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Abstract: This paper develops a general nonparametric test for the null hypothesis
that the vector of time series under scrutiny is temporally and cross sectionally
independent. This test can be used to test the adequacy of a fitted model. We can
diagnostically test a vector autoregressive model fitted to given data. This procedure

- is legitimate because the first order asymptotic distribution of the test statistic is
robust with respect to the estimated residual vector.
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1. Introduction

Chaos theory has recently attracted a lot of attention in economics. Discus-
sions with a survey bent appear in Brock (1986), Brock and Sayers (1988), and
Baumol and Benhabib (1989). The present paper develops statistical tests that
are capable of determining whether the innovations of a conventional multivariate
time series model such as a vector autoregressive (VAR) model are a determinis-
tic chaos which is short term forecastable, a nonlinear stochastic process which
is partially forecastable or a stochastic process which is not forecastable.

For motivation consider the following chaotic map, called the tent map,
which generates the same autocorrelation functions (ACF) as second order white
noise

T4l = —2|.’Et - 05] + 1. (1)

More interesting examples of chaotic processes can be generated by letting e; =
z:— 0.5 where z; is generated by the tent map. Note that, u-almost surely, 0.5 =
limr00(1/T) E;‘r:l Ty = fol zpu(dz) where p is the invariant measure (which is
Lebesgue on [0,1]) over [0,1] for {z.:} generated by the tent map. Then use the
sequence {e;}, called tent noise, as innovations in the ARMA(p, q) process

(L)y: = ¥(L)e (2)
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where L is the backward operator.

A statistician using Box-Jenkins methods will be hard put to detect that (2)
is not a stochastic process because the ACF for {y;} will be the same as if {e:}
is a true uncorrelated stochastic process such as Independently and Identically
Distributed (IID) rather than deterministic chaos with a white ACF.

This problem motivates the following procedure. Consider the family of
statistical models

Yyt = F(Y:-1;0) + es (3)

where Y;—1 = {yt-1,9:-2,...}, 0 is a vector of parameters to be estimated, and
{et} is IID. Moreover F is a known and given function. Assume that 6 can be
estimated VT consistently. Denote this estimator by 6* for a sample of size 7.
Then estimated innovations are denoted by e and satisfy

el = v - F(Yie1;6%). (4)
We now come to the main problem addressed in this paper:

Problem. How can ome tell from {e;} whether the true innovations are IID
or possess hidden structure that is potentially forecastable at least in the short
term as in a deterministic chaos?

We attack this problem by use of a new statistical test that compares a
measure of the degree of spatial correlation present in the stochastic process
{e:} to the same measure computed on an IID counterpart when the process
{e:} is “embedded” in m-dimensional space by constructing “m-futures” e =
(€t,€541,. .. ,et4m-1). The intuitive idea is to look at the process {e} and
measure how well it fills m-space relative to a comparison IID process that has
all the same unconditional moments as the original process. In order to explain
a special case, let e; be scalar valued. This comparison is performed by looking
at the following measure of spatial correlation, called the correlation integral,

C(m,e,T) = #{(t,) 1 < t,s ST | [lef" = €| < /(T = m + 1
= S YA e /T~ m+ 1)

m—1
= ZZ [ H 1(€t+i,es+,~;e)]/(T —m4+ 1)2 (5)
t L 1=0
where || || is the sup norm, and the indicator function 1(a, b; €) takes on the value

1 for the event [la — b]| < € and takes on the value 0 otherwise. If {e;} were IID
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it was shown in Brock and Dechert (1988a) that
C(m,e,T) — [limC(1,¢,T)]™ as. as T — oo. (6)

This result suggests looking at the following statistic, called BDS (Brock-Dechert-
Scheinkman (1988)) or W statistic,

W(m,e,T) = TY*(C(m,e,T) — C(1,6,T)™) (7)

which converges in distribution to a normal distribution with zero mean and
constant variance under the null hypothesis of IID. Furthermore, it was shown
by Brock, Dechert, Scheinkman and LeBaron (Brock, et al. hereafter) (1988) that
the first order asymptotics of W are the same for {e}} as for {e;}. This property
makes W a useful test of whether the form of the nonlinear or linear model that
you estimate is correct. This type of test is sensitive to deterministic chaos or
other nonlinear dependence between variables (Hsieh and LeBaron (1988a,b),
Hsieh (1989)).

Unfortunately the Brock, et al. (1988) paper treated only the scalar case.
In economics, we often face multivariate dynamic time series models rather than
univariate models, for instance VAR or multivariate Autoregressive Conditional
Heteroscedasticity (ARCH) model. Therefore we need to develop the vector
version of the BDS test; and this is the aim of the current paper.

2. Notations and Assumptions

The BDS type tests may be extended to vectors of time series in the following
way. Let {u;:},1=1,2,...,N;t=1,2,... be strictly stationary. Let the null
hypothesis be Hg : {u;:} is independent acrossall7,t;:=1,... ,N;t=1,2,....

We develop the V-statistic form here, because the U-statistic form is similar
but involves more notation. Since we are going to use Denker and Keller’s (1983)
projection method for general V-statistics and the delta method (Serfling (1980),
p-118), the notation is designed to suggest this. For simplification, endpoint
problems are ignored, and we define the following model and notation.

(i) (Model) The past of an N-vector stochastic process {y;}2, to time t is
written as Y; = (vyi, Yt-1,---); {y:} are generated by, y;: = F(Y;-1,61) + e;
where 0, is a k; dimension vector of the data generating function (DGF) F which
is twice continuously differentiable (C? hereafter). Moreover E[e;|Y;—1] = 0
and Ele:e}|Y:_1] = H;, H; = H(Y;-1,6;), and 6, is a vector of dimension
k, in the covariance matrix H;. If u; = Ht'l/zet, then Efu:Y;_;] = 0 and
Elauy|Y;—1] = I where I is an N X N identity matrix. Here Ht—l/2 denotes
the inverse of the positive definite symmetric matrix H tl /* whose elements are
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continuous functions of H; (White (1984), p.65). Put 8 = (6, 6,), and for later
use, write u; as G(Y3, 0) = Ht—ln(yt — F(Y:-1,0)). Then u; = G(Y3, 0) is the
standardized actual innovation vector and uy = G(Y3,0*) is the standardized
estimated innovation vector from solving the data generating process for e;. For
practical use we assume that G is a function of finite past of the process to avoid
technicalities caused by an infinite past.

(ii) (mi-Futures) Let m;-futures of ith element of an N-vector u be denoted by
uz’:‘t‘ = (Ui ty Ui t41y- - ,ui,t+m'_1), and the collection of all these futures for all
i at time ¢t be written as i = (u]"},u3'7,... ,un’y ). We use boldface m to

denote a vector.

(iii) (Symmetric Kernel) h(u,v;€) : R? — R is a symmetric kernel with parameter
€ and h € C?. Define the projection of a kernel as hy(u;¢) = E[h(u,v;€)|u).
Generally a symmetric kernel and the projection of it in higher dimensional
space is defined in a similar way. If h(u,v;€) = 1(u,v;€), note that hy(uje) =
F(u+ €) — F(u — €) where F(u) = Prob(U < u). Also note that ER}(u;¢) =
[[F'(v + €) — F'(u — €)]JdF(u) = 0 where ’ attached to a function denotes the
first derivative. This fact will be used to motivate assumption (II) below.

(iv) (Correlation Integral) The correlation integral in the vector case is defined
similar to (5). That is

T T
C(m,e,T) = (1/T%) )Y h(u™,ul%e), . (8)

t=1 s=1

where h is a symmetric kernel defined on R¥™ x RT™:. If the kernel h is the
indicator function, (8) becomes

(9)

N m;—l ]

(1/T?) E [H [T Aluiessnvisrsio)l.

t=1 s=1 ~i=1 ;=0

The approximation of the indicator kernel to a smooth kernel such as h is dis-
cussed in Theorem 5 and Section 5 in detail. Furthermore, the following three
notations are used in the vector case of the correlation integral,

C(i,e,T) = (1/T2)ZZ[h(ui,t,ui,s;f)], (10)

Ci= Eh(uu,uf 53 €),s (11)

- Cm = H {E[h(uz tyUi,s; €)]m } H {(C (12)

1=1
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For simplicity C(m,¢,T), C(¢,¢,T), h(a,b;¢) and hy(a;e) will be written as
C(m), C(1), h{a,b) and h;(a) for fixed ¢, 1.

N
(v) (W Statistic) W(C(m),C(i)) = C(m)- [ [C()]™. (13)
i=1
W is a measure of difference between a stochastic process that is non-IID across
t or non-independent across ¢ and a stochastic process that is IID across ¢t and

independent across i. It is computed from the {u;.;} process. In the population
W will be zero if {u;.} is IID across time t and independent across 3.

(vi) (Kernel K) Let ; = ul™, and ¢, = u?™ where u]" is defined in (ii). Define
a kernel

N m.--—l
,C(wtaws) = H h(ui,t+j,ui,s+j) - Cm
i=1 j=0
N N
— Z [mi(Ci)m‘-l H(Cj)mj(h(“i,ta ui,s) - Ct)] . (14)
i=1 i#i

(vii) (Gradient) Let V4K , be the gradient of dimension 2(m; +---+mpy) X 1 of
the kernel K at w. That is, V4K ,=[0K/0u14,...,0K/0u1 t4m,-1,0K/0us ,
cee 3’(:/611.2,t+m2_1 g e ,alC/BuN,t,... ,6IC/6uN,t+mN_1, 6/C/6u1,s g see
31C/6u1,3+ mq — 1 aK:/a’U.z’s, ceey 01C/6u2,s+ mg — 1y eso 61(:/611,]\/',3,... y
BIC/OEN,S.},mN..l]. Define Uit4; = G,~(Yt+j,0), Ui s+5 = G,'(YS.H',G) for
t=1,...,N, 7 = 0,...,m; — 1 for given z, and let 6; be the ith element
of a vector 8. Denote Dy,G:, = [0G1(Y:,6)/06;, ..., 0G1(Yi4m,-1,0)/00;,
ooy OGN(Y:,0)/06;, ..., OGN (Yi4my-1,0)/00;, 0G1(Y,,0)/00;, ...,
0G1(Ys4m,-1,0)/006;, ..., OGN(Y;,60)/00;, ..., OGN(Ys4my-1,60)/006;].
Therefore Dg, G, s is a vector of dimension 2(m; + --- + my) x 1, and it has
the same dimension as V4 K¢ . Denote V4 K; ; and Dg,G; , by VoK and Dy, G
without the subscripts ¢ and s for simplicity.

(viii) (Function J) The kernel K is written as a function J of all observations and
parameter vectors based on the inverse function J (Yt+”m"_1,Y,+”m"_1; 6) =
K(G1(Y3,6),... ,G1(Yim,-1,0),...,GN (YL, 0), ..., GN(Yiempy-1,0),G1(Ys, 60),
ce ey Gl(Ys+m1—l,0)a ooy GN(),_,, 9), “eny GN(},s-i-mN -1 9)] where ||m|| :ma.x(ml,

M2,... ,MN).

(ix) (Function K) Let K(ui,uj,ux) = (1/3) 3, h(ui,uw;)h(uj,ui) where the

summation is over all possible permutations ¢ of indices (1, 7, k).
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(X) (Fun(:tion Ha L) Let H(n,},aayr;e’ 7’) = K'(Gi(K,O),G,‘(Y,,e), Gt(},‘rao))
and L(Y:,Y,;6,i) = h(Gi(Y:,0),Gi(Y,,0)). Also, H/86;, 8*L/(86,06y),
02J/(06;06;) will be abbreviated as H;, L;, and J;x to clarify kernel func-
tions.

We develop the test method and investigate its properties through the next
five theorems, which are based on the following assumptions:

Assumptions

(I) (Uniform Mixing Condition) The DGF generates a stochastic vector process
{v:} that satisfies a uniform mixing assumption of Denker and Keller (1983,
Theorem 1, p.507).

(II) (Moment Condition) ug, = E[Vy4K - Dy, G] = 0 for all 6;, (15)
where - is the scalar product.

Remark. The condition Ehj(u) = 0, in the univariate case, implies that
(IT) holds in many applications. If h is the indicator kernel, 1(u¢, us;€) then
Ehj(ut) = 0. Even though the indicator function is not differentiable Theorem 5
below shows that we can approximate 1(u;,u,;€) with C? kernels.

(IIT) (Asymptotic Normality) T/2(67 — 6;) — N(O;V) for every 6;.  (16)

(IV) (Compactness of Parameter Space) There is a compact set § such that the
range of 6* is contained in Q for all 7.

(V) (Bounded Moment Condition) All kernels are non-degenerate, i.e. the vari-
ance of each projection is positive. As in Denker and Keller (1983, p.507) all
kernels, h, of V-statistics appearing below have bounded “2 + ¢” moments,
sup E{|h|**%} < oo for some d > 0. Here “sup” denotes supremum of the
expectation over all permutations of temporal arguments.

(VI) (Smoothness) All kernels appearing below are at least C?. Even if the non-
differentiable indicator function is used as a kernel, Theorem 5 shows that an
approximating sequence of C? kernels always exists such that Eh! is approxi-
mately zero and the asymptotic variance of the test statistic in Theorems 1 and
6 is continuous in the approximating sequence.

(VII) (Continuity) For X equal to H;, L; x, J;k in (viii) and (x), sup{ E|X (-, -; 0)}
is continuous in @. Recall the sup is taken over all temporal permutations as in
Denker and Keller (1983, p.507).

-

3. A Test for Independence of a Vector Time Series



A NONPARAMETRIC INDEPENDENCE TEST 143_

A test for independence of a vector of time series is developed in this section.
All proofs of theorems are put in the Appendix. Under the null hypothesis of
temporal and cross sectional independence we have

Theorem 1. Assume {u;;} is IID acrosst and independent across i. Assump-
tion (V) holds for the kernels in the C(m), W statistic and in the K statistic in
(21) below. Then '

T2 [W(C(m),C(i))] -5 N(0,Vim) as T — . (17)
And
N N
Vim =4 [ [TE)™ - T](ci?m
1=1 i=1
N N
+ D mi(mi = 2)(C)M™D(K; - (€ T](C5)Pm
i=1 J#i
Imi w N
+2 3 {JLEP™r49(cped) Ty
p=2 i=1 =1
N N
- Y- @her O Ierm] as)
i=1 J#1
where
C,‘ = Eh(u,-,t.,.j,u,-,”j) and
o { E[h(ti,r4 5, Ui ot i)W sty tine ;)] whenm; —p+1>0
- () otherwise.

The variance Vyy, is consistently estimated by using the following quantities:

C() = (1/T*) Y h(uiz,ui,) for C; (19)
K(i) = (1/T°) zt: Z D (h(ui gy w0 )h(us 5, u; ) (20)
K(i)= (1/T%) i: Z ié(ui,t, Ui, Uir) for K; where (21)
k(i ui 0 ui r) ; (13 /3!;;h(ui,t,ui,s)h(u,’,s,u,-,r). (22)

A consistent estimator of Vi, is obtained by replacing K; by K (¢) and C; by
C(i). The nonsymmetric kernel in (20) can be symmetrized without loss of gen-
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erality via (22). Assumption (V) on the kernel k and application of Denker and
Keller (1983, Theorem 1) implies the estimator K (i) converges in probability to
K;. Application of convergence of C(z) and K (4) proves that the estimator of the
variance converges to Vi, in probability. Hence, if one computes TY2 (Vi)"Y *W
as the consistent estimator of Vi we have a statistic that converges in distribu-
tion to N(0,1) asymptotically under the null hypothesis. '

For practical use, under (II), we show that the first order asymptotics of the
W statistic in (17) are the same for {u],} and for {u;+} in the next theorem.
Superscript * denotes estimated values.

Theorem 2. Assume the same conditions of Theorem 1. Assume (D), (II) on
Jo,, (1II) and (V) on the kernels JG.'(Yt-}-"mM-—l’Ys+||m|]—1;9)’ Ly, (Y:, Ys;0) and
(IV) and (VII) with X equal to Jos6,(= Ji ;). Then

T2 W (C*(m),C*(1)) - W(C(m),C(1))] =—> 0 asT —oo.  (23)

To complete the proof of Theorem 2 the second order terms of (A5), (A6)
in Appendix are disposed of in the following Lemma.

Lemma 3. Consider the second order terms My, My in (A5) and (A6). Assume
the kernel h(u,v) is bounded between 0 and B < oo, and assume (IV), (V), (VI)
and (VII). Then TY/?M; = 0 as T — oo for i =1 and 2.

While Theorem 2 shows that the first order asymptotic distribution of W is
invariant to evaluation at u} or u; we still need an estimator of the variance Vij
for the statistic to be of practical use.

Theorem 4. The estimator Viy,, say, of the asymptotic variance (18) of The-

orem 1 evaluated at all estimated innovations u}, is a consistent estimator for
Vm.

Applications of the W statistic developed in this paper use the nonsmooth
kernel function like the indicator function. Since this kernel is not smooth, it
does not satisfy the twice continuously differentiable assumption posed in (i).
However the formula (18) for the variance, Vm, in Theorem 1, is continuous
in its arguments C; and K;. The next theorem based on Brock and Dechert
(1988b), shows that approximation of the nonsmooth kernel by a smooth kernel
can be accomplished so that Vi is continuous in the approximation.

Theorem 5. For every é§ > 0 we can find a kernel h(u,v) that satisfies (V),
(VI) and (VII) such that (i) the absolute value of the difference between the

variance formula (18) computed at the indicator kernel and the variance formula
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(18) computed at the smooth kernel h is less than f(6), (i) [Ehy| < g(6) where
f(6) and g(6) converge to 0 as & goes to 0. If F(-) is symmetric about zero, the
approzimating sequence of smooth kernels can be chosen such that Ehi(u) =0
for each term of sequence.

Remark. Note, however, that Theorem 5 does not allow one to assert (23) for
the indicator kernel itself. We have not been able to show (23) holds for the
indicator kernel. Hsieh and LeBaron (1988a,b) have shown by Monte Carlo work
that (23) approximately holds for the BDS test for a class of estimated models
with additive errors. Since the BDS test is a special case of the test in the current
paper we suspect (23) will hold approximately for our test for a useful class of
estimated models with additive errors.

4. An Application of the Multivariate Test of Independence to VAR

We show here how the multivariate test of independence can be practically
applied to autoregressive models. To make our test operational we need to show
the following desirable property. That is, if you estimate the correct null autore-
gressive model to your vector of time series then the W statistic in (17) evaluated
at the estimated standardized residuals has the same asymptotic distribution as
the W statistic evaluated at the true standardized innovations. Call this “the
invariance property”. This is true provided your estimation procedure is VT
consistent.

We will make assumptions that suffice for the above property to hold in a
broad class of cases. Denote the true covariance matrix by I and the estimated
covariance matrix by I'*. Suppose

-

Yt = Ayt—l + ug, (24)
with

Eludyi—s, alls>0]=0 and Elusuilys—s, alls>0]=1T, (25)
and
{u;} a stationary N x 1 vector IID stochastic process

with finite fourth momemts. | (26)

If (24) is the true data generating process and we use the right model to fit
the given data, the standardized estimated VAR residuals are asymptotically IID
across time and independent across variables. The standardized VAR residuals
are given by

vi = (I")"VA(I - A1)y (27)
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where A" is estimate of A. In (27) A*(L)y; is equal to A*y;_;. Since {v}} is a
sequence of N-vectors we can use them as arguments for the W test.

It is easy to show that the invariance property holds for the univariate AR(1)
model with known variance. We show that the invariance property holds in the
more complicated bivariate VAR(1) model. Higher order VAR models can be
handled in a similar way.

Consider the following bivariate VAR(1) model,

Yi,t = a0 + a1Y1,1-1 + Q2Y2,1-2 + U1 ¢

Y2,6 = bo + b1y -1 + bay2 12 + uz g,

where

[“U] ~ N(03x1,I')and I' = [ 03] is positive definite.
U2 ¢ g3 02

Let us use the column stackmg operation vec(-) to represent the vector 8. Let

V2.t

[”l,t] — (F)—1/2(yt — A(L)y:) = G(Y3,0) where 6 =vec(A,TI') and

[Zi"] = (I")™2(ye — A*(L)y:) = G(Y;,87)  where 8* =vec(A", '),
2,t

b

Now we are ready to establish the following theorem. The key assumption
in Theorem 6 is Ehj(u) = 0 which Theorem 5 has shown to be innocuous for
practical purposes.

Theorem 6. Assume Ehj(u) = 0. If (24), (25) and (26) are true, and I is
syntmetric and positive definite then the independence test W has the same first
order asymptotic distribution whether it is evaluated at {v}} or {v}.

5. Conclusion

This paper has developed a test of independence of a vector of time series.
This test statistic has the same first order asymptotics when evaluated at esti-
mated residuals of a null parametric model as when evaluated at the true IID
residuals, provided that the null model is correct. This property is not shared
by diagnostics such as the autocorrelation function (Box and Jenkins (1976,
P.291)). Special cases investigated by Brock, et al. (1988), Baek (1988), Hsieh
and LeBaron (1988a,b) and Hsieh (1989) indicate that the vector generaliza-
tion of the BDS proposed here should have good power properties against broad
classes of alternatives. Hence we believe that our diagnostic test has promise of
bemg worked into a test of wide usefulness to applied econometricians.
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We did not discuss small sample properties of our test statistic; however,
there is some related work pertaining to this. Baek (1988) studied the special
case N = 2, m; = 1, my = 1 of the W test. He did preliminary Monte Carlos
on size and power against several contemporaneously dependent alternatives.
The power of Baek’s test was compared to two contemporaneous independence
tests: (i) Kendall’s tau; and, (ii) Blum, Kiefer, Rosenblatt’s Cramer Von Mises
test (BKR) which is based upon the difference of the joint distribution and the
product of the marginals. In the bivariate model, power was calculated for three
alternatives: (i) v; a piecewise linear transformation of u;; (ii) v; a sine function
of us; (iii) contemporaneous version of the ARCH model (Engle (1982)), i.e.
the variance of v; contemporaneously depends upon u; but its mean does not.
The test appears promising. The power is much better than Kendall’s test and
compares favorably with BKR for some of the alternatives while beating BKR
for others. Baek’s test beats BKR for alternatives that have many wiggles which
confuse the other tests into concluding that the two series are independent. See
Table 1.2 in Baek (1988) for contemporaneous independence. The BDS test (7)
is also a special case, N = 1, of the test proposed in this paper. It is a test
of IID for a univariate series. Encouraging Monte Carlo results on performance
are reported in Hsieh and LeBaron (1989) and Hsieh (1989, Table 8). Since the
performance of the BDS test was quite good for large sample size (T' > 500) and
small values of m we hazard the guess that the vector version of BDS propounded
here will exhibit similar good performance provided m is small enough and T is
large enough.

There is still much to do however. First, we have been deliberately vague
about the class of alternatives against which the null hypothesis is being tested.
Once a class of alternatives has been chosen the kernel vector can be chosen
to maximize some criterion, such as power against this class. Following up on
this line of thinking it is natural to try to characterize our test by finding the
alternatives against which it has least and most power respectively for fixed T,
¢, m. We have not done this.

Second, we have not developed a theory of the optimal choice of ¢, m for
a given sample size T. This requires a more precise commitment to a set of
alternatives, possibly a simple alternative, before this problem can be stated
precisely.

Third, nothing has been said about the choice of kernels h(-,-). The first
basic proposition on the limit distribution holds for any vector of smooth kernels.
Baek and Brock (1988) showed Theorem 6, i.e. the moment condition, (II), holds
for any vector of kernels such that Eh} = 0. This includes the indicator kernel
used in Baek (1988) and Brock, et al. (1988).

Once one has concentrated on a set of alternatives to test against, a possible
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criterion for choice of kernel vector would be to maximize some useful version of
power against the given set of alternatives. This is yet another research problem
that is beyond the scope of this paper.

In conclusion, we hope enough has been said in this paper to convince the
reader that the diagnostic test for temporal dependence proposed here is worthy
of serious attention by the profession.
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Appendix

(1) Proof of Theorem 1

This follows from use of the delta method (Serfling (1980), p.118) and Denker
and Keller (1983, Theorem 1, DK hereafter). DK’s uniform mixing conditions
are trivially satisfied for the stochastic process {u]} since it is m-dependent.
We now use the DK projection method to reduce the C(m) and C(%) statistics
to a simpler form.

C(m) - (2/T>Z[th1<un+» Cm|+Ri, (Al
i) - ,-=(2/T)2h1(ui,t>— Ci) + Ry ' (A2)

whefe both remainder terms multiplied by T/? go to zero in probability. This
representation is nice because it drastically simplifies the central limit theory.
Now observe that the statistic W(C(m),C(7)) is a smooth function ¢ of the
statistics C(m) and C(i),i=1,...,N,i.e.

W(C(m),C(7)) = (C(m),C(1),... ,C(N)) = C(m) - HC(i)m‘-

Expand this function g(-) in a Taylor series about the vector of means of the
statistics C(m), C(4) and use (A1), (A2) to obtain the following representation:

= (2/T) E [H th(ui,H—j) —Cm — Z ®i{h1(uip) - Ci}] + R

where &; = m;(C;)™ " [],.,;(C;)™ . We know that T*/?R — 0 in probablhty as
T goes to infinity. Apply the function g, evaluated at all arguments u}"*, which
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is equal to
2[ [T m (i) - TICO™ = S @itm(ui) = Caf.  (A3)
Then W = (1/T) Y, 9(ui™) + R. Therefore

/2w L, N(0,Vin) where
mj

Vim = E[{gul)} +2 3 o(ui™)g(u™)]. (44)

p=2

Now we show that all the second order terms go to zero in probability.

W(C(m),C(3)) = g(C(m),C(L),... ,C(N)) = C(m) ~ [, C()™.

= [C(m) - cm]—zmcm-'lﬂcm' (3) = C3)

J#i
~ (1/2) S mi(mi - )Em2 [ € (C(0) - C)°
i J#i
- (1/2) 3 Y mlrmC T I C (C() - € (C W) - Cs)
1 j#t k#4,7

where C;, éj and Cj are intermediate points between C(i) and C;, C(j) and C;,
and C(k) and Ck. Then the second order terms are

/2T 3 ma(mi - 1) [ €7 {(2/7) Z (ha(uiz) - Ci) + Re, )

J#

TR X mCrtmi G T CPH{@/T) 3 (i) = Gi) + R}

i J# k#1,5

{@/T) Y (ma(us0) - C5) + R}

Lemma 3 implies that the second order terms go to zero in probability. This
proof enables us to derive the variance formula for the case of the indicator kernel
function. The variance formula of (18) follows straightforwardly from (A4).

(2) Proof of Theorem 2
Write an exact Taylor expansion for each W by using notation K in (vii).
W(C*(m),C" (7))
=T K = (/D) 3 mims = )(E)™ 2([1¢;)ic -

J#i
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~(1/2) 3 Y mC;™  m G T (T G )ier () - eslleG) - €3] (as)

i g k#i,j
W(C(m),C(3)) |
= (UT) Y Y K- (1/2) Y mi(mi — )2 (T €7 ICG) - CiF
t 8 1 IF#t
~1/2) 30> mC T m T (I G)ICG) - GlICE) - €51 (A6)
i it k#i,j

where C’;" , C; denote evaluation at an intermediate point so that the expansion

is exact. The second order term will be disposed of in Lemma 3 where condition
(V) on L' will be used. We must show

A=TV S Sk - K)/T?] 240 as T — co. (A7)

Insert the formula (A8)
u‘i,t = Gi(Yt, 9)7 u:,t = Gi(YHG*) (AS)

into (A7), expand in a Taylor series about € with exact second order remainder
to obtain (A9) below. Noting Js, = [VyuK - Dy.G), we have

Tl/z[zz {K*(Gl(}ft, 0*)a'-' 7G1(}ft+m1-1)6*)?"' ’GN(Yt’o*)’“' ’
t s

GN—(},H'mzv—l,e*),Gl(},s,e*)a- ’Gl(},s-‘l-mr-lve*)?" . aGN(YS’O*)a'-' ’
GN(Y.S-an—l’O*)) - K(Gl(}ft, 9), cee ,Gl(}’t-'}»ml—l)e)" e aGN(},he)’ tee
GN(),t+mn—la0)’Gl(Ys,0),- .. ’Gl(),s-{-'mq—l,e)a v 7GN(},.”0)7- sy

G (Yarmy-1,6))}/T7]

= Tl/z[z > (VXergmi-1, Yor ymj-1507) = I (Yog prm-1, Yoo frmj-1; 0))/T2]
t s
= T1/2 [ E Z {/(Yeqymip-1> Yorym)-1;0) = I (Yep -1, Yorimi-1:6)
i 8
+ EJe,-(Yt+llm||—1,Ys+nmll-1;0)(05 = 0:)

+(1/2) 303 Tii(Yerpmi-1, Yorymy—1; 6)(67 — 665 - 6,)}/T%]. (A9)
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Note 3, 3=, Jo, /T? — p where by (II),
ps, = EJg, = E(VuK - Dy, G) = 0. (A10)

Let Ar be T/2(67 — 6;). Now Ar is O,(1) by (III), therefore it is sufficient to
show

ZZ[Vu,C . Dg'.G]/T2 BLAN pe, =0
t s

and the second order terms in (A9) converge in probability to zero. Observe
VuK - Dg,G = Jg, is the derivative of a symmetric kernel J(-,-;8) with respect
to 6;, hence 3, > Jg, /T? is a V-statistic. Under the mixing condition (I) and
the nondegeneracy, and bounded second moment condition (V) on the kernel Jy,,
Denker and Keller Theorem 1 asserts

YN Js /TP 5 EJs, as T — 0. (A11)
t s

But EJp, = pg; = 0 by (II). The second order terms in (A9) converge in prob-
ability to zero. Since A7 converges in distribution to a random variable it is
enough to show for each element ¢, j

S S T3 87T 20 as T — oo (A12)
t ]

where 8* is between @ and 6*. To show (A12) it is sufficient to'show convergence
in Ly. Thus it is sufficient to show there is an upper bound B(< o) such that
for all elements 12, j

sup{E|J; ;(-,+;0)|, all nonnegative t and s} < B (A13)

where the sup is taken over 6 in some compact set K. But (A9) follows from (IV)
which states that the values of 6* lie in a compact set K which is independent of
T, and A6 which states sup{E|J; ;(-,-; @), all nonnegative t and s} is continuous
in 6.

(3) Proof of Lemma 3

Since m; is not less than 2 the terms involving C~'§', C; are bounded above
and below. Hence upon division by 7'/? and using Serfling (1980, p.19) it is
sufficient to show

TY2(C*(i) - C:) = 0,(1), (A14)
T2(C(i) — Ci) = O,(1). (A15)
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Convergence of the second term (A15) follows from the same type of argument
used in Theorem 1. The first term (A14) requires attention. The Taylor series
expansion gives

Cr()) = Y Y h(uiyul)/T? = ) ) h(Gi(Y: 607),Gi( Y, 67)) /T
= zt:zs:L(Y},Y;;o*,i)/Tz o
=CO+EN [ 3 Lo, (%0, Y43 0%,0)(65 — 6,)] /77
+(1/2) Z 2 [ZE Lij(Ye, Yo 87,6)(67 - 6:)(8; — 65)] /T

=C(i)+85+U (A16)

where § is the second term and U is the third term of (A16). Here 8* is between
6 and 6* and TY/2(8;—6;) 4, N(0,Vy) as T — oo for each j. So T1/2§ = 0,(1).
Since (V) allows application of Denker and Keller Theorem 1to Y., Y., L'/T?,
it follows that 3,3, Lg,/T? % ELy,. Furthermore T'/2U -£» 0 by using
(IV), (VI) and (VII) with X equal to L; ;. Therefore T1/2(C*(i) — C;) = 0,(1)
and TY?(C(i) — C;) = Op(1). It follows that M; and M, converge to zero in
probability, since

T'/*(1/2) [m,-(m,- - 1)CTH T C (C*(6) ~ Ci)? _ (A17)
J#
= 0,(1)/T*? - 0 as T — oo, and

TV2(1/2)[miC7 7 my 7t T (C)™(C () - C(C () - €3] (A18)
» k#1,j
= 0,(1)/T? 50 as T — .

(4) Proof of Theorem 4
Noting Vim = V(C;, K;), we must show
Vy, = Vi as T — oo where Vyy, = V(C*(i), K*(3)). (A19)

The estimate K *(i) can be written

. E*(i)=)_> > H(W, Y, Y;6%,i)/T°. (A20)
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Expand (A20) in an exact first order Taylor series about 8. One gets K (i) plus
first order terms in (8 — 6;) for i = 1,... ,N(k1 + k). K(3) is a consistent
estimator of K; almost surely. We have T/%2(67 — 6;) = 0,(1) as T — oo for
each i. By (VII) there is a bound B < oo such that

sup E{|H;(Y,,Y,,Y:;0,1)|, all nonnegativet, s, 7} < B < oo. (A21)

Here we may show as we did for the second order terms in Theorem 2 that the

first order terms go to zero in distribution. Therefore V3, converges to Vi in
probability since K*(i) 2> K; and C*(i) = Ci.

(5) Proof of Theorem 5
(i) We will sketch the main idea of the proof for simple univariate case. Let
€ > 0 be given and for 6§ < € let hs be an even C! function such that

1 when|u—v|<e-14§

hs(u,v) = {

0 when |Ju—v|>¢
as well as 0 < hg(u,v) < 1, |0hs(u,v)/0u| < 2671, Let A = {(u,v)le — 6 <
|u — v| < €}. Then for any hs,

/ / [hs(u,) = 1(u, % P AF(w)dF(v) < / /A dF(w)dF(v) — 0 as & — 0.

Therefore a smooth kernel hs(u,v) approximates the indicator function 1(u,v; €)
in L, norm. Define

C5=//h5(u,v)dF(u)dF(v) and I(g:// hs(u, v)hs(v, w)dF(u)dF(v)dF(w).

Then we can show that |Cs — C| and |Ks — K| both depend on the value §, and
lims_o Cs = C and lims_o K5 = K. Since the variance formula corresponding
to the multivariate formula (18) is only a function of C and K, it can also be
approximated by using a smooth kernel which satisfies the above condition.

(i) lim / [a( / he(,0)dF(v)) /du] dF (u) = lim / / hs(w, 0) f'(w) £ (v)dudv
= [[ 1w arwseaus = [i50+9 - f(v- Ol =0.

Therefore Ehy,(u) depends on the value 6, but it converges to 0 as é goes to 0.
Finally
Ehlyy (u) = / [a( / hs(u, v)dF(v)) /au] dF(u) = / (Ohs(w, v)/Ou)dF(v)dF(u)

:r/_oo /_u(ahzg(u,'v)/au)dF(v)dF(/u)+/—oo /73/15(11,v)/au)dF(v)dF(u). (A22)
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Symmetry of F(-) implies that f:g(u)dF(u) = [, g9(—u)dF(u). Therefore

/_0:0 /:o(aha(u,v)/@u)dF(v)dF(U)= - [_Z /_;(ahs(mv)/c’)u)dF(v)dF(u),

Dropping the subscript é, we obtain the above theorem.

(6) Proof of Theorem 6

If we replace all u;; variables with v;+ in the proof of Theorem 2, it is
sufficient to show that the moment condition, (II), holds. The idea of the proof
is along the same lines as the previous proofs. We will represent v; by Y;
including current y and past values of y, and I'*, and A*. The next step is
a Taylor expansion of the W statistic about a true parameter. The first order
terms will disappear by the moment condition, (II), and the second and higher
order terms also converge to zero in the same way as the proof of Theorem 2. To
show that the moment condition, (II), holds we use (A9) and (A10).

Here since

K(v?'”,v?""’) = h(v1,t,v1,5)h( V1,141, 1,541)P(V2,1, V2,5 )R(V2 141, V2, 541)
=~ Clay) = 2C1(Cia))” (A(v1,4,91,0) = C1)
- 2C(2,2)(C1)* (M(v2,t,v2,5) — C(g’g)) and
VoK (03D, 5(3) = [0K/0v11,0K ) 0v1,141,0K [ 0vy 1, 0K 03 141,
0K [ v1,3, 0K 301 041, 0K [Ovs.0, 0K 003 01n].  (A23)

Now we must show that E[(VyK - Dg,G)] = 0 for all elements of the parameter
vector, where G = G(Y},0), in order to express the v; vector. We will show the
moment condition when #; = o or a; in VAR(1) model. Other cases will be
shown in a similar way.

Define I'"*/2 = [n;;] for 4,5 = 1 or 2. Then 7;; = 7;;(01,07,03). Thus

v -
i [v::} = I uy = [,

However u; = I'*/?v; implies 8v; ;/d0y, and v, +/80; are both linear functions
of v;; and vy;. Let 0vy:/001 = avy s + bvay and Ovy /001 = cvis + dvgy.
Therefore

Do, Gt s = [avy 1+ bva s, avy p41 +bv2 141, cv1:+dva s, cv1 141 +dv2 141,

avy s +bvy s, AV 541 +b0V2 541, CV1,s+dV2 s, €V1 541+ AV 541] (A24)

where a, b, ¢ and d are all functions of ni; and 0n;;/00y for i, j = 1 or 2. If we
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expand a Taylor series about oy,

E[VyK - D,,G] = 2E[{hl('vl’t,'U]_’s)h('vl,t+1,v1’3+1)h('02’t,1)2,3)
h(v2,t41,02,541) — 2C1(C2)? R (v1 4, v1,5) } {av1,¢ + bvz ¢ }]
+ 2E[{h(v1,141, v1,541)R(v1,8, V1,6 )R(v2,1, V2,5 )2 (V2 141, V2,541) }
{avy 141 + b0y 141} + 2E[{R (v2,1, v2,6 )R (1,2, v1,6 ) (V1 041, V1,541)
R(v2,t41,02,541) — 2C2(C1)*h' (va,1,v2,5) }{cv1 .2 + dva 1 }]
+ 2E[{h'(v2,¢41, V2,541 )h(v1,1, 1,5 )P (01,241, V1,541 )A(v2 1, V2 5) }
{ev1,041 + dva 141} (A25)

where h'(z,y) = Oh(z,y)/0z. Since h(:) is a symmetric kernel, we need only
calculate the partial derivatives with respect to z. Using the independence of
{vi t+5}, ER{(vit4+;) = 0, and strict stationary condition, we can show that right
hand side of (A25) vanishes if t # s+ 1. For t = s+ 1, the expectation is nonzero,
but the contribution is 0,(1).

If 6; is the VAR(1) coefficient a1, we can use the assumption to show the
moment condition, (II), holds. We have Eh}(v;:+;) = 0 to show the moment
condition. E[VyK - Do, G] = 0 since all E[0hy(v;+)/0vi:] = 0 for the indicator
function and is independent of y:_x for positive k.
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