Statistica Sinica 2(1992), 113-135

A BRIDGE BETWEEN NONLINEAR TIME SERIES

MODELS AND NONLINEAR STOCHASTIC
DYNAMICAL SYSTEMS:
A LOCAL LINEARIZATION APPROACH

Tohru Ozaki

Institute of Statistical Mathematics, Tokyo

Abstract: In the present paper we point out a close relationship between nonlin-
ear time series models and nonlinear stochastic dynamical systems. We introduce
a time discretization method of stochastic dynamical systems, which brings us a
nonlinear time series model from a nonlinear stochastic dynamical system. Then a
maximum likelihood method for the estimation of the time series model is given.
We also give an identification procedure of the original continuous time dynamical
system. The effectiveness of the procedure is numerically checked using simulated
data. Implications of the present method in non-Gaussian time series analysis are
discussed. ’
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1. Introduction

-

There are many examples of dynamic phenomena in nature which can be
regarded as stochastic processes, e.g. ship motion in the sea, brain wave records
in physiology, animal populations in ecology. Some of them are considered to be
stochastic processes by virtue of their own mechanism. Some of them, such as
hydrodynamic phenomena or dynamics of economic activity may not be consid-
ered stochastic at the microscopic level, but may be considered as such at the
macroscopic level. By treating them as stochastic processes, meaningful results
both in theory and applications may be obtained.

For inference of the characteristics of these stochastic processes and for their
forecasting and control, time series data, obtained by sampling the process at
equally spaced intervals of time, are often used. Although many stochastic phe-
nomena in the world can be considered approximately Gaussian processes, some
of_them are obviously non-Gaussian. This means, in some cases, conventional
linear time series models driven by Gaussian white noise are not really appropri-
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ate. For the analysis of these non-Gaussian processes and for their forecasting
and control, nonlinear time series models are needed. It is also expected that
nonlinear time series models may be useful for inference of the nonlinear struc-
ture in the dynamics of stochastic processes. Several nonlinear time series models
have been introduced and used for the analysis of such non-Gaussian time series
data (Priestley (1988)).

On the other hand, nonlinear, stochastic, dynamical system models have
been intoduced for the analysis of the same sort of phenomena, namely, non-
Gaussian stochastic processes, in many scientific fields such as physics, electrical
engineering, chemistry, biology, genetics and macro-economics. One of the sig-
nificant advantages of nonlinear time series models over stochastic dynamical
system models is, since time series models are statistical models, they can be
identified from observed data of finite length. Stochastic dynamical system mod-
els, on the other hand, are mathematical models and are difficult to identify from
the data. However, being a mathematical model gives the stochastic dynamical
system model an advantage over nonlinear time series models in characterizing
the phenomena, with powerful analytical tools developed in Markov diffusion
theory. In this situation, it must be natural for time series analysts to wonder
if a bridge can be made between time series models and stochastic dynamical
system models so that we can take advantage of both.

To make a bridge between them a time discretization method is introduced
in this paper, which yields computationally stable discrete time dynamical sys-
tem models. This means we can obtain a stationary time series model from any
stationary nonlinear stochastic dynamical system model. This point is essential
since the sampling interval is fixed in time series analysis; and because of this
we are often faced with undesirable computational instability in nonlinear model
simulations. A crude idea of the use of local linearization was first presented
in Ozaki (1985a). In the present paper a clearer and more consistent presen-
tation of the method is provided. Then we give a maximum likelihood method
for estimation of the discretized time series model. Finally it is shown that
the original continuous time stochastic dynamical system model can be iden-
tified from the estimated nonlinear time series model. Thus, identification of
the original continuous time stochastic dynamical system is available, based on
the local linearization relationship between the continuous time model and the
estimated time series model. The effectiveness of the procedure is numerically
checked using simulated data. Implications of the present method in nonlinear
and non-Gaussian time series analysis and its application to various problems
are discussed.

2. Local Linearization
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Suppose we have a continuous time stochastic dynamical system,

y(t) = f(y(1)) + n(1), (2.1)

where n(t) is a continuous time Gaussian white noise with variance . The idea
for discrete time modelling of (2.1) is as follows: first, we try to approximate
(2.1) by a Gaussian process,

y(t) = Kuy(t) + n(2) (2.2)

with some appropriate K, which we are going to find later, on each infinitesimal
interval [¢,¢+ At). This idea is reasonable if At is sufficiently small, because y(t)
of (2.1) is a Markov diffusion process, and the main characteristic of the Markov
diffusion process is that it is locally Gaussian, where its mean and variance
are specified by the drift and diffusion coefficient of the process (see Goel and
Richter-Dyn (1974)). Then from (2.2) we have an autoregressive model,

Yt+rar = AeYe + Wepar (2.3)

for the Gaussian process (2.2) on the interval. Once K; of (2.2) is obtained, it
is easy to give A; of the corresponding autoregressive model (2.3). The solution
y+(7) of (2.2) can be expressed as

w()= [ ewiki(r - wn(uin

-0

and its autocovariance function is Cy(7) = [0?/(2K;)]exp(K7) where the sub-
script t is used to denote the interval [t,t + At). Then A; of (2.3) is given by
A; = [C4(0)]71Ci(At) = exp(K,At). The variance of the discrete time white
noise

t+At
Wipat = / exp{K:(t + At — u)}n(u)du
¢

of the model (2.3) is given by 02 = 0% {exp(2K;At) — 1}/(2K;). This yields the
following autoregressive model for (2.2) on the interval [t,t + At),

exp(2K,At) — 1
2K,

Yt+at = exp(KtAt)yt +\/ USEY.N (24)

where n;4 ¢ is a discrete time Gaussian white noise with variance o2. The
problem is how to find K, of (2.2)
If we have a discrete time dynamical system model,
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Yi+ar = Ayt (2.5)

with positive A4, a natural choice of K; would be K; = {1/(At)}log A4, because
the discrete time model for a linear dynamical system, g(t) = K,;y(t) is given by
Yt+at = exp(KiAt + i27m)y,, where m is an integer. Therefore, the problem
of finding a “good K" is equivalent to the problem of finding a “good A,” of
(2.5) as an approximate discrete time dynamical system for the continuous time
dynamical system, § = f(y). For the criterion of the goodness of Ay, the following
requirements are reasonable:

(1) The model is consistent, i.e.

————yt+AAtt %, f(yt) for At— 0.
(2) The trajectory of y; coincides with that of y(¢) at the discrete time points ¢,
t+ At, t+ 2At, t + 3At, ... at least for linear f(y).
(3) The discrete time model preserves the qualitative characteristics of the con-
tinuous time model.

The third condition is important since in the nonlinear case the dynamical
system y = f(y) has many structural variations. Unfortunately, all of the dis-
cretization schemes, such as the Euler, Heun and Runge-Kutta methods, well
known in the field of numerical analysis, do not satisfy the second and third
conditions (Henrici (1962)). For example, by applying the Runge-Kutta method
to ¥ = —y> we have

At ’
Yi+at = Yt + "E(kl + 2kg + 2k3 + kq) = pso(y:)y:

where ky = -y}, ko = —(y: + %‘t’kl)3> k3 = —(y: + %fw)s, ky = —(y: + Atks)?
and pgo(y:) is an 80-th order polynomial of y;. The polynomial function is known
to go to oo for |y;| — oo. Therefore y; explodes to infinity if it starts from some
large initial value, while the trajectory of y = —y® converges to zero regardless
of its starting value.

A scheme which satisfies the above conditions is obtained by a simple as-
sumption, i.e. the Jacobian of the linear dynamical system y = K,y of (2.2)
over each interval [t,t 4+ At) is given by the Jacobian J; = {8f(y)/dy} at
y = y of the original dynamical system. From this assumption we have, for
t < s<t+ At §(s) = Jig(s). If this is integrated on [t,t + 7)(0 < 7 < At) we
have y(t + 7) = exp(J:7)9(t) = exp(J;7)f(y(t)). By integrating this again with
respect to 7 on [0,At) we have y(t + At) = y(t) + J; ' {exp(J:At) — 1} f(y(2)).
This_equation gives the value of y at time point ¢ + At as a function of y at
time point ¢. This results in the following relation between y; and ys4a¢, where
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t = At, 2At, 3At, ..., and J(y¢) # 0,

Year = Ye + J(ye) 7 exp{J (ye) At} — 1] f(ye). (2.6)

For y;, where J(y;) = 0, we have ysyar = y: + Atf(y:). It is easily checked that
the model (2.6) satisfies the above three conditions (Ozaki (1985a)).

The model (2.6) has been used by engineers for the simulations of determin-
istic nonlinear differential equations (Smith (1977)). The idea of approximating
a deterministic nonlinear system by a piecewise linear differential equation has
been common in numerical analysis and system theory. For example, approx-
imating the nonlinear system y = f(y) by a linear system y = J:y, on each
interval [t,t + At), has been used in the Extended Kalman filter. Even though
this results in a non-explosive and stable scheme, y;+a: = exp(J:At)y:, it is not
a consistent scheme. (yiy+a: — y:)/At of the scheme tends to Jyy; for At — 0
instead of to f(y:). Only the approach of Smith (1977) based on piecewise linear
approximation can produce stable and consistent scheme. It is surprising that
the above mentioned natural conditions (2) and (3) were overlooked, and not
much attention was paid to a very simple and natural scheme (2.6) by numerical
analysts.

From (2.4), with (2.6), we have the following discrete time model of (2.2)
for the approximation of the model (2.1) at y;, where y; # 0 and J(y:) # 0,

Yerar = A(Ye)yr + B(yt)nerat (2.7)

and where nya¢ is a discrete time Gaussian white noise of variance o2,

- A(y:) = exp{ K (y:)At}, (2.8)
Blye) = \/ exP{zg}g/(tzst} -1 (2.9)

K () = 1 logll + J(u) ™ {exp{J (3)At} ~ 1) f(3e) v

and J(y:) = [0f(y)/0yly=y,- Note that if At is sufficiently small, then 1 +
J(y:) " Yexp{J(y:)At} ~ 1]f(y:)/y: > 0 and K(y;) is well defined, and so are
A(y:) and B(y;) for any f(y) which satisfies f(0) = 0. We call the model (2.7)
a locally linearized time series model. Since the model is a kind of Markov chain
defined on a continuous state space, we can also call the model a lbcally linearized
Markov chain model.

_ We note that if we expand exp(-) in (2.8) and (2.9) with respect to At and
approximate them up to the order At, it follows that
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A(y) = 1+ Atf(y) (2.10)
B(y:) = VAt. (2.11)

The model (2.7), with A(y;) of (2.10) and B(y:) of (2.11) is known by probabilists
as a consistent discrete time model for the Markov diffusion process y(t) defined
by (2.1) (Maruyama (1983), Gikhman and Skorohod (1965)); and it is commonly
used for the simulation of Markov diffusion processes. However, when f(y,) is
a nonlinear polynomial function of y;, the function A(y:) of (2.10) is also a
polynomial function of y;, and the Markov chain process defined by (2.10) is
divergent for a fixed At. As we can imagine from (2.11), B(y;) of (2.9) is almost
constant while A(y;) of (2.8) is quite different from a constant function. We shall
see this in some examples in the next section.

It can easily be checked if a locally linearized Markov chain model (2.7) is
computationally stable by observing the behaviour of the function A(y;) for large
Yt; it is stable if A(y:) < 1 for large |y;| and unstable if A(y;) > 1 for large |y|.
Sufficient conditions for f(y) to produce an ergodic locally linearized Markov
chain are given in Ozaki (1985a).

The model (2.7) was defined on the region of y, where y,J(y;) # 0. The
remaining problem is how to define the discrete time dynamical system at the
region (which is measure zero though) where y; = 0 or y; = 7 but J(n) = 0.

If a) y: = 0 and the following limit Ay, is finite,

Jim [1 + J(ye) T {exp{J () At} = 1} f(9:)/9:] = Ao < o0,

then it will be natural to define y;4a¢ at y; = 0 by yi4a¢ = VAL Ni4At
Ifb) y: =0, Ao = oo and J(0) # 0, we can define

yerar = J(0)exp{J(0)At} — 1]5(0) + VAt npyae.
If ¢c) y: = 0, Ap = o0 and J(0) = 0, we can define
Yirar = Atf(0) + VAL nypas.
If d) J(n) = 0 for some 5 # 0, we have

lim[1+ J(y)"{exp{J(y)At} - 1}f(v)/y] = 1 + Atf(n)/n.

Then it will be natural to define y;1 ¢ by
Yerar = 1+ Atf(n) + VAt npay-

Therefore we can define the discrete time dynamical system for the region of y,
where y,J(y,) = 0,
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0+ VAt npat for the case a)
J(0) exp{J(0)At} — 1]f(0) + VAt n;yas for the case b)
Yi+At = (2.12)
Atf(0) + VAt neyat for the case c)
n+ Atf(n) + VAt npar for the case d).

The goodness of the discretization scheme of the stochastic dynamical sys-
tems can be measured by speed of convergence of the approximate process to
the true process in terms of At. We can easily see the optimality of the present
scheme (2.7) by direct application of the Markov semi-group expansion technique
due to Milshtein (1974).

3. Some Examples

Condiser some examples of the local linearization.
Ezample 1. § = —y° + n(t)

From this we have the locally linearized model (2.7) with

2 1
A(y:) = = + —exp(=3y?At) and B(y:) = VAL

3 3
The function A(y;) is a smooth function of y; and it tends to a constant, namely,
2/3, for |y:| — oo. This kind of models is what Ozaki (1981a, b) and Haggan
and Ozaki (1981) considered in the statistical analysis of some nonlinear time
series.

Ezample 2. § = 2y — y° + n(1)

The function f(y) = 2y — y® has three zero points, h = 0, nt = V2 and
n~-= —+/2. They are the singular points of the system. If an initial value yo of
the system is one of the three singular points, then y(t) stays at yo for any ¢t > 0
when the white noise input n(t) is suppressed. The functions A(y;) and B(y;) of
the locally linearized time series model are

2

—2y; 2y 2 /
A(y) = 2 347 + e exp{(2 — 3y;)At} and B(yt) ~ VAt.

A(yt) is a smooth function of y; and tends to 2/3 for |y:| — oo. Simulation
data of the locally linearized model is shown in Figure 3.1, where At = 0.1 and
0% = 1. The figure shows that y; fluctuates around one of the singular points
and sometime moves from a stable singular point to another depending on the
white noise input. This behaviour is the same as that of the amplitude-dependent
autoregressive models given in Ozaki (1980, 1981a).

E;ample 3 y=- 2atanh(\/§y5+ n(t)
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Figure 3.1. Simulated data of Example 2.
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Figure 3.2. A(yt)’s of Examples 3 and 4.
(a) A(yt) of Example 3.
(b) A(yt) of Example 4.

The process z(t) obtained from the solution y(t) of this model by a memory-
less transformation, z(t) = sinh{v/2y(t)} is known as a diffusion process whose
marginal distribution is Cauchy for a = 0.5 (Wong (1963)). A figure of the
function A(y;) is shown in Figure 3.2a where At = 0.06. B(y;) is almost constant
as in the previous examples, while A(y;) is less than 1 for small |y;| and tends to
1 for |y:| = oo. That means the movement of y; becomes almost like a Brownian
motion when y; goes far away from the origin. This explains why the process
has a marginal distribution with heavy tails.

V2B V28

This is an example with a dynamical system g = f(y) with f(0) # 0. The
process z(t) obtained from y(t) by the memory-less transformation, z(t) = exp{
V2B y(t)}, is known as a Gamma-distributed diffusion process. A figure of the
function A(y,) for the model is in Figure 3.2b where we used At = 0.1, @ = 2
and 3 = 1. Here the function A(y,) is defined only for y, # 0. Since

Ezample 4. y =
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Ao = lim [1+J(y:) " {exp{J (1) A1} = 1} 1 (1) /v2] = 00

and J(0) # 0 it is in the exceptional case of b) of (2.12) at y; = 0 and the
dynamics at y; = 0 is defined by

Y+ At = J(O)—l[eXp{J(O)At} - 1]f(0) + v At Nty At.
4. Estimation and Identification

In this section the identification of a continuous time stochastic dynamical
system model,

y = f(yla) + n(1), (4.1)
is considered, where n(t) is a Gaussian white noise of variance o?. To identify
the model we first try to estimate, from the observation data y;,v2,... ,ynN, the

following locally linearized model,

Yi+1 = A(yla)y: + B(yela)nigs
A(yt]a) = eXP{K(ytla)A}

_ [exo{2K(y:la)A} -1
st =y =20 “2)

K(wle) = 5 log{1 + /7 (" — 1) (vila) /)

where a = (aj,as,...,ax) is some parameter vector of f(y|a). The data are

generated from (2.1) at equally spaced time points, t,t + A,t + 2A,.... In this
section we use A, instead of At, for the sampling interval to stress that the
sampling interval is fixed at the stage of model estimation and identification. Of
course, as in the case of linear time series modelling, the sampling interval needs
to be small enough to enable the estimation of the essential features of y;. After
estimating the parameters of the model (2.2) we try to identity the original
continuous time stochastic dynamical system model (2.1) using the estimated
nonlinear time series model.

4.1. Estimation of a and ¢?

The log-likelihood of model (4.2) is

Iogp(y17y2a s ,yN'a,02)
B :logp(y2’y3a SR ’leyl,avaz). + logp(y1|a702) (43)
=logp(na,ns,... ,nn|y1,a,0°) +logdet{J(y,n)} +log p(y1]a,0”)
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where J(y,n) is the Jacobian matrix of the transformation from (y2,¥s,... ,yn)
to (n27 N3y---, 'I’lN) Since det{J(y’ n)} = B(yl la)B(yQIa') T B(yN—l la’)a (43)
is given by

N-
B(yila) {yes — Alwla)y}IP N -1,
2 - ogo
= 20 2
N-1 (4.4)
- T llogar+ Y log{B(wla)} +log p(v1]a,0?).
t=1

For large N, the last term of the expression is negligibly small compared with
the rest and we can ignore it. Since the log-likelihood function satisfies

[alogp(yl,yz,-.. ,lea"’z)] ~0

Oo?

252
0°=0y

the maximum likelihood estimate 63, satisfies the equation,

N-1
1
ot = N——I ; ”B(ytla)—l{yt+1 - A(y,la)yt}||2 (4-5)

with a replaced by its estimate. Also, since the first term of (4.4) becomes
constant at the maximum point, the maximum log-likelihood is obtained by
maximizing

N-1

“logo + 3 log{B(ya)) (46)
t=1

N

with respeect to a, where o2

is given by (4.5) and is a function of a. For
the maximization of the likelihood (4.6) we use some nonlinear optimization
procedure (see Fletcher and Powell (1963) or Ishiguro and Akaike (1989)). In
the optimization procedure, the standard error of the estimates is easily obtained
numerically from the inverse of the Hessian matrix at the maximum point of the
log-likelihood (4.6).

The maximum likelihood estimates izN,A = (a, &3\,)’ thus obtained are known
to be consistent and asymptotically normally distributed under some regularity
conditions (Billingsley (1961)). However, this is under the assumption that the
data is generated from the discrete time Markov chain model (4.2) with the
true parameter hy = (a,0?)’. Since the data is generated from the continuous
time model (4.1), the maximum likelihood estimate tends not to hy (= ho) for

N — oo but to some value h, A whlch is characterized by the property,

E [logp(yah) logp(y, cA)] <0
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for any h # h.a (Huber (1967)), where E, means the expectation with respect to
the probability measure defined by the continuous time process (4.1), and p(y, h)
is a likelihood function of h for given data y, h. a is not necessarily equal to kg a.
However the difference between them tends to zero, i.e. |hea — haa| — 0, for
A — 0, because as is seen from the definition of the locally linearized model, the
process defined by (4.2) weakly converges, for A — 0, to the process defined by
(4.1) (see Gikhman and Skorohod (1965), ch.IX). This means the above procedure
is consistent in the sense that ﬁN,A converges to hg for A — 0 and NA — co.
It must be noted, however, that both N and A are fixed in real applications.

4.2. Identifying f(y|a) from A(yl|a)

We note that the estimated parameters @ and 6% are for the model (4.2)
and not for the original contiuous time model (4.1). What is required next is to
identify the continuous time model (4.1) from the estimated model. It will be
natural and reasonable to employ the model,

= fyla) + n(t) (4.7)
as an identified model for (4.1) with the estimated parameters & and 6% for the
model,

yer1 = A(yel@)ye + B(yila)niqs. (4.8)
This is because the model (4.8) is derived from the model (4.7) by applying the
local linearization scheme given in Section 2. However f(y]a) of (4.7) is not the
only function which leads to (4.8) by applying the local linearization.

Knowing f(yla) we can obtain A(y|a) uniquely; however from A(yla) we
cannot obtain f(y|a) unless we know the functional form of f(yla). This is
because an approximation is involved when we derive A(yla) from f(yla) by the
local linearization. In light of the derivation of A(y|a) from f(yla) in Section 2
we know that any function f(y) which satisfies the relation,

iy =1 (B90) o {205} 10

yields the model (4.8) by applying local linearization to the continous time model,
v = f(y) + n(t). Now (4.9) is equivalent to
{ 0f(v) } v
Oy

1(y) = {A(31é) - 1}—5
exp{

(4.10)

Unfortunately the function f(y) is not given explicitly by A(y|a) because of the
Jacobian in the right hand side of (4.10). However, f(y) is given approximately,
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including A(y|é) explicitly, by

1 -
f(y) = < {A(yla) - 1}y, (4.11)
which is obtained from (4.10) by employing the approximation,

exp {%%QA} ~1+ -a—‘gL;QA.

One method to improve the approximate function f(y) of (4.11) is to modify
the function using information about its deviation from the relation (4.10), i.e.
we can adjust the old function f(¥)(y), at each point y(= vi,yi+ Ay, yi +24y,...)
on any finite interval of y, into a new function 1) (y) by

()

exp {Q—f—%%@A} -1

FED(y) = fB(y) - As [f<‘°’(y> —{A(yla) -1} ] (4.12)

where As is some small number. (4.12) means that if the old value f(¥)(y) is too
large or too small to satisfy (4.10), the new value f(¥*1)(y) is set by reducing or
increasing f(¥)(y) proportionally. We note that the iterative procedure (4.12) is
equivalent to the numerical solution for the following partial differential equation,

{af(w) }y
M - sy, + (A0 - Vgt (419)
exp {-Ty’——A} -1

From (4.13) we know that as s — oo, 0f(y,s)/0s — 0 and f(y,00) satisfies the

local linearity relation,
{ 0 f(y, o) } .
Jy A

f(g,00) = {A(d) - 1) {fo_(l/.zi'i’_)A} -1

The Jacobian 0f(*)(y,s)/0y in the iterative procedure (4.12) can be obtained
by a numerical differencing method, e.g. {f)(yiz1) — f¥(3:)}/Ay. If As is
sufficiently small compared with Ay the iterative numerical procedure for the
partial differential equation is known to work properly.

As briefly mentioned earlier, the function thus obtained is not the same as
the original function f(y|a) since an approximation comes in through the local
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linearity relation (4.10) and the goodness of the approximation depends on how
the data were sampled. So, the function obtained by the above procedure depends
on the sampling interval, and we write it as fa(y|@). In real data analysis we
cannot change A of fa(y|a) since the sampling interval of the data is fixed and
accordingly A(yla) is fixed. However it can be seen how fast fa:(y|a) approaches
f(yla) as At — 0 by recalculating A(yla) from f(y|a) by using (2.8) for each
different At and by employing the above numerical procedure for each A(y|a).
Figure 4.1 shows f(y|a) and fa:(y|a) of the function in Example 2 for different
At’s.

15

10
T

-Ity)
0

<10

15

Figure 4.1 True function f(y|a) and approximate functions fa:(yla) for At =
0.2, 0.1, 0.06 and 0.03.

: true f(yla)
............... : At =0.03
---------- At = 0.06
———————— At = 0.1
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4.3. Utilizing time series models

From the previous discussion we saw that we can obtain the function
fat(yld) numerically from A(yla) of the estimated model yi41 = A(ye|d)y:
+ B(y:|@)ns41 . This suggests an interesting new method to identify the contin-
uous time model utilizing some parametric nonlinear time series models. Since
B(y:|a) is related to A(y:|a) by the local linearization relations (2.8) and (2.9),
it follows that

[ a{Awla) - 1)
B(ytla)—\/ 2log A(yida)

Then, by using some A(y:|¢) parameterized in the discrete time domain with
some parameter vector ¢ = (¢1,¢2,... ,dx)’, we can think of using some non-
linear time series model of the following form,

Y41 = A(yt|@)y: + B(yil@)niga (4.14)

where

_ A{A(ythb)? -1}
B(y:|é) —\/ Toz Aild) (4.15)

Suppose we obtained the estimates ¢ and 2 for the model (4.14). Then from
A('y|<;5), by using the numerical procedure in Section 4.2, we can obtain a figure
of the function fa(y|®) for any finite interval of y. If there is some general
parametric representation A(y:|¢) for the model (4.14) this procedure provides
a useful method of guessing the function figure when we have no idea of the true
parametric function form of the original continuous time model.

For the parameterization of A(y:|¢), the examples of A(y;) in Section 3
provide important and useful information. Common features in the first three
examples in Section 3 are that A(y;) is a continuous function of y; and tends to
a constant for |y;] — 00. One example of such a parameterization is

A(yel@) = 1 + (62 + Save + -+ + $kyi ) exp(—cy;). (4.16)
Another e;cample is

¢+ b2y + "'+¢kyf—l for |ye) < T

4.17
01+ T+ -+ T for |ye| > T ( )

Atul®) = {

where T is some threshold value. With these A(y:|¢) we can have time series
models (4.14) with (4.15).
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For this nonlinear time series modelling approach to be valid and work prop-
erly it is necessary that the function A(yz) which corresponds to the true model
be finite for the region miny; < y: < maxy;. Therefore the true f(y) needs
to be zero at the origin. Further, the sampling interval needs to be sufficiently
small so that A(y:) is positive and B(y;) is well defined. As for the examples in
Section 3, the A(y:)’s of the first three examples are appropriate. However there
is some difficulty in Example 4 since the f(y) of the example is not zero at y = 0.
A special treatment, such as interpolation of the function f(y), is needed in the
region near y = 0 where A(y) can be negative.

For the parameter estimation of the model (4.14) the same maximum likeli-
hood method is used as the one given in Section 4.1. The computation involved
can be drastically reduced if we employ the approximation exp{X (yt|t3§)A} =
1+ K(y:|¢)A. With this approximation, B(y:|a) = Vv/A and the model (4.14)
becomes

Y41 = A(yt|¢)yt + \/Zmﬂ- : (4.18)

If A(y:|@) of the model (4.18) is linearly parameterized with ¢, then the least
squares estimate of ¢, which is asymptotically equivalent to the maximum likeli-
hood estimate, can be obtained by simply solving the linear normal equation. For
example, model (4.18), using parameterization (4.16) with a fixed c, is equivalent
to the Extended Exponential AR model of Ozaki (1985a) and the least squares

estimate of @ = (é1,2,... ,Px)’ can be obtained by solving the linear equation,
XY =(X'X)¢
with respect to ¢ where Y = (y2,¥3,...,yn)' and
Y1 mexp(-cy}) ... vy exp(—exd)
x- | v yrexp(—cys) ...y exp(—cy})
y;\;;l YN-1 ex;(.—cy?v_l) yif-—ll exi)‘(.—cy'ﬁ,_l)

¢ needs to be fixed in this simple estimation method. However it does not cause
much computational complexity because c is positive and less than — loge/max y?
where ¢ is a small number such that exp(—cy®) < ¢ and is negligible for all
y > maxy;. So we have only to find ¢ which minimizes the residual variance for
several different ¢’s where 0 < ¢ < —loge/ maxy?.

Model (4.18) using parameterization (4.16) with k = 2 is equivalent to a
first order Exponential AR(Exp AR) model (see Priestley (1981)). The model
(4.18) with the parameterization (4.17) is equivalent to the NonLinear Thresh-
old AR(NLTAR) model of Ozaki (1981a). We call a model (4.18) with these
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parameterizations an amplitude-dependent autoregressive model. This type of
parameterization has been considered in nonlinear time series data analysis by
Ozaki and Oda (1978) for ship rolling data and by Haggan and Ozaki (1981) for
Canadian lynx data. .

Thus, we have obtained a practical method to get a continuous time stochas-
tic dynamical system model from a discrete time nonlinear time series model. An
important implication of this is that, even though we have no idea of the func-
tional form of continuous time dynamical system model, for given time series
data, we can still try to fit a general nonlinear time series model parameterized
in the discrete time domain. The model, although it is parametric in the discrete
time domain, is nonparametric in the continuous time domain. Having fitted
the nonlinear time series model, the fitted model can be transformed into the
continuous time domain, by the numerical procedure given in Section 4.2. This
will give some idea of the appropriate type of functional form for the continuous
time stochastic dynamical system model to be used for the data. Based on this
information, we can introduce a new model parameterized in the continuous time
domain and estimate it by the maximum likelihood method given in Section 4.1.
We can also use the powerful analytic tools for the continuous time stochastic
dynamical system model to obtain the probabilistic characteristics of the time
series. The bridge brought by the local linearization relation (4.10) is open not
only for ExpAR models but also for any nonlinear time series models of (4.14)
or (4.18) type with A(y:|¢) smooth in terms of y;.

4.4. Numerical Examples

The estimation and identification methods described above may be under-
stood better with some numerical examples. We applied the maximum likelihood
method to the simulated data of Example 2 in Section 3. The data is shown in
Figure 3.2, where the variance of the white noise is 1 and A = 0.1. The number
of data points is 1000. We used the third order polynomial model,

¥ = amy+ a2y’ + a3y’ + n(t) (4.19)
and obtained the following estimates,
a; = 2.0312, a; = —0.3899 x 107, a3 = —1.0930 and &* = 0.8043.

The obtained function, f,(y|@) = a1y + @sy® + @39® is quite similar to the true
function, f(y) = 2y—vy3. This may be partly because we estimated the coefficients
using the polynomial function which includes the true function as a special case.

Usually, in real data analysis, the true function is not known. The resulting
estimates may then depend on the parametric model used and in some case the
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resulting estimated function may not be close to the true function. This will be
the main reason why nonparametric methods are considered in nonlinear time
series analysis. To see how the misspecification of the functional form affects the
results, we applied the maximum likelihood method to another set of simulated
data generated by a model of Example 3, whose nonlinear function is not a
polynomial but the following transcendental function,

fr(yle) = —V2atanh(v2y), (4.20)

where a = 0.5, the noise variance is 0> = 1, N = 4000 and A = 0.06. The first
1000 points of the data are shown in Figure 4.2. To this data we first fit the
model

g = —v2atanh(v/2y) + n(t).

The estimated parameters are & = 0.5682 and 62 = 1.0162. The figures of the
functions fr(yla) and fr(y|a), i.e. (4.20) with the true @ and (4.20) with the
estimated & respectively, are shown in Figure 4.3.

PPy /JWW“Y Mgt

T T
0.00 125 00 250 00 375 00 500 00 525 00 750 00 875 00 1000 00

8.11

-13.91

Figure 4.2. The first 1000 data of the simulated data of Example 3.

To see the effect of model misspecification in the parametric approach, we
also fit to the data a model with a third order polynomial function, i.e. the model
(4.19). The obtained maximum likelihood estimates of the parameters are

4, = —0.8548, a; = 0.9022 x 1072, a3 =0.4731 x 10™! and §6° = 1.0722.

The estimated function, f,(y|@) = @;y+a»y’+é@sy> and the true function fr(y|a)
are not very different for the region —3 < y < 3. However they are very different
for large |y| outside the region. This is in a sense natural because the polynomial
functions tend to go to oo for large |y|. Thus polynomial functions are useful
only to approximate functions within a finite region and are not appropriate to
approximate functions which go to a constant as |y| — oo.
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Figure 4.3. True function, fr(y|a), of (4.21) and estimated functions, fr(y|&), fp(yla)
and fa(yl®)-

: true function fr(yla).

............... : estimated function fr(y|é&).
---------- : estimated polynomial function f,(yla).
———————— : identified function fa(y|@)

from the estimated function A(ytl&ﬁ).

The above consideration suggests another method of identifying the function
f(y), i.e. the use of time series models. We used the model,

Yt+1 = A(y:lcb)yz + B(yt|@)ni+1

_ [ A{A(yi]e)? -1}
B(y:|¢) = \/ 2log A(y:|®)

Aytld) = ¢1 + b2 exp(—cy?)

and the obtained maximum likelihood estimates are

$1 = 9798, ¢y = —0.5598 x 107, é=—0.5577 and &2 = 1.0150.

The function fa(y|}) obtained from A(y|¢) using the numerical procedure given
in Section 4.2 is shown in Figure 4.3. The function approximates the true function
fr(yla) well for the region —3 < y < 3. However, as we might expect the function
fa(y|®) tends to some linear function outside the region.

It is very clear from the figures jn Figure 4.3 that the parameterization in
discrete time by an amplitude-dependent AR model (4.6) with (4.16) or (4.17)
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is preferable to the parameterization by a polynomial function in the continu-
ous time model (4.1) when the function f(y) approaches a linear function or a
constant as |y| — oo.

When we apply the present estimation method to real data, we have to
specify A in the model (4.2). Since the data is already taken we know what -
the sampling interval is. However there is an ambiguity in specifying A in the
model, i.e. the time unit used in the model to represent the time intervals between
data, hours or seconds etc. This ambiguity does not cause any essential problem
because, as we can see from (4.11), A affects only the scale of the function f(y|a)
and not its shape.

5. Discussions

The time discretization method shown in the present paper provides us with
a bridge connecting a nonlinear time series model and a stochastic dynamical
system driven by Gaussian white noise. The bridge makes it possible for time
series analysts .to use not only stochastic dynamical system but also Markov
diffusion process models in modelling non-Gaussian time series data. This is
because any Markov diffusion process z(t) has a representation,

z(t) = h(y(t))
¥ = f(y)+ n(t)

where h(-) is a smooth function which gives a memory-less transformation of
y(t). f(+) is a smooth function which defines the nonlinear dynamics of y(t¢) and
n(t) is a Gaussian white noise (Goel and Richter-Dyn (1974), Ozaki (1985a)).

The connection of nonlinear time series models with diffusion processes also
gives time series analysts a useful tool in understanding the distributional as-
pects of nonlinear time series. Ozaki (1985a) showed that for any given density
distribution W(z) defined by

(5.1)

dW (z) _ c1(z)
dz c2(z)

W(z) (5.2)

there is a diffusion process whose marginal density distribution is W(z). The
diffusion process is specified by the following Fokker-Planck equation,

2

2 - 2{a@+ ZE ) 1 12 peon (5.3)

where ¢;(z) and c2(z) of (5.2) are analytic functions. A family of distributions
defined by the system (5.2) includes the exponential family and also the distri-
butions defined by the Pearson system. This means, by using the bridge, we
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can generate nonlinear time series with any marginal distribution of the Pearson
system or the exponential family.

The ¢;(z) and ¢;(z) of (5.2) are not necessarily mutually irreducible. There-
fore we can have infinitely many different diffusion processes which have the same
marginal distributions from (5.2) and (5.3) by multiplying the numerator and
denominator of (5.2) by any common factor. Two different types of Gamma-
distributed processes are shown in Ozaki (1985a). This implies that knowledge
of the non-Gaussian marginal distribution of the given time series data does not
give us any information of its nonlinear dynamics.

In Markov process theory it is well known that if the process is of contin-
uous type, i.e. the transition probability from z to R ~ (z — ¢,z + £) goes to
zero for At — 0 for any fixed ¢ > 0, then the process z(t) is a diffusion pro-
cess. Since any diffusion process has a representation of the form (5.1), this
implies that any continuous type non-Gaussian time series can be transformed
into Gaussian white noise by a memory-less transformation and a nonlinear dy-
namic model. Therefore, what we need in nonlinear time series modelling is a
memory-less transformation and a nonlinear dynamic model driven by a Gaus-
sian white noise. By these we can transform any continuous type non-Gaussian
time series data into Gaussian white noise. It means that a nonlinear dynamic
model driven by a non-Gaussian white noise, which may look more general than
the nonlinear dynamic model driven by a Gaussian white noise, is not an essential
generalization. However, in real time series analysis, we cannot always assume
that the series is of continuous type because the data is sometimes contaminated
by shot noise type Markov jump processes. In such situations the nonlinear
dynamic model driven by non-Gaussian white noise with a fat tail distribution
plays an important role in robustifying the estimation procedure.

Once the bridge is made between time series models and stochastic dynam-
ical system models its application may look almost unlimited. However, for
the time series modelling approach to be useful in many application fields, the
method needs to be extended in several directions. One direction is to a stochas-
tic dynamical system model with an extra observed input process r(t) such as,

v = f(y)+n(t) + 7(1). (5.4)

The model (5.4) is an example of a nonlinear storage model, which is used in
inventory control in operations research or in stochastic hydrology. An extension
of the local linearization method to this type of model is discussed in Ozaki
(1985b).

The method needs to be extended to multi-dimensional systems as well,
since dynamics of many interesting and important problems in real applications
are multi-dimensional. Fortunately,. the local linearization method can be ex-
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tended to the multi-dimensional stochastic dynamical systems without any es-
sential change, since the analytic solution of a multi-dimensional linear dynamical
system, z = Az is 2(t) = exp(tA)z(0), where exp(tA) is a matrix defined by

oo ti ‘
exp(tA) =1+ Z EA :
i=1
An application of the method to two-dimensional nonlinear stochastic dynamical
system models in macro-economics is discussed in Ozaki, T. and Ozaki, V. H.
(1989).

A nonlinear random vibration model,
Z + a(z)z + b(z)z = n(t) (5.5)

can be regarded as an example of the two-dimensional stochastic dynamical sys-
tem model,

2= f(z) + n(t) (5.6)

where z = (2,z), f(z) = {~a(z)t — b(z)z,z}’ and n(t) = (n(t),0)’. Since
the variance-covariance matrix of n(t) is not of full rank, a special treatment
is needed to derive a discrete time model for (5.6) using the local linearization
method. The details of this topic can be found in Ozaki (1986, 1989) and Oda,
H., Ozaki, T. and Yamanouchi, Y. (1987).

In some applications there are cases where the dimension k of the state
variable 2(t) is higher than the dimension r of the observed vector time series.
A familiar example is a linear Markovian model,

ziy1 = Azt + Bz

(5.7)
z;, =Cz;
where C is not a square matrix but an 7 X k rectangular matrix. Since the
model (5.7) is known to be equivalent to some ARMA model of AR order k and
MA order k — 1 (Akaike (1974)), there is no difficulty in applying the maximum
likelihood method to this situation. However, if the dynamics of the state is non-
linear, the transition matrix A of (5.7) becomes state-dependent and because of
this we cannot have a nonlinear ARMA representation for the nonlinear Marko-
vian model. In such a case and also in the case where the observed time series
is contaminated by an observation error w;, we need to work on the nonlinear
state space representation model,

2= f(z) + n(t)

Tt "—‘ Cz(t) + w;. (58)
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A ma)dmum likelihood method for the model (5.8) is discussed in Ozaki (1990b)
(see also Ozaki (1990c)) using the locally linearized nonlinear filtering method
introduced for the model (Ozaki (1990a)).
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