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METHOD OF PAO-ZHUAN YIN-YU:
A METHOD OF STOCHASTIC POINT ESTIMATION

James C. Fu and Lung-An Li

University of Manitoba and Academia Sinica

Abstract: A computer intensive resampling technique called the method of Pao-
Zhuan Yin-Yu is systematically developed as an alternative to the bootstrap and the
jackknife. The method is a sequential parametric resampling scheme which searches
for an optimal estimator (in the minimum variance unbiased estimator sense) and
provides an estimate for the variance of the optimal estimator. Several numerical
examples are given, including inference for a coefficient in an autoregressive model
where the observations are dependent. Numerical results show that the method
performs extremely well in almost all cases.
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1. Introduction

Let us consider the following statistical model: |
M ={X,R, f(z]9),6 € O},

where the X is a random variable defined on the sample space R (real line)
having a density function f(x|¢) and parameter 6 is an element in the parameter
space O. Let z,,...,Z, be n independent identically distributed (i.i.d.) random
observations from the statistical model M. Our aim is to estimate the unknown
parameter 6 based on the n observations zo = (z1,...,Zn). There are two
questions often asked in point estimation;

(a) What estimator should we use for estimating the unknown parameter 67

(b) Having chosen a particular estimator, say 8, = 8.(zy,...,2n), how
accurate is the estimator 6,7

To choose an optimal estimator is a difficult task. Theoretically, there are
many principles and criteria which can be used as guides for selecting an optimal
estimator. For instance, minimum variance unbiased estimation (mvue), max-
imum likelihood estimation (mle), and Bayes estimation are each optimal in a
certain sense. Except in a few special cases, the analytic forms of these optimal
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estimators are usually hard to obtain, e.g., the Bayes estimator when the prior
distribution is not conjugate with respect to the underlying distribution. Typi-
cally, the statistician will often select an estimator which is comfortable, familiar,
and intuitively sound.

The accuracy of an estimator ) n(Z1,...,T,) is traditionally measured by
its variance Var(O |Fy), where Fj stands for the underlying cumulative distribu-
tion function (cdf) of the random variable X. Having chosen an estimator O,
the variance of the estimator Var(() |Fg) is usually difficult to obtain, especially
when the estimator 8, and the underlying distribution Fj are complex. There
are several general methods to estimate the variance V.—Lr(O |Fg), for example,
the delta-method (see Cramér (1946)), the jackknife-method (see Miller (1974)),
and the bootstrap-method (see Efron (1982)). Duc to the availability of high
speed computers, the jackknife and bootstrap methods have recently become
very popular among applied statisticians.

The jackknife-estimator for the variance Var (?,,II is defined by

6,)°, (1.1)

where 8,,(j) = 5n(zo\xj), zo\z; = (Z1,.--,%j=1,Tj+1,.--,Zn) =(the sample with
the jth observation z; deleted), and 6 is the average of 6.(7),7=1,2,...,n
The bootstrap-estimator for the variance Var(8,|Fy) is defined by

k
Z (z7) - 0B)%, . (1.2)

where z7 = (27, .. :in) i=1,...,k,are k resamplee of size n from the empir-
ical d'strlbutlon Fn, 0.(z7) = 0, ( 11,...,3:,’{”) and @y is the average of On(zl),
1=1,...,k.

The monograph given by Efron (1982) provides an excellent review of both
the jackknife and bootstrap methods for estimating the variance Var(0 | Fg).

Bootstrap and Jackknife methods are mainly used for computing the vari-
ance of an estimator. They are not designed to search for the optimal estimator.
The main purpose of this manuscript is to develop a new computer intensive
resampling algorithm, which we call the Method of Pao-Zhuan Yin-Yu, which
will be able (a) to find an improved estimator 8, from an initial estimator On,
in the sense of having smaller variance (or mean square error), and (b) to esti-
mate the variance Var(f,|Fy) for this improved estimator f,. Several numerical
examples are given, including an example of an autoregressive model where the
observations are dependent. The results show that the method of Pao-Zhuan
Yin-Yu performs well in almost all cases.
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We were unable to find a proper English name for our method so we decided
to use a Chinese name for our method. In Chinese, the phrase “Pao-Zhuan Yin-
Yu” means “taking a humble initiative in hoping that some excellent results will
be generated from the initiation”. The meaning of the phrase aptly describes our
procedure, that is, to start with a simple unbiased estimator, then generate the
minimum variance unbiased estimator gradually. This is the reason we named
the method “Pao-Zhuan Yin-Yu”.

2. Method of Pao-Zhuan Yin-Yu

In order to introduce and justify our method, we begin with several well-
known statistical results in point estimation without giving the proofs.
Let L(6|z) = f(z|6) be the likelihood function of # pertaining to the sample

z(z = (T1,-.-,%n))-

Likelihood Principle: If z and y are observed and their likelihood ratio
A(0;z,y) = L(|z)/L(f]y) is independent of #, then the statistical inference of @
based on the sample = should be the same as the sample y.

Let T be the sub-o-field generated by the likelihood ratio function A(6; z,y).
It follows from the definition of sufficiency that T is the minimal sufficient sub-
o-field. Suppose the underlying statistical model is complete and the initial
estimator Hn is an unbiased estimator; then (by Rao-Blackwell Theorem) the
estimator defined by

()Bn = E(é\n'T) ' (21)

is the minimum variance unbiased estimator (mvue) for the unknown parameter
0,1.e. EZ, =6 and Var($,) <Var( n ) for every unbiased estimator f,.

For convenierice and simplicity, we assume that the initial estimator 67,1 is
an unbiased estimator throughout this paper unless it is specified otherwise. If
the initial estimator 8,, is a biased estimator, then the numerical bias correction
method can be used to correct the bias. We shall discuss these details of bias
correction in Section 4.

The method of Pao-Zhuan Yin-Yu is based on empirical interpretation of the
Rao-Blackwell Theorem by sequential resampling. It contains four fundamental
parts; (i) resampling from the population f(:vlan(:z:o)), (ii) partitioning of resam-
ples, (iii) improving the initial estimator 8., and (iv) estimating the variance
Var(6,|Fy) of the improved estimator 6,.

(i) Resampling:
' —_Suppose we take k; (k; large) independent samples of size n from the pop-
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ulation f(a:lgn(:co)), say

(2315 T10) = 215
(T5q5.--,23,) = T3, (2.2)
("Ez]l"'”m;ln) = Ty,
Let 2§ = zo and
= {z5,27,- - Tk, ) (2.3)

be the empirical sample space which contains ky + 1 sample points.

(ii) Contourization:

Define

[zX]; = A contour on Q] generated by zg and likelihood ratio statistic
0 18 0

P . L8|z}
={z;:2] €

1 f(gl—z(]'j—; independent of 8},

(2.4)
L(8]z7)
L(6|<7,)
as I3 + 1(0 < l; < k;) contours on the empirical sample space Q7. Hence, the

contours {[z3)1,...,[2] 1} form a partition of the empirical sample space ],
i.e., .

[z} )1 = {2z} : 2] € O and independent of 6},

I

Q; = Jl=7h (2.5)
1=0

and

[7)1 N [z}]1 = ¢, for all i # j, where ¢ is the empty set. (2.6)

The sub-o-field T; generated by the partition {[z]1,..., [z} ]1} will be re-
ferred to as the empirical minimal sufficient sub-o-field.

(iii) Empirical conditional expectation:

Suppose the initial estimator 0, is an unbiased estimator. In view of the
Rao-Blackwell theorem, we define a new estimator 6,, on the empirical minimum
sufficient-o-field T3, as follows; for every z* € [z]];,

bn(z") =6 ([ h)=E *(5 uz*h) (2.7)
= 0,1,...,11

e ([1

z3 *€f2t]h
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where §([z}];) stands for the number of resamples on the contour [z}]; and
E*(-|[z})1) stands for the empirical conditional expectation given the contour

[z7]:. In particular,

Bu(20) = Oullzi) = e 3 Bula)). (28)

In plain words, the new estimator 6, at zo is defined to be the average of the
initial estimator 8, over the contour [z3];. Since all the resamples on the contour
[z7]1 have the same likelihood function, generally speaking the new estimator 8,
also can be viewed as a direct consequence of the likelihood principle.

Let us go back to step (i) resampling another ky(ky>ky) independent sam-
ples of size n from the new population f(216,([z3]1))- Denote 5 as the empirical
sample space generated by the new resamples. Repecating steps (ii) and (iii) of
contourization and taking empirical conditional expectation over the space Q3,
respectively, yields the improved estimator 0., ([z3]2). Repeat this procedure
again and again and stop when the sequence {6,([z3]m)} of improved estimators
becomes stable. For example, the sequence of improved estimators is stable if

m

> 16n((25);) = ballzg)i-1)l < & (2.9)

j=m-—l

where [ is a fixed integer, usually | = 2,3,4, and 0 is a predetermined small
positive constant, usually § = 0.001,0.00001, or 0.000001. If the procedure is
stopped at the mth resampling, we define

6n(20) = On([25}m), (2.10)
as+the improved estimator at zg.

(iv) Estimating the variance of the improved estimator:

I_f the above procedure is stopped at the mth resampling, the variance
Var(8,|Fs) of the improved estimator 8, can be estimated by the sample vari-
ance,

$m)@n([25]m) = 6,)%, (2.11)

o,(m) = ﬁ
where

E ";[{;, 51 (2.12)

_ The variance Var(,|Fs) can be estimated in every stage of the resampling.
THe sequence of variance estimators {G2(m)} usually stabilizes faster than the
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sequence of estimators {6([zg)m)}- This can be seen from the numerical results

in the next section. -
If the underlying distribution is discrete and the parameter space O contains

a finite set of points (or © is compact), then we expect the following mathematical
results to be true as
k; — o0, 1 — 00. (2.13)

Theorem 1. If Fy is complete and condition (2.13) is satisfied, then
(i) for every zo = (£1,...,%n), '

O ([z5)i) — Pnlz0) (2.14)

as i — oo, where 3, is minimum variance unbiased estimator defined by (2.1).

(ii) for every zo = (Z1,...,2%n),

83(2’) — Var(c,?an;n(xo)) (2.15)

as 1 — 00.

For continuous distributions, with probability one, no resample will be in
the same contour (every contour has probability measure zero). To avoid this
problem, we modify our method by the following grouping procedure.

Assuming f(z|6) is the density function of a continuous random variable
with parameter space O the whole line. Let 7 be a small positive constant and
M be a large positive integer. Denote {6;}/2, as m equally spaced points in
the interval with §; = —M and 6,, = M. For given 7, M and m, the contours
defined on the observed sample space {1} are given by

tzoh: = { tz; € 0 and | max HO75) g —L(0i|z;)| <7
1<i<m L(Bileg)  1<ism L(6ileg) ~

(2.16)

. . L(6:lz3) . L(bilz3)
[z]]1 = {"’j z3 € { and |1f<nta<b>fn m - Ig}lsnm ml < 77}-

These contours defined here may depend on 7, M and m.

Theorem 2. If Fy is complete and condition (2.13) is satisfied, then as n — 0,
M — o0 and m — oo
(i) for every zo = (Z1,...,Zn),

0,([25)i) = @nlzo) (2.17)

as+ =00, where @, is mvue defined by (2.1),
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(ii) for every z¢ = (21, -,Zn),

8;2)(7;) — Var(@a|F5 (:vo)) (2.18)

as 1 — 00.

We omit the mathematical proofs of the theorems in this section. The details
of the proofs will be given in the appendix.

Since F, is the nonparametric maximum likelihood estimate (mle) of the
unknown distribution F (see Kiefer and Wolfowitz (1956)), the bootstrap esti-
mate &g is the nonparametric mle of o(F). The Pao-Zhuan Yin-Yu resampling
scheme can be viewed as sequential parametric resampling based on the mini-
mum variance unbiased estimate of the value of §. For n moderate or large, the
standard error &, given by (2.11) can be used to obtain approximate confidence
intervals for the unknown parameter 6,

bn % 2,/20p, (2.19)

where 2,/ is the & x 100 percentile point of the standard normal random vari-
able. We expect the above confidence interval (2.19) will perform as well as the
bootstrap or jackknife confidence intervals.

Several numerical examples are given in the next section to illustrate the
algorithm of the method of Pao-Zhuan Yin-Yu and to demonstrate its efficiency.

3. Numerical Examples

The numerical studies of the method of Pao-Zhuan Yin-Yu provided in this
section will be concentrated in two major areas, (i) the rate of convergence ac-
cording to which the improved estimator 6, tends to the minimum variance
unbiased estimator @, at the observed sample point xg, and (ii) the rate of con-
vergence according to which the variance of improved estimator tends to the
variance of minimum variance unbiased estimator @, evaluated at § = @, (o).

For the bootstrap and the jackknife, the assumptions of independence and
identical distribution of the observations are vital. It is a great advantage of the
method of Pao-Zhuan Yin-Yu that it does not need these strong conditions. It
can be easily extended to the observations from a general stationary sequence.
To illustrate this, an example is given for estimating the coefficient in an autore-
gressive model where the observations are dependent.

The method of Pao-Zhuan Yin-Yu includes an algorithm to improve the ini-
tial estimator 5 which the bootstrap and jackknife do not have. Thus, we cannot
compare these methods directly on an equal footing as it would be unfair to the
bootstrap and jackknife. Therefore, in example (iv) our numerical comparison of
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these methods will be carried out only without improving the initial estimator
6.,.

(i) Normal Distribution

Assume we are interested in estimating the parameter 6, the mean of the
population, when the variance o? = 1 is known. Two naive estimators, the
sample median z(1/2) and the average of the largest and the smallest observations
(Z[n) + (1))/2, are considered as initial estimators for a numerical study of the
Pao-Zhuan Yin-Yu method. The reasons for starting with this simple example are
two-fold. The first reason is that we know the answer that the sample mean 7, is
the minimum variance unbiased estimator and has a variance 1/n. Therefore, it
is expected that both initial estimators will converge to the T,, numerically. The
second reason to use this simple example is to make the method of Pao-Zhuan
Yin-Yu more transparent.

‘Suppose an initial sample of forty-nine (n = 49) i.i.d. observations is taken
from the standard normal population N(0,1) say zg = (z1,... ,Z4g), Which has
mean T, = 0, median z(1/7) = —0.1 and (2 + 2 )/2 = —0.1.

(A) Initial naive estimator = z(y/2), ki = 700 x 7, 2 = 1,2,..., mg = the
number of resamples on [z3]; (7 = 0.0001, M = 100, m = 1000).

Table 1. The rates of convergence of improved estimators and their variances.
i my On([28):) 3,2,(1')

29 0.011  0.0220

65 0.001  0.0205

96 0.002 0.0203

120 0.001  0.0204
153  0.000  0.0204

[SA RN A

-

(B) Initial naive estimator = (zp) + &(n))/2, ki = 700 X 2, 2= 1,2,....
Table 2. The rates of convergence of improved estimators and their variances.

(n = 0.0001, M = 100, m = 1000)

mo Bn(lzg)i) (i)
21 0.038 0.0225
55 0.040 0.0221
97 0.023 0.0218
136 0.011 0.0213
189 0.018 0.0208
216 —0.001 0.0201
246 —-0.003 0.0207
285 0.005 0.0205
313 0.004 0.0204
356  —0.001 0.0204

~.

S OO0 1O BN

[
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The following Figure 1 illustrates the numerical results in (A) and (B),
which shows the rates of convergence of naive estimators toward the mvue at

:Eo(-f,;g = 0)

o On(ba) Normal cases
o squsre’ Estimated by median
Triangle Estimated by midrange
0.08 5 Sample size = 49 k{4) = 700 ¥ i
d
0.0B~
p
0.04 4
0.02 /\\/\
000 i - —
~0.024
-0.0A-
-0.06
-0.08 4
~0.10
R e e S N e T T T T T T T 1
0 i 2 3 4 5 3] 7 8 <] 10

1: The number of times of resampling

Figure 1. The rates of convergence of improved estimators.

From the above numerical results and Figure 1, we observe several facts. For
both initial estimators, the sequences of improved estimators eventually converge
to the mvue at o, the sample mean Tp = 0. To make our comparison of the
rates of convergence more transparent and meaningful, we have purposely made
To = 0 and z(1/9) = (z) + Z(n))/2 = —0.1. (This can be done because we do
know the sufficient statistic in the case of normal distribution). The rate at which
the sequence of improved estimators {6,.([z3):)} with the initial estimator sample
median, Z(y/2), converges to the mvue, To = 0, is much faster than the rate of
the sequence of improved estimators with the initial estimator (zp) + zpmy) /2. 1t
shows very clearly that the procedure of obtaining the optimal estimator (mvue)
numerically is independent of selecting the initial unbiased estimator. However,
the rate of reaching the optimal estimator does depend on the initial estimator.
In general, if the initial estimator is closer to the mvue then it has a better rate
of convergence. Similarly, the variances of improved estimators converge to the
variance of the sample mean in both cases. Furthermore, the convergence of the
sequence {73(1)},

- . ~A2(\ _ \J ~ = _ p
lim /() = Var(c,onIF%(zo)) = 0.0204

1—+00
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is independent of the value $,(zo) (since 6 is a location parameter and the
variance of 3, is independent of the parameter #) and its rate of convergence is
faster than the rate at which the sequence {0, ([z3];)} tends to @n(zo).

Note that, for the case of a normal distribution, the log-likelihood ratio is

log A(6;z},27) = —nb(Z] — Z) + constant.

It follows that log A(6; 2},z7) is independent of 6 if, and only if Z] = 7. For given
n, M and m, the partition {[z§]:, [z}]i,... ,[z] )i} defined by (2.16) on 2} can be
obtained easily. Generally speaking, it is easy to establish the empirical partition
on the space £} in the case of the exponential family of distributions, but it is
a tedious task for many other distributions. The procedure of contourization of
Q7 numerically becomes essential in the general case.

(i1)-Logistic Distribution

e~z+0

fX($|9) = m, T € (—O0,00), 0 €R.

Our numerical study uses § = 0, n = 16, and k; = 700 X 7, + = 1,2,....
The initial sample of sixteen observations zo = (z1,... ,Z16) gives a mean T, =
0.1373 and median z(;/9) = —0.2814. Suppose the initial naive estimator 0, =7
is used. The method of Pao-Zhuan Yin-Yu yields the following numerical results:

Table 3. The rates of convergence of improved estimators.

i mo On([z8):)) i mo Bn([z3))) i mo Bn(fzgli)

o

1 8 -0.1382 12 51 -0.0777 23 103 -0.0944
- 2 10 -0.1383 13 56 —0.0758 24 106 —0.0868
3 12 -0.1330 14 59 -—-0.0698 25 115 -0.0931
4 17 -0.1090 15 63 —0.0756 26 121 —0.0944
5 20 -0.1108 16 65 —0.0771 27 124 -0.0876
6 26 —0.0724 17 73 -0.0816 28 133 -—0.0924
7 27 -0.0754 18 76 —0.0787 29 140 -0.0913
8 36 -—0.0635 19 78 -0.0801 30 144 -—0.0863
9 43 -0.0678 20 81 —0.0831 31 147 -—0.0882
10 44 —0.0694 21 87 -—-0.0873 32 152 -0.0897
11 49 —-0.0754 22 95 -0.0915 33 157 -0.0906

In this example, we do not know the analytical form of the minimum vari-
ance unbiased estimator. It is neither the sample mean 7, nor the sample me-
dian z(y/). It can be seen from Figure 2 below that the sequence of improved
estimates {6,,([z8):)} converges to —0.09 at a very fast rate. It seems to us that..
#n(z0), the minimum variance unbiased estimator at z¢, is approximately —0.09.
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o sah Ballxe)) Logitistic cases
Naive estimate : Estimated by mean

0.:12 Median of the initial sample -0.2814

Sample size = 16 k(4) = 700 ™ i = 4,2 0..,33

0.10 -

0.08

0.06

0.04

0.02 -

0.00

~0.02

-0.06 1
-0.084 M

SRS
-0.10 ]
-0.12
—0-1‘.'

i: The number of times of resampling

Figure 2. The rates of convergence of improved estimators.

(iii) Dependent Observations

For the bootstrap and the jackknife, the assumptions of independence and
identical distribution of the observations are crucial. Kiinsch (1989) has extended
the bootstrap and the jackknife method of estimating standard errors to the case
where the observations form a general stationary sequence. His extension is
rather complex, artificial and inefficient. The method of Pao-Zhuan Yin-Yu can
be easily extended to the observations from a general stationary sequence. Let
us consider a simple AR(1) model under the frame work of Kiinsch (1989),

-—

Xt = ﬂXt_.l + &1, t= 1,2,. .o (3.1)

where the errors €;,t = 1, ..., arei.i.d. from a logistic distribution with mean zero
(without assuming normality to avoid the trivial case). Suppose six observations
zy = —0.32, z, = -0.78, z3 = 1.08, z4 = —0.78, z5 = —3.31, zg = —3.83 have
been observed from the above AR(1) model. The least squares estimator

BO — 2?:1 XtXt""l
Et:l X‘t2-—1

is an unbiased estimator for £, but is not a mvue. Assuming Xo = 0 with
probability one, it follows from (3.2) that the initial estimate Bo(z1,...,7¢) =
0.49. Applying the method of Pao-Zhuan Yin-Yu directly to this model with the
leagt squares estimator as initial estimator and size of resamples k; = 700 X 7,
1= 1,2,..., yields the following numerical results (Figure 3).

(3.2)
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6.(x)) AR(1) model with Logitistic errors

Y Semple size =6 k{3) = 200 ¥ & 1= 4,2 ...,50
0.50 4 Squere 18t aimulation Triangle 2nd eimulation
Both simulations are under the ssme initis) observations
0.45 7 and the same initisl estimate = 0.45, but different resamples
0.40 4
0.35 4
0.30 4
0.25 4
0.20 4
0.15 4
0.140 4 . - o iyt iD.
N e e
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0.0Q4 .
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2Tﬁ.,.,.,..,...,,.,..,....,..,.,.1..1,..,,,...,1
o 5 10 15 20 . 25 30 35 40 45

i: The number of times of resampling

Figure 3. The rates of convergence of improved estimators based

on two sets of resamples.

It can be seen that the method of Pao-Zhuan Yin-Yu also performs very
well in this case. There is an interesting phenomenon in Figure 3 that, for
a fixed initial estimator and size of resamples k;, the rate of convergence of the
sequence of improved estimators {ﬁ([xa],)} has very little to do with the different
resamples.

(iv) Efron and Tibshirani’s Example

How well does the method of Pao-Zhuan Yin-Yu work compared with the
bootstrap and the jackknife? To answer this question we present the following
example given by Efron and Tibshirani (1985, p.7).

Let R, the real line, be the sample space, n = 15, and the estimator §n
of interest be the 25% trimmed mean. If the true sampling distribution Fj is
N(0,1), then the true standard error o(6,|Fy) = 0.286. The bootstrap estimate
op is nearly unbiased, averaging 0.287 in a large sampling experiment. The
standard error of the bootstrap estimate op is itself 0.071 in this case, with a
coefficient of variation 0.071/0.287 = 0.25.

The true standard error of the sample mean is o(X|Fs) = 0.258. Taking
the 25% trimmed mean as initial estimate, the Pao-Zhuan Yin-Yu estimate &,(0)
yields 0.258 in a large sampling experiment. It is independent of the values of
improved estimate 6,. The standard error of the Pao-Zhuan Yin-Yu estimate
Op is 0.012 with a coefficient of variation 0.012/0.258 = 0.047. Note that the
improved estimate 6, is the sample mean which has a much smaller standard
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error than the 25% trimmed mean. One may feel that the comparison, in this
case, is somewhat unfair to the bootstrap since the method of Pao-Zhuan Yin-Yu
is based on the optimal estimator (mvue).

In order to have a meaningful comparison, suppose we only apply the Pao-
Zhuan Yin-Yu to find the standard error of the trimmed mean. Our numerical
results and the Efron and Tibshirani’s (1985, p.8) results together yield the
following table.

Table 4. Numerical comparison of Pao-Zhuan Yin-Yu, bootstrap, and jackknife.
Average Sd. Error Coeff. Variation

Pao-Zhuan Yin-Yu  0.286 0.052 0.18
Bootstrap 0.287 0.071 0.25
jackknife 0.280 0.084 0.30
Exact 0.286

One can see from the above results that the method of Pao-Zhuan Yin-Yu
performs extremely well compared to both the bootstrap and jackknife methods.
However, this comes as no surprise because the Pao-Zhuan Yin-Yu uses a se-
quential parametric resampling scheme under the correct model and is expected
to be more accurate than non-parametric methods such as the bootstrap and
jackknife. |

Recently, two new sophisticated bootstrap procedures, the percentile-t
method and the nested method, have been developed by Efron (1987, 1990).
Unlike the general bootstrap procedure (non-parametric resampling from the em-
pirical distribution), both methods take some consideration of the tail probability
of resampling population. In many cases, these two new bootstrap procedures
pefform well, especially for constructing confidence intervals. The two methods
mentioned above, and our new method, have one thing in common. They are
very computationally demanding. At this moment, we have no strong numerical
evidence to say that our method is superior. A large numerical study in this
direction is definitely needed.

4. Discussion

In view of all the numerical results given in the previous sections, it is clear
that the method of Pao-Zhuan Yin-Yu performs extremely well in almost all
cases. It is not only a simple algorithm for searching for the muve, but it also
performs well for estimating the variance of the mvue. The rate at which the
improved estimator converges to the mvue is highly dependent on the selection of
initial estimator. The closer the initial estimator §n is to the mvue, the faster the
improved estimator 6, converges to the muve. The rate also depends on many
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other factors, such as, the underlying distribution, the number of resamples k;,
and the structure of the parameter space.

All our numerical results were done on the Digital Vax 8350 computer under
the VMS operating system. The SAS program was used for all the computing and
the data was generated by the random generator of the SAS program. Given the
initial estimator 8,, the CPU time required to obtain the mvue varies greatly
from case to case. For instance, it takes only a few minutes of CPU time for
Example 1, but it takes approximately one hour (57 minutes and 14.5 seconds)
of CPU time for the logistic distribution in Example 2.

If the parameter space, @, contains a finite set of points, say 61,...,0n, then
it is easy to find the partition {[zg}1,...,[z] |1} on the empirical sample space
Q7 since, for given z} and z7, we only need check whether the likelihood ratio
statistic L(0]z})/L(6]z]) is a constant for all m points 6y,...,0m. If the param-
eter space, O, is an interval of the whole real line and the underlying distribution
is continuous, then to find whether two resamples z] and z} belong to the same
contour by using a computer is no simple task, and also very time consuming.
In general, if 7 is very small and M and m are very large, the computations
can be extensive. Our choices of the quantities 7, m and M in above examples
are somewhat arbitrary. In order to make the computation manageble, it is our
suggestion (based on experience) that n should be the rounding decimal point
of the observation but it should never be less than 0.00001 in order to avoid the
computer’s error entering the computation, M should be around 10 times the
largest absolute value of the observations, and m should be less then 10,000.

The conditional distribution of z} given the contour [z3]): is independent (or
nearly independent) of § and index ¢. Therefore, we could pool all the resamples
on the contours [z3];, 7 = 1,2,..., for computing the improved estimator. In
other words, regardless of whatever value @ is used to generate the resamples,
the value of the improved estimator defined on [zj] is independent of the value
#. On the contrary, the estimator of the variance of improved estimator may
depend on the value of § where the resamples are taken. Hence, one should not
pool the previous resamples together to estimate the variance. For ¢ large, all
the values of the improved estimator defined on the partition {[zg];,..., [z} ]}
and number of resamples on the contours yield an empirical distribution of the
minimum variance unbiased estimator {,. This empirical distribution can be
used for constructing approximate confidence intervals or a-critical regions of
hypothesis testing, etc.

The improved estimator 6, given by (2.7) can also be interpreted as a least
squares estimator with respect to the initial estimator 6, over the contours {[z}],
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.,[z7]} in the following sense: 8, minimizes the sum of squares

S (Bu(a) - 07
:c;e[.r.:.']
over all the contours.

If the initial estimator 8, is a biased estimator then a bias-reduction proce-
dure can be used to correct the bias. There are many bias-reduction procedures,
for example, the procedures based on Eg(gn) (see Cox and Hinkley (1974), sec-
tion 8.4), jackknifing and bootstrapping (see Efron (1982)). Recently, Doss and
Sethuraman (1989, p.440) proved that if there does not exist an unbiased esti-
mator for @ then these procedures cannot eliminate the bias completely without
make the variance tend to infinity. It is a widely held view that bias reduction is
by itself not a desirable property but becomes desirable only if it can be demon-
strated that it is also accompanied by a reduction in mean squared error. In view
of the above facts, if the minimum variance unbiased estimator is not the prime
target (or the mvue does not exist) we can obtain a new and improved estimator
by applying bias correction and the method of Pao-Zhuan Yin-Yu to the initial
estimator 0 simultaneously and continuously. We stop the procedure whenever
the bias correction increases the mean square error.

For the Pao-Zhuan Yin-Yu method to work well, one needs to have a para-
metric model. This is not required by the bootstrap and the jackknife methods.
For the non-parametric estimation problems, the bootstrap and jackknife meth-
ods remain valuable and indispensable.

With some simple modification of the stopping rule (2.9), the method of Pao-
Zhuan Yin-Yu can also be extended directly to the case when both the random
variable X and the parameter 8 are vectors.

The basic concept of the method of Pao-Zhuan Yin-Yu can be summarized
in one sentence: the minimum variance estimator is obtained numerically by
interpreting the Rao-Blackwell theorem empirically via sequential resampling.
Our interpretation makes the Rao-Blackwell-theorem more powerful in its appli-
cation. With some modification, this fundamental approach can also be extended
to obtain other optimal estimators.

5. Appendix

In order to prove our main results, we need the following well-known results.
The proofs are omitted.
Let B be the o-field of the sample space and ¢ be B-measurable functions.

Lemma 1. If Ep(z) ezists and T is an arbitrary sub-o-field of B then there
ezrists unique equivalent class integrable random variables E(p|T') belonging to T
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and
Ep = EE(¢|T) (5.1)

This result follows directly from the Radon-Nikodym theorem (see Halmos
(1950) and Chung (1968, pp.276-7)).

Let {k;}52, be a sequence of positive integer satisfies

lim k; = oo, as 1 — o0. (5.2)
11— 00

Lemma 2. If {X;} is a sequence of i.i.d. random variables with mean p =
EX < oo, {ki} satisfies (5.2), and {Ni} is a sequence of positive integer random
variables which satisfies

P(lim N; =o00) =1, (5.3)
11—+ 00
then
L
IR | (5.4)
i=1

in probability as 1 — oo.

This lemma is a simple extension of i.i.d. case of the weak law of large

numbers.
Let {Tas} be a sequence of sub-o-fields such that Tps converges to a sub-o-
field T = lim Thy. ‘

M—oc0

Lemma 3. If ¢ is a Tpr-measurable and integrable
E(¢lTw) < o0 (5.5)

for every M then
Jim E(¢lTw) = E(oIT). (5.6)

The detail proof of this lemma can be found from Chung (1968, Ch.9).
Throughout the following Proof of Theorem 1, we assume that the underly-
ing distribution of the random variable is discrete and the parameter space O is

compact.

Proof of Theorem 1. It follows from the Rao-Blackwell theorem (see Bickel
and Doksum (1977), p.121), that &, defined by (2.1) is the unique mvue for the
parameter 8. For given zg, it follows

Bu(z0) = E(Ballz3)- (5.7)

—
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Note that the sub-o-field generated by the likelihood ratio statistics is the mini-
mum sufficient sub-o-field. Hence, the conditional distribution of z} given zg is
independent of §. Furthermore, the resamples z7 on the given contour [zg])i are
independent and identically distributed with the same conditional distribution
regardless of the value 6,([z§]i—1). Let mo(i) = §([zg):) be the number of re-
samples on the contour [z§);. For discrete distribution any contour has positive
probability, hence, the number of resamples mg(z) on the contour [zg]: goes to
infinite with probability one as i — co. Furthermore, for given 7, the sequence
of estimates {é\n(z;) 2} € [z5)i,d = 1,2,... ,mo(1)} are independent and iden-
tically distributed. It follows immediately from Lemma 1 and Lemma 2 that

Y 8a(3}) = Bnlz0) (5.8)

=} €[zgli

bul(25)) = 7oy

in probability as 1 — co(k; — 00).
For given and fized zo, it follows from (5.8) that

Fintizzly = 5 (5.9)

‘pn(IO)

as i — 00. Again, given zg, it follows from (5.8) and (5.9) that the Pao-Zhuan
Yin-Yu variance estimator converges to the variance of mvue: i.e.,

G3(1) = Var(ZnlF;, ,,)) (5.10)

as 1 — o0o. This completes the proof of Theorem 1.

For a continuous random variable, theoretically speaking, with probability
zero, resamples could fall into the contour [zg); defined by (2.4). The procedure of
grouping suggested by (2.16) could void this difficulty. The contour [zg); defined
by—(2.16) may depend on 7, M and m. To simplify the proof, we could arrange
n=1/M and m = 2M2M so that the contour [zg]; depends only on M.

Proof of Theorem 2. It follows from the definition that the sub-o-field T
generated by the contours given by (2.16) converges to the minimum sufficient

sub-o-field T as M — o0, i.e.
T — T, as M — co. (5.11)
Denote, for every M,
M = E(8]Tx). (5.12)
For each given M, by the same method of proving Theorem 1, we have

= 6([z3):) — @m(zo) (5.13)
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as 1 — 00. It follows from Lemma 3 that
Pum(zo) — @(20) (5.14)

as M — oo. This proves the first part of the Theorem.
By the same token, the second part of the Theorem also holds. This com-
pletes the proof.
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