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Abstract: We investigate local power of the Lagrange Multiplier test against Bilinear
alternatives which are contignous to the null hypothesis. An empirical study is
made, through simulations, of the power of this test as a function of the values of
the bilinear parameters, both in the neighbourhood of the null hypothesis and far
away from it. The theoretical comparison of the local power has been compared
with simulations.

Key words and phrases: Bilinear model, Lagrange multiplier test, contiguity, local
power.

1. Introduction

Recently there has been considerable interest in nonlinear time series mod-
elling. An important problem in this area is the detection of non-linearity. Var-
ious tests for linearity have been proposed in the literature. See, for example,
Subba Rao and Gabr (1980), Hinich (1982), MacLeod and Li (1983), Guegan
(1984), Keenan (1985), Tsay (1986), Petruccelli and Davies (1986), Chan and
Tong (1986), Luukkonen, Saikkonen and Terasvirta (1988), Saikkonen and
Luukkonen (1988) and Chan and Tong (1990). A general class of tests for non-
linearity can be obtained from the Lagrange Multipliers (L.M.) method. This
test has been considered by Saikkonen and Luukkonen (1988), who have derived
an explicit form in the bilinear case, amongst others, and have compared the
performance of this test with some other tests. Until now, however, there has
not been a systematic study of the power of the L.M. test, in particular, for the
case of bilinear alternatives. Theoretical computation of the power of the test
is in fact very difficult, except when the alternatives are restricted to being con-
tiguous. In this paper we do a theoretical study of the local power of the L.M.
test, and we also examine empirically, through simulations, the power of this test
as a function of the values of the bilinear parameters, both in the neighbourhood
of the null hypothesis and far from it. The theoretical computation of the local
power has been compared with that based on simulations, and there appears to
be good agreement.
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2. Theoretical Study of the Local Power of the Test

In this section, we deal with the power of the L.M. test under a sequence
of alternatives, contiguous to the null hypothesis. We begin by specifying the
notations and recalling the basic results of the test in a general setup.

Consider a statistical model specified by a vector parameter ¢ belonging to
some open set @ C R™*+*. We are interested in the null hypothesis Ho defined
by 63 = 0 when 6, is formed by the last £ components of 8. Let us denote by 61,
the vector formed by the first m components of 4, so that 6 = (61,02).

Let £ denote the log-likelihood function of the sample. The score vector is
defined by the first derivative of £, denoted by 0£/08 = [(0¢/d6: ), (8¢/36,)"
where prime represents the transpose, with m components in aaTel and k£ compo-
nents in 38—6‘2.

The Fisher information matrix J is the negative of the mathematical ex-
pectation of the second derivatives of the log-likelihood £. This matrix can be
partitioned, in an obvious way, into four blocks. Ji; = —Ebea‘z—aegj, 1,7 =1,2.

Let § = (61,0) be the maximum likelihood estimate of 6§ under Hp. Then
the L.M. (or score) test is defined by:

170N\ .., [0f
=3 (5@2)@ N (%)@ 1)

where jg’l is a consistent estimate of J; 1 = J22 — J21 -Jl'l1 - J12. In general, one
estimates J by
(22
nd6?/);’
and thus can take:

oA e o\T o
BLT T n| 862 T 86,08, \ 06? 86,90, | .
From the theory of score tests, (cf. Moran (1970)), it is known that under ade-
quate regularity assumptions the test statistic T, converges in distribution, under

the null hypothesis Hy, to the x? random variable with k degrees of freedom.
We consider now a general stationary diagonal bilinear model defined by:

X(t) = Za,-X(t — i)+ €(t) + che(t — )+ ) bkX(t—k)e(t—k) (2.2)

where ¢(t) is a sequence of independent identically distributed Gaussian random
variables with mean zero and variance o?. The Gaussian assumption is actually
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needed only to write down the likelihood; but the asymptotic results below hold
without this assumption. For simplicity we shall confine attention to the case
where there are no moving average terms, i.e., ¢ = 0. Then the parameter is
0 = {a1,... ,@m,b11,... ,bpp} and the null hypothesis is specified by b;; = 0,
j=1,...,p. The log-likelihood function of the model, based on n observations
Xi,...,X, is approximately

1
(= —-ﬁ;ee(t)

where €4(t) is defined recursively from the model (2.2), i.e.,

m

eo(t) = =D b X(t — k)ea(t — k) + X(t) = D a; X(t - j) (2.3)

k=1 1=1

with starting value ¢4(t) = 0 for t < 1. The above approximation of the likelihood
is justified by the fact that €4(t) — €(t) — 0 almost surely, uniformly in 6, as
t — oo, provided that the model is invertible. Note that the model (2.2) is
invertible if the “nonlinear coefficients” b1, ... ,b,p are small enough. The special
case where they vanish corresponds to an AR model which is always invertible.
Since we are interested only in a small neighbourhood of the null hypothesis,
we need not bother about invertibility. Based on the above (approximate) log-
likelihood, the score vector can be computed as:

o 1 ¢

—_— = = u(t —1i .
i ICICICED! (2.4)
i 1 — ,
Eb—f = —;—2‘ Zf@(t)vg(t - ])’ (2'5)
73 t=1
" where u(t) = —X(¢) and vg(¢) is the solution of the recurrence equation
P
vg(t) = = Y bk X (t — k)vg(t — k) — X (t)eq(t) (2.6)
k=1

with initial condition vg(t) = 0 for t < 1. The second derivatives of £ are:

%t - . .
daida; = ;u(t —1)u(t — 7)
4 -

Ba:db;; ; u(t = iJvalt = 1)
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%L

n n a )
T S et iyva(t - 5) — 3 €olt) zp—ve(t = 4)-
0b;;0b;; t=1ve(t ool =) el )3%' vo(t = 3)

t=1

The last term in the above right hand side may be neglected since €(t) is close
to €(t) and E[e(t)dvg(t — 7)/8b;;] = 0. Thus, one may take as an estimate of J:

[ u(t—1) ]
J= % Z;Et——n;; [u(t — 1) - u(t — m)vy(t — 1) ...v5(t = p)]- (2.7)
t=1
hva(t-— p) ]

The test statistic T}, can then be constructed according to (2.1), (2.4), (2.5) and
(2.7).
We now study the local power of the above L.M. test. Consider a sequence
of alternatives specified by a vector parameter of the form (65,¢2/v/n), where
r=(a},...,a})and @3 = (B11,022,. .. ,Bpp), and n denotes the sample size. If
this sequence of alternatives can be proved to be contiguous to the null hypothesis
(the one specified by (67,0)) then one may apply LeCam’s third lemma (Hajeck
and Sidak (1967), p.208) to obtain the power of the test under this sequence of
alternatives, provided the Central Limit Theorem (C.L.T.) holds under the null
hypothesis, for the pair of random variables formed by the test statistic and the
log-likelihood ratio. However, this approach encounters technical difficulties due
mainly to the fact that the log-likelihood cannot be obtained exactly but only
approximately by ignoring end-effects. Therefore we shall adopt an heuristic
approach which yields, in a very simple way, an expression for the local power,
which is our main interest, since it serves as a basis for comparison with the em-
_pirical studies in next section. Note that the main point is the lack of a rigorous
proof for the contiguity of the sequence of alternatives specified by (65, p2/v/n)
to the null (7,0) hypothesis. The validity of the C.L.T. is not a problem since,
under contiguity one need only work under the null hypothesis, for which the
observations follow an autoregressive process.
Before proceeding further, we define some notation. Let §* = (67,0) and de-
note by X (t,m), vs-(t, p) and vo (¢, p) the random vectors with components X (¢~

1),...,X(t=m),ve-(t=1),... ,v9-(t—p) and —€(t) X(t - 1),..., —€(t)X(t - p),
respectively.

In order to study the behaviour of the statistic (2.1) under the alternative,
we first look at that of the score vector a%% evaluated at §. Using a Taylor’s

expansion, one may write
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ot ot 9%¢ ) .
(50—2—) (51,0) - (5_0;) 9= + (392601) (01 - 61) + Op(\/ﬁ)’ (28)

where O,(n®) represents a random variable such that n=*0,(n*) tends to zero
in probability as n goes to infinity. The above expansion relies on the fact that
6, — 0% is of order 1/+/n in probability (under the alternatives). This can be seen
~ from the expression of 6, — 6* derived below. Note that the log-likelihood £ is

quadratic in 8, ( for fixed ;). Thus,
o%¢ - .
(o), 6 -

0= (_‘?_?_) _ (_31)
= 96, (51’0)— 06y P

- AN )
wea=-(51) (&),

The score vector in the above right hand side is explicitly given by

() =% geo-mxu —m)

giving

where

eo-(t) = X(t) - Z A X(t — i)
= ¢(t) + Z Pii X (t = et - 5)- (2.10)

From the above results, one can see that ; — 6} is of order 1/,/n. Note also
that 6,, as an estimator of 87, has, under the alternative, a bias of order 1//n,
which comes from the last term in the above right hand side.

Let us return to the score vector in the right hand side of (2.8). We have:

(%)9 = 5 e (B (). (2.11)
* t=1

Clearly vg-(t) = —X(t)eg-(t). Hence from (2.8),

ve-(t) = wo(t) — X (1) Z ﬂ“X(t — O)e(t - 0) (2.12)
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where vg(t) = — X (t)e(t).

From the above results, it can be shown (see details in the Appendix) that
under the alternative, the random vector n~1/2 3%— evaluated at (él, 0) converges
in probability as n — oo to a Gaussian vector with mean ¢ and covariance matrix
J1 2. The elements of ¢ and J,, are given by (A.4) and (A.5). Hence the test
statistic T, converges under the alternative to a noncentral x? variate with p
degrees of freedom and noncentral parameter c¢'J; JcC.

Remark. (a) If one considers a fixed alternative, then (1/n)(8¢/86;) evaluated
at (6;,0) would converge to a finite (nonzero) limit. Hence the test statistic
would converge to infinity, meaning that the test is consistent. The power of the
test against contiguous alternatives, however converges to a limit less than 1, as
n goes to infinity.

(b) The above result does not require the assumption that the ¢(t) are
Gaussian but only that their joint 3rd and 4th cumulants are zero. Moreover
these conditions are needed only to get the simple expressions (A.4) and (A.5)
for ¢ and Jj 5.

FEzample. Consider the first order bilinear model
X)) =aX(t—-1)+bX(t—-1)e(t — 1)+ €(2). (2.13)

This model reduces to an AR(1) model when b = 0. Then E[X?%(t)] = 02/(1-a?),
which yields

1

——) (B=b/vm)

c=ﬂ02(2+

and

Jag = 02(2+ 1—1a2)'

Hence the noncentral parameter is:

(Iﬁla\/2+ 1_1a2>2. (2.14)

3. Empirical Study of the Power

In this section we study empirically the power of the L.M. test of an AR(1)
model against the diagonal BL(1,0,1,1) alternative, denoted by DBL(1,0,1,1).
However, to test against nonlinearity, the usual approach would be to fit first a
linear model and then test its adequacy against possible nonlinearities. In the
L.M. approach, one would apply a standard identification procedure, resulting in
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Table 1. Percentage of rejections of the two L.M. tests at level 5% for (1) testing
AR(1) against DBL(1,0,1,1) and (2) for testing ARMA(1,1) against DBL(1,1,1,1);
500 replications — sample size 200.

a3 / b -8 -5 ~.2 2 5 8
Models| ()] @ | O[@]O]@ O]@[®]@[Q)](®
-9 70.8 | 56 |57.6|52.6

—8 82.2|78.8 |84.2|58.4| 65 |62.2]|56.8|67.6

-7 92.2 | 88.8 |92.8| 57 |79.6]75.2|59.2|73.6

—.6 84 |862197.2| 96 |98.4| 57 | 88 |86.4 [64.6|83.8156.2| 88
—5 |89.2]89.2/99.2] 99 |98.8]63.6|97.2{93.8] 82 |93.2}56.8|90.6
—4 |956 96 |99.699.6| 100 [75.6[99.4{96.8{91.4| 99 |62.289.8
—3 199.4(99.4| 100 | 100 | 100 | 88.6 | 100 | 97 [99.6 | 100 | 88.2|94.8
—2 199.8/99.8[99.6{99.8{99.2|95.4[98.8|96.4| 99 |99.2]99.8]99.6
—1 [83.2]836|72.4[71.8|69.6|62.6|67.8]58.2(77.2|68.4|81.6|83.4
-.05 33 [34.6|24.8| 26 |22.6|20.4({21.4|188[224| 23 | 27 |33.8
0 06.2106.8{054({052|054| 58 | 06 | 05 | 06 | 06 [04.4|08.4
31.6 | 31.4 {22.8(22.8| 20 |20.8]20.8(17.8|22.6|23.8/26.2|34.4
82 | 82 |68.2|67.6|65.2|59.8| 64 |57.8]|67.2}67.4]79.2]|83.2
100 | 100 {99.8 {99.8[99.4 (954 |97.295.6{99.4[99.8{99.2]99.8
99.4 1 99.6 | 100 | 100 | 100 | 90.6 | 100 | 98 | 100 | 99.8 |88.6| 95
95.896.4{99.899.8| 100 | 76 | 100 | 96.8{91.4]|98.4|63.8|87.8
90.2 190.6 {99.2{98.8{99.8|64.6| 98 [93.681.6|91.6|50.2|88.6
85.2 [85.296.2]96.2|98459.2(89.2/83.2/64.6| 82 [53.6| 87
91.4|89.8(92.4|58875.2/68.8]{52.4|71.6
81.2| 80 | 83 |[57.6|64.4]| 57 |[47.8|60.6
70.6 | 56.4 | 58.6 | 49.8

=)
b

wlolN|a|o]s]|d|-

an ARMA(p, ¢) model, say, using the L.M. test to test it against the bilinear ex-
tension of this model. If the data actually obey an BL(1,0,1,1) model, the identi-
fication procedure would usually result in an ARMA(1,1) model since this model
has the same covariance structure as the diagonal BL(1,0,1,1) model; and hence
one would end up testing the ARMA(1,1) against the BL(1,1,1,1) alternative.
Therefore in this study we shall consider, in addition to the L.M. test for AR(1)
against DBL(1,0,1,1), the L.M. test for ARMA(1,1) against DBL(1,1,1,1) as
well. In both cases, the data actually follow the DBL(1,0,1,1) given by (2.13).
We generate 500 series of length 200 from this model. The parameter a takes
the values —0.8; —0.5; —0.2; 0.2; 0.5; 0.8, and the parameter ob varies between
—0.9 to 0.9 with a step 0.2 or 0.1. (Note that the distribution of the test statistic
depends only on a and ob since the process X(t) has the same distribution as
oY (t), where Y (t) obeys a DBL(1,0,1,1) model with parameters a, cb and noise
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variance 1). The results of the L.M. test (in the percentage of rejections) are
listed in Table 1. Some entries in the table are empty because the bilinear model

X(t) (2.13) defined by the corresponding values of a and ob is not stationary.

The row b = 0 corresponds to the null hypothesis and one may see that the
percentage of rejections correspond well to the 5% level that has been chosen.
Note that the results concerning the two tests are very similar.

Figure 1. Power of the L.M. test at level 5% for testing model AR(1) against
DBL(lOll) a=-0.8 , a=-05.----, a=-02----, a=
0.2 ._._,a—-05 ..... ,a=0.8 ....... )

-

To have a better idea of the variation of the power of the L.M. test as a
function of the parameters, we have plotted its graph in Figure 1. The different
curves correspond to the different values of a. One sees that the power grows
quickly in the neighbourhood of the null hypothesis when b becomes larger (in
absolute value), but from a certain threshold, the power becomes worse. This
phenomenon is more important when the parameter a islarge. Thus the L.M. test
is more efficient for testing a local bilinear alternative than testing an alternative
far from the null hypothesis. This is not surprising because the L.M. test has
been developed in a local context. We may remark that the empirical power
function is more or less symmetric with respect to the bilinear parameter b. In
the neighbourhood of the null hypothesis, this function is indeed symmetric as
can be seen from the computations of the previous paragraph. Nevertheless we
cannot establish its symmetry for the whole range of b.

To see if the theoretical power of the L.M. test agrees with that based
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Table 2. Theoretical (column T) and empirical (column E) percentages of rejections
of the L.M. test at 5% level for testing AR(1) against DBL(1,0,1,1).

a\b — 8 -5 p) 2 5 8
Power| E| T | E | T |E|T|E|[T|E|T|E|T
2 |99.8] 100 |99.6] 100 | 99.2]99.8]99.8(99.8] 99 [ 100 [99.8| 100
— 18 |99.6| 100 | 98.6 |99.6 | 95.4 | 99.3 | 98.2[99.3]98.2[99.6 | 98.8 | 100
16 | 99 [99.8| 97 |98.5|95.8|97.6|95.6|97.6]95.4|98.5[97.6] 99.8
— 14 |96.6] 99 | 93 |95.0 | 91.6|93.1|90.8[93.1[91.4[95.0[96.2] 99
Z12 |93.6|95.9|87.4| 87 | 84 |83.8|83.6|83.8[84.4] 87 [90.8]95.9
—1 |832]| 87 |724| 73 |69.6|69.1|67.8|69.1|77.2] 73 [81.7| 87
09 | 77 |79.3|63.4| 64 |58.4|59.8|582[59.8]61.8] 64 [72.8] 79.3
08 | 66 |69.4|51.4| 54 |46.6|50.3| 46 |50.3|48.8[ 54 | 63 | 69.4
Z07 | 55 |57.9|41.443.7]382(406| 38 |40.6|39.4|43.7[51.6]57.9
—06 |43.6|45.7 334 33.8|29.2|31.3|28.8[31.3]30.6[33.8] 38 | 45.7
—.05 | 33 |33.7|248|252|22.6|23.3|21.4[233]|22425.2] 27 | 337
04 [226|233|182|17.9|16.4|16.6|17.4|16.6 154 |17.9| 20 |23.3
~03 |17.8 153|134 |12.2] 13 |11.4|11.2|11.4| 12 |12.2]13.6] 15.3
02 |106]| 95 |104| 83 |102] 79 |88 |79 | 8 |83 ]88 95
01 | 66|61 7 |59 7 |57] 7 |57]66]59] 5 |61
0 |62| 5 54| 5 |54 5 | 6 | 5 | 6 | 5 |44] 5
01 | 6 | 61|66 |59|58|57|52]|57]56]59]58] 6.1
02 | 86|95 82|83 (8279 7 |79[64][83][82] 95
03 |15815.3|11.612.2|11.4|11.4/10.6|11.4|09.2]12.2][11.4[15.3
04 |236]233| 16 |17.9]16.6|16.6|14.6|16.6]13.6|17.9| 18 | 23.3
05 |31.6]33.7|22.8|252] 20 |23.3[20.8(23.3[22.6[25.2[26.2] 337
06 | 42 |45.7| 31 |33.8|29.2|31.3|27.4|31.3| 30 |33.8[37.2]45.7
F 07 |51.2|57.9|40.4 | 43.7|36.6 | 40.6 | 36.8 |40.6 | 38 [43.7] 50 | 57.9
08 |64.2 694|492 | 54 |45.4|50.6|45.4|50.6]|48.6| 54 |62.2] 69.4
09 [73.279.3|59.2| 64 | 54 |59.8|55.6|59.8|57.6| 64 |71.4] 79.3
1 | 82 | 87 |68.2] 73 |65.2|69.1| 64 |69.1|67.2| 73 |79.2] 87
12 |91.2|95.982.6| 87 |78.8|83.6|79.2|83.8|80.2| 87 |88.8] 95.9
14 |97.2| 99 |91.4|95.0(89.2[93.1|88.4|93.1/90.8/95.0(954| 99
16 |99.6|99.8|96.6|985|94.8|97.6|94.2|97.6|94.8|985]| 98 | 99.8
18 | 100 | 100 | 98.8 | 99.6 | 97.4 | 99.3 | 97.8 | 99.3 [ 98.2[99.6 | 98.8 | 100
2 1100 | 100 | 99.8 | 100 | 99.4 | 99.8 [99.2]99.8[99.4 | 100 [99.2] 100

E: empirical
T: theoretical

on.simulation, we have put in the same figure the graph obtained empirically
and the graph of the theoretical power (the parameter ob being restricted to
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the range, (—.2,.2). There are six graphs corresponding to the different values
of a, displayed in Figure 2 (a,b,c,d,e,f). The empirical results and theoretical
values are listed in Table 2. The theoretical power has been computed from the
noncentral x? distribution with noncentral parameter obtained from the formula
(2.14), given in the previous section.

rowtR

g > . — = T <

Figure 2. Theoretical and empirical powers of the L.M. test at level 5%
for testing the model AR(1) against DBL(1,0,1,1): empirical power ,
theoretical power - --; (a) a = —0.8, (b) a = —0.5, (c¢) a=—-0.2, (d) a = 0.2,
() a=0.5, (f) a=0.8.

Appendix: Behaviour of the score vector ( f) at (67,0) under the

56,
alternative

From the results (2.8)—(2.12) in Section 2, one may write,

1 ( ot ) 1 <
— | = = —-— - (t)ve- (8,
\/ﬁ 802 (51,0) 02\/5 ;69 ( )'Ug( p)

InJg ©
_dndu ) X (1 —m (
o/n ;ﬂ:‘ﬂ (1) + X (1 )+ Op(1).

Repfacing €g-(t) by its expression (2:10), yields:
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n
J21

Z ()X (t,m)
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/'\
Dl
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N——”’
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z%: (t = §)e(t — 7)ve- (t.7)

2 x(t — j)e(t — )X (t,m)

S
S
=1
.M,ﬁ
SE

+ 0p(1). (A1)

Replacing vg-(t) by (2.12) and using (2.8), the first term in the right hand side
of (A.1) can be rewritten as:

;zl—ﬁtz:f(t)vo(t p) - nagz(zﬁnxu-»e(t—a)) (t,m)e(t) (A-2)

t=1 j=1
and the third term as:
. (ZﬂnX(t ~)elt=3))eo(t,p) +05(1).  (A3)
t=

Then using (A.2) and (A.3), Equation (A.1) becomes:

1 (3£>
— | 5z =A+B+C+D
Vn \ 96, (61,0)

where

A= 021;/7_1‘26(” ['Da(t,p) - J?lJﬁIX(tam)]

B = z (385Xt = d)elt = ) X (& m)et)
C= Z (385Xt = f)et - 7)) wolt.p)

=1

n

.

1 4
D=~ GrIn it (Z BiX (1 - )e(t = 1)) X (2,m) + Op(1).

_ Using the C.L.T., A converges in distribution, as n — oo, to the Gaussian
distribution with mean zero and covariance matrix J;; = J22 — Jn1 Jl'l1 Ji2.
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As for the random variables (B) — (D), one may invoke the Law of Large
Numbers (ergodic theorem) to find that they differ from their expectation by a

term tending to zero, as n goes to infinity. But the alternative also “tends” to
the null hypothesis with n, therefore one may evaluate the expectation at the
null hypothesis. Thus:

E[(e()X(t - et — )X (t — j)e(t —35)]=0 £=1,...,p and j=1,...,m,
EX(t-j)e(t-)Xt-€]=0 j=1,...,p and £=1,...,m
The last equality requires that the €(t) have zero third order moment, but

they need not be Gaussian. It follows that (B) and (D) converge to zero in
probability as n — oo. As for (C), it converges to the constant vector

1<
=-= Z Bi;E[X(t - 7) e(t ~ §)vo(t,p))-
The rth element of ¢ is

r = 25 DB EIX (e - et = HX(t = r)elt = )]

Finally the random vector n~1/2(8£/86,) evaluated at (6,,0) converges in
distribution to a Gaussian vector with mean ¢ and covariance matrix J; 2. The
elements of the vector ¢ are given as above. As for that of J; 3, one has

(J2,1)rs = -C—rl;E[X(t —1)e(t = )X (t - s)e(t — )],

since, under the null hypothesis all joint third order moments of X(t) vanish,
which implies that J; = 0. If we assume that the fourth cumulant of ¢(t) vanish
(which is true if the €(t) are Gaussian), then, under the null hypothesis, all joint
fourth order cumulants of the process X (t) vanish. Hence

E[X(t - j)e(t — 5)X(t — r)e(t —7)]
= cov{X(t — 7),e(t — 7)}eov{X(t —7),e(t — 1)}
+ cov{X(t - j),e(t — r)}cov{X(t —7),¢e(t — 7)}
+ cov{X(t - 7),X(t — r)}cov{e(t — j),e(t — T)}.

The last two terms vanish unless j = r. Thus

ot ifg#r

"E[X(t - j)e(t = )X (¢ = r)e(t = 1)) = { 204 + P E[X}(t)] ifj=r1
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This yields

er = o (3 s5) + Brle? + EX ()} (A4)

Jaq = o + E[X?(t)I + 0’1 (A.5)

where I is the identity matrix and 1 is the matrix with all elements equal to one.
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