one would usually start off with
a fully saturated model in (4.4), i.e., the design matrix X is m x m and of full
rank. In this case, the weighted least squares estimators in (4.5) are the same as
the usual ordinary least squares estimators, but their variances are still given by
(4.6).

For identifying location effects, we fit the model

i = x4 wi, (4.7)

where @ is the expected value of ji; and w; is the random component. For this
data set, the differences between the fi;’s and Y;’s are small. Since the latter are
uncorrelated and have equal variance (and are also uncorrelated with B,-’s), we
will use ordinary least-squares to estimate the parameters in (4.7). In general,
however, one would have to use generalized least-squares based on the estimated
variance-covariance matrix.

Step 2C. We see from (4.6) that the estimators of dispersion effects are correlated,
so the usual half-normal plot should not be used for model selection. We use
instead a Cp-plot based on weighted least-squares analysis (see Mallows (1973)
for use and interpretation). Figure 5 is the Cp-plot for our data.’

A careful examination of the plot suggests that the four-term model - con-
stant term plus B, C and BC - is the most reasonable. Note also that the BC
interaction term appears throughout and is the single most important effect. So,
even if the B and C main effects were not statistically significant, we should still
fit the four-term model above so that the results are interpretable.

The conclusions from Figure 5 are different from those based on Figures 1
and 3. It is clear that factor D was identified as important in Figure 1 due
entirely to differences in S?(n). Even Figure 3, which tries to account for these
differences, leads to wrong conclusions in this case. So we do not recommend the
quick-and-easy analysis based on the ratio S?/5?(n).

For identifying location effects, we can use a half-normal plot since, for our
data, the fi;’s are approximately uncorrelated and have equal variance. If the
situation is different, one would have to use an alternative model selection tech-
nique at this stage also. Figure 6 is the half-normal plot of the effects computed
from fitting the model (4.7) by ordinary least squares.

Figure-6-suggests that A and B are the two important location effects.
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Figure 5. Cp-plot of weighted fits of B; to X. The number of terms includes the intercept
term. Weights are 1/5%(n). The plot indicates that BC is the best fitting single term,
B and BC, the best fitting two terms, and B, C, and BC the best fitting three terms;
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TFigure 6. Half-normal plot of location effects. The 15 effects are the result of an analysis
of variance fitting the model j; = A* B*C * D. -
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Step 3. We substitute the location and dispersion submodels in the overall model
n (4.1). Since all the functions are linear, we just have the combined linear model

Yij = o+ ag + ap + nij(¢o + 5 + dc + ¢50) + £5. (4.8)

Table 4 gives the estimated coefficients and their standard errors obtained by
re-estimating the parameters of this sub-model.

Table 4. Estimated coefficients for model (4.8)

Coefficient Estimate Standard Error

Qo 13.00 0.062

_ ay 8.10 0.070
apg 5.01 0.062

oo 1.54 0.042

o8 0.64 0.042

dc -0.50 0.040

$BC —0.55 0.046

Step 4. The analyses thus far have been based on the assumption of constant
variance in (3.4). To see if the more general model in (3.8) holds, we compute
the studentized residuals r;; = (Y;; — }A",J) /(1 — vij), where IA’,']- 's are the fitted
values, and v;;’s are the diagonal elements of the “hat matrix” for the combined
regression problem in (4.8). From this we obtain 67 = ;-°=1 7';?]/ k. Assuming
a log-linear model in (3.8) — see next section for a discussion — we compute the
effects associated with the design factors. Figure 7 is a half-normal plot of the
effects obtained from this, and it suggests that there are no important dispersion

effects associated with unobserved noise variables.

Step 5. Since the assumption of constant variance appears reasonable, we do not
have to refit the model at this stage.

Step 6. One should integrate the conclusions from the statistical analyses with
subject matter expertise to arrive at suitable factor levels to improve performance.
We shall consider, here, just results of the statistical analyses. It should also be
reiterated that we are dealing with synthetic data here, so the discussions below
are meant to be only suggestive of how one proceeds at this stage.

Table 5 summarizes the effects of the active factors on the ,éi’s and [;’s.
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Figure 7. Half-normal plot of effects of log (variance) of studentized residuals. The 15
effects are the result of an analysis of variance fitting the model log(6?) = A*B*xC* D.
The &2’s are computed using the residuals from fitting the model in (4.8).

Table 5. Effects of factors

ai’s Bi’s
- Cumulative power dissipation Cumulative Number of fans
Power dissipation 0 200 power dissipation 1 3
0 -0.11 9.91 0 0.84 0.96
40 16.09 26.11 200 3.23 1.13

‘We conclude that :

Shelf location has no effect on surface temperature.

Both the number of fans and the cumulative amount of power dissipated have
dispersion effects, but there is interaction. When there is no power dissipated
below the shelf of interest, the number of fans has no appreciable effect, and ;
is about one in both cases. When the cumulative amount of power dissipated
is at its high level, increasing the number of fans from one to three reduces
f; from about three to nearly one. Since it is likely that there will be some
power dissipated below the shelf, we should design the cabinet with three fans

to reduce variability induced by potential changes in ambient temperature.
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The amounts of power dissipated, both on the shelf of interest and cumulative
power below the shelf, exhibit strong location effects. Increasing the amount
of power dissipated on the shelf from 0 to 40 watts per circuit pack increases
surface temperature by about 16 degrees. Similarly, increasing the cumulative
power dissipated below the shelf from 0 to 200 watts per circuit pack increases
surface temperature by about 10 degrees. These effects are approximately
additive. These conclusions can now be combined with engineering knowledge
to locate the high-power circuit packs and design the cabinet appropriately.

4.3. Discussion

e Often, engineering knowledge or other prior information will suggest the form

ol |
Hi's

of g(+). If not, and if k, the number of replications at each design setting,
is not too small, we can plot the response against the noise variable at each
setting and try to identify a suitable relationship. Transformations of one or
both of the axes may be necessary to get a simple relationship. If we find a
tentative functional form, we can use subsequent residual analyses to verify
its validity.

We also need to identify the link functions ho(-) and ki(-) in (3.2) and (3.3),
and these are usually unknown in practice. If the data are extensive, it is
possible to estimate the link function from the data and also test whether
an assumed link function is adequate (see Pregibon (1980)). In industrial
experiments with highly fractional designs, however, there is typically not
enough information to estimate them from the data. Therefore, a priori
knowledge or other considerations should be used, if at all possible, to select
the appropriate link functions. For analyzing proportion data, for example,
it is reasonable to assume a logit link function. In the absence of such knowl-
edée, we recommend doing the analysis for several different reasonable link
functions and choosing appropriate ones based on the criteria of parsimony
and interpretability. The A-plot discussed by Box (1988) will be a useful tool
in this stage of the analysis. We note, however, that if the responses (ﬂi
and f;’s in this case) are all of the same order of magnitude, the conclusions
from any link function will be qualitatively the same, so that the choice is
not critical.

As we discussed in the last section, a valid analysis of the §;’s should be
based on weighted least-squares. If we are fitting a link function in (3. 3)
that is different from the identity function, we can compute the approximate
variances of h(ﬁ,) using the delta method and use the corresponding weights
for doing weighted least squares. Similar comments apply to the analysis of
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e If the §;’s and fi;’s in Step 2 are highly correlated, it may not be very mean-
ingful to do model selection separately to identify the active location and
dispersion effects. In this case, we recommend replacing Step 2 of the strat-
egy by

Step 2'. Combine (3.1) with (3.2) and (3.3) to arrive at the global model (4.1),

estimate the parameters « and ¢ directly and use a Cp-analysis based on overall

prediction error to do model selection.

e The residuals are studentized in Step 4 to have (approximately) equal vari-
ance under the assumption that o2 = constant. When the 02’s are unequal,
these studentized residuals will not have equal variances. It is possible to
develop a more refined analysis, based on an iterative procedure, that takes
into account the unequal o?’s. This is left for future work.

e Usually there is not enough information to identify the function »(:) in (3.8)
empirically. In this case, we recommend making the usual assumption that
this model is log-linear.

e In many situations, the conclusions from the statistical analysis will not be
straightforward, and one has to resort to more formal means to determine
the factor settings that achieve improved performance. This can be done
by considering loss functions and distributions for the noise variables and
determining the factor settings that minimize expected loss: See Welch et
al. (1990) and Shoemaker et al. (1991) for more details associated with this
formal approach.

5. Generalizations
5.1. Multiple noise variables

When there are several noise variables, it is natural to consider the following
extension of (3.1). Suppose that, after a suitable transformation of the response,
if necessary,

Yij = pi + 91(n1ij; Bui) + - - + gr(nrijs Bri) + €45 (5.1)
where
ho(pi) = z;ax, (5.2)
and
ht(ﬁti) = wi'qsta t=1,...,7. (5.3)

We assume here that £ > » + 1.
~ For j 2 1, the ¢4’s in (5.3) are measures of (generalized) interactions be-
" tween the tth noise variable and design factors and indicate which design factors
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can be instrumental in reducing the effect of the tth noise variable on the re-
sponse. If ¢4 is large and the ¢;;’s are all zero for j > 1 for some t, the effect
of the tth noise variable cannot be reduced by robust parameter design and one
may have to resort to other means such as tolerance design. Thus, model (5.1)
allows one to study separately the effects of the individual noise variables and
their relationship with the design factors. It is possible that some of the noise
variables in (5.1) are controlled while others vary across the design settings. For
example, in the thermal design experiment, measurements were made at three
different locations — center, backplane, and faceplate. We can view “location” as
a controlled noise variable and ambient temperature as uncontrolled, and analyze
the surface temperatures at all three locations jointly using the model in (5.1).
Qne can extend the data-analysis strategy in Section 4 in an obvious way to
handle multiple noise variables. In this case, however, there may be collinearity
amoné the different (observed) noise variables, and it will be more meaningful
to use Step 2’ and use an overall criterion for model selection. In the important
special case where all the functions are linear, we can write the overall model as

Yij = @io + nyij @iy + -+ i, + €4 (5.4)
This can be expressed more compactly as
Y =2Z0+¢ | (5.5)

where Y = [Y11,...,Y1%,...,Yn1,...,Yar), € is similarly defined, 8 = [a, ¢1,. .. ;
¢,)' and Z is the overall design matrix with elements specified by (5.4). This is
a standard multiple regression problem with a structured design matrix. We can
use standard techniques for diagnostics, model selection, and inference. One note
of caution, however. The identified submodels are usually selected on predictive
ability. If the overall regression matrix Z in (5.5) is highly collinear, there may be
several different submodels that may perform equally well but that have different
interpretations. So, one should exercise caution in interpreting the active location
and dispersion effects in this situation.

5.2. Estimation with few or no replications

So far we have assumed that k > r + 1, where k is the number of replications
and r is the number of observed noise variables (or covariates). This may not
always be the case in industrial experiments where it is important to keep the size
of the experiment small. If there is effect sparsity, one may still be able to identify
the active location and dispersion effects. We have to use different model selection
techniques now instead of the Cp-plot based on all subset selection. There are
potential identifiability problems here; and further work is needed to develop a
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careful iterative strategy, such as the one developed by Hamada and Wu (1991)
for analyzing censored data. See also Box and Meyer (1986) for a strategy for
estimating dispersion effects with no replication under the usual set-up.

5.3. Other situations

Sometimes the observed responses may be lifetimes which may be subject
to censoring. It is possible to extend the techniques here to handle censored
data. The analysis of censored data from highly fractional designs can be tricky,
however (see Hamada and Wu (1991)).

Problems may also arise with the analysis of other nonstandard data such as
count or proportion data. It is possible to handle these situations by applying
transformations and analyzing the data using the strategy proposed here. An al-
‘ternative that may sometimes be preferable is the use of extended quasi-likelihood
models (see Nelder and Lee (1991)).
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