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Abstract: The main results provide asymptotic expansions for posterior distributions
which may be integrated termwise with respect to the marginal distribution of the
data. The proof uses a data dependent transformation which converts the likelihood
function to exact normality and then applies a version of Stein’s Identity to the
posterior distributions. Applications to sequential confidence intervals are described
briefly.
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1. Introduction

Asymptotic expansions for posterior distributions may be traced to the time
of Laplace, but only recently have researchers investigated conditions under which
these expansions may be integrated with respect to the marginal distribution of
the data. See Johnson (1970) for a rigorous account of the pointwise expansions
and Bickel, Goetze and Van Zwet (1985) and Ghosh, Sinha and Joshi (1983) for
recent work on integrating them.

In this article, an alternative approach to the expansions is presented which
makes the question of integrability more transparent. First, instead of renormal-
ized estimation error, a data dependent transformation (3) of the parameter is
considered, which converts the likelihood to exact normality. Then a version of
Stein’s Identity is applied to the posterior distributions to isolate the remainder
terms. The alternative approach avoids the use of messy Taylor series expansions
and leaves the renormalized remainder terms in the form of conditional expecta-
tions, so that the martingale theory may be brought to bear on the integrability
question.

Integrable expansions for posterior distributions are needed in design prob-
lems where the overall Bayes risk must be computed in order to see the effect
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of design parameters. Surprisingly, they also have applications to the problem
of setting confidence intervals after sequential testing. Such applications are
described by Woodroofe (1986, 1989) and briefly in Section 7, below.

The model is detailed in Section 2. Conditions for mean convergence of
functions of the maximum likelihood estimator in a Bayesian model are derived
in Section 3. This material may be of independent interest. Stein’s Identity is
reviewed in Section 4 and applied to obtain second order expansions in Sections 5
and 6. Applications to sequential confidence intervals are discussed briefly in
Section 7, and higher order expansions in Section 8.

2. The Model

Let A denote a nondegenerate, sigma-finite measure on the Borel sets of R;
let @ = (8,60) denote a nondegenerate, open interval (so that, —00 < 8 < 8 < 00);
and let

fo(z) =€ L eR, 0eQ,

denote a one parameter exponential family of densities (w.r.t. A). The reader is
assumed to be familiar with exponential families, as in Brown (1986, Ch.s 1 and
2), for example.

Let X1, X3,... denote random variables which are i.i.d. with common den-

sity fs under a probability measure Py for each § € Q. Then the log likelihood
function given X;,...,X, is

Lo(6) = 6S, — np(6), 6€Q,

where S, = X5+ -+ X,,, n > 1. !.,et X, = Sn[n, foLn >1. If X, € P'(Q),
then L,(6) attains its maximum at 6,, where ¥/(6,) = X,; and then

Ln(0) — Ln(8n) = 880 — np(8) — (6,50 — n9p(6,)] = —nI(6,,0),  (2)

where I(w,0) = ¥(0) — Y(w) — P'(w)(0 - w), w,0 € Q. Derivatives of I are
needed below: for w,6 € Q, Iop1(w, ) = ¢'(0) - ¢'(w), Lio(w,8) = =" (w)(§ —w),
Ioz(w,8) = ¥"(8) and I11(w,0) = —¢"(w), where I;x(w, ) = 37H*I(w, ) /0w D6*
for 7,k =10,1,2,... and w,8 € Q.

The data dependent transformation mentioned above is

z = \/{2nI(8,,6)}sign(8 - 6,). (3)

Observe that z is increasing in 6, since dz/df = /n|Iy;|/v2I > 0 and that the
likelihood function is exactly normal in z; that is, L,(8) = L.(6,) - %22 for all
feQandn>1.
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Now consider a Bayesian model in which there is a random variable @ with
density £ and X;,X3,... are conditionally i.i.d. with common density fy given
© = @ for every 8 € (). Probability and expectation in the Bayesian model are
denoted by P; and E¢; Py and Ey denote conditional probability and expectation
given © = §; and conditional expectation given Xj,...,X, is denoted by E¢.

If X, € ¢'(), then the conditional density of © given X1, ... , X, is £4(8)
exp{—-nI(0,,0)}£(8), 8 € Q, by (2). Of course, n may be replaced by any
stopping time t in the likelihood function and posterior density, since these are

unaffected by optional stopping. See, for example, Berger and Walpole (1984,
Section 4.2).

In the Bayesian model, the transformation (3) may be written as the random

variable
Z, = 1/ {2nI1(6,,,0)}sign(O — 6,,)

on {X, € ¢¥'()}. (Z, is undefined off of this event.) Let R,, denote the range of
Z,; that is R, = (—\/ {2n1(6,,9)}, \/{znl(én,ﬁ)}), where I(8,,,8) and I(6,,0)

denote the limits of 1(0,,0) as § — @ and 8 (finite or infinite), still assuming
that X, € ¥'(©2). Then the conditional density of Z, given X;,...,X, is

Cn(2) x E(0)J(0,,0)e %% ¢ if z € Ry,

0 : otherwise,

where

Jw, ) = {2I(w,7)}

, w,T €N, 4
Tox (0, 7)) ®)

and z and @ are related by (3), since dz/df « 1/J(6,,6).

The partial derivatives of J are also needed below: for w,8 € Q and 8 # w,
they are

1 .
JOl = ﬁ{l - 102J2}81gn(9 - UJ),
(5)
Iy, 1 2 .
and Jo2 = — EJOI + ﬁ [103.] + 2[02JJ01] 51gn(9 - w).

The values of J and its partial derivatives on the line w = 6 may be obtained
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from L’Hospital’s rule as

J(w,w)z -———-l-— J01(w,w)=-§'$,-('£'%)7§»

Vi (w)’

11 ¢//l 2 1 ,‘/,(4)

(6)

where 9" and ¥(9) denote the third and fourth derivatives of 1.

3. Inequalities

At one point in the development, it is necessary to compute the limit of the
expectation of a function of the M.L.E. in the Bayesian model. This is a question
of independent interest. In its discussion below, let

B,={X,.€9'(Q)}, n>1

Proposition 1. For all,w € Q and m = 1,2,...,

Ps{B, and 6, > w,3n > m} < e”™HWO) >0,
Py{B,, and b, <w,In> m} < e~™Iwd) i< 8.

Proof. If B,, occurs and 8, > w > 6 for some n > 1, then X, > ¥'(w) for the
same n. Let ¢ = m(w — @). Then, by the submartingale inequality (applied to
the reverse submartingale exp(tX,), n > m),

Pa{ :;& X, >¢’(w)} < et (w) Eo{et}{'m }

<exp {m[p(0+ =) = $(0)] - ¥'(w) } = expl-mI(w, )]

This establishes the first assertion of the Proposition; and the second may be
established similarly.

Corollary 1. Forall0 € Q, z,2> 0, and m = 1,2,...,
Py{B, and 1(6,,,0) > z,3n > m} < 2e” ™

and

Py{B,, and |Z,,| > z} < 2exp ( - —;—z2).
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In particular, all powers of Z,,, n > 1, are uniformly integrable under P for any

€.

Proof. For afixed 6, I(w,#) is increasing in w > 6, since I1p(w,8) = P (w)(w-9).
For fixed m > 1 and z > 0, let At be the event that B, occurs and I(On,é’) >z
for some n > m. Then A% is empty if z > I(4,0); and if z < I(6,6), then
At = {B, and 8, > w,3n > m}, where I(w,0) = z. So, Py(AT) < e™™% by
the Proposition. The first assertion of the corollary follows easily from this and
an obvious dual; and the others are immediate consequences.

Corollary 2. Forall2>1,0€Q,andn=1,2,...,
1,
Pg{rgngﬂng > z} < 2[1 + log, n]exp(—— Y& ),

where log, denotes logarithm to the base two.

Proof. For each k > 1, there is a unique m > 1 for which 2™~ ! < k < 2™,
Moreover, if By occurs and |Z,| > z > 1 for some k € [2™~!,2™], then I(f),6) >

2% [2™+1 for some k > 2™~1. Let M, be the least integer which exceeds log, n.
Then, for all € Q and n > 1,

M,
P,,{ max|Z|Is, > z} < Zl Py{Bi and | Zi] > 2,3k € [2™71, 2]}
-

2
< Z Py{By and I(6;,6) >

m=1

< 2M, exp ( - 222).

5 +1,3k22m~1}

For a fixed density £, let G¢ denote the class of all functions G : 2 x 2 — R
for which

/sup (G(6n, ©)I15, 4P < oo )
n>m
for some m = 1,2,.... Observe that G¢ is a linear space which contains all

constant functions; moreover, if G € G¢ and |H| < |G|, then H € G.

Proposition 2. Let £ be a density. IfG : 9 xQ — R is a continuously
differentiable function for which

/ﬂ |G(6,6)|€(6)d8 < oo
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and
/ |G10(w,8)|e"™ (0 ¢(0)dwd < oo
QxQ
for some m > 1, then G € G¢.

Proof. There is no loss of generality in supposing that G(6,8) = 0 for all 8 € Q.
Let m be as in the statement of the Proposition. Then

Yt C)
sup |G(6n, 05, < / G 0w, ) ]de + / Gro(@, O)ldw,  (8)
nz2m [C] Y-

where Yt is the supremum of 6, over n > m for which B, occurs and Y ~ is the
infimum of 8,, over n > m for which B, occurs. Now,

e [ " (G, ©)lds} = [ { /:lamw,om{w > w)do fe(0)d0

)
< [{ [ 1610l ma e,

by Proposition 1; and the latter integral is finite, by assumption. The other
integral in (8) may be analyzed similarly to complete the proof.

Corollary 3. If§ is a density, g : @ — R, and |g|€ is integrable, then G(w,8) =
9(8)e! 9 w0 € Q, defines an element of Ge.

Proof. In this case, G(8,0) = g(f) for all 8 € Q; [, |g]édf < oo, by assumption;
and

// |G1o(w, 8)|e 21O ¢(0)dwdd
OxN

= [{ [ ooy o2 aoieco)as
Q Q
< [ 2a®)le@)ds < o,
Q
since [, [Tr0le™Tdw < ffooo |z|e~*dz = 2 for all 4 € Q.

4. Stein’s Identity

Let H denote the collection of measurable functions h : R — R of polynomial
growth; let ® denote the standard normal distribution; and let

o
tI>h=/ hd®

-0
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and

Uh(z) = e3* / [h(y) - ®hle" 3V dy, z€R,

for h € H. Then U is a linear transformation from H back into itself (See
Lemma 1 below). For example, if hy(z) = z and hy(z) = 22 for z € R, then
Uh1(2) =1 and Uhy(z) = z for all z €R.

Let H, denote the collection of all h € H for which |h(2)] < 1+ |z|? for all
z € R; and let pr denote the class of all h € H for which h/c € H, for some
0<ec<oo.

Lemma 1. There are (finite) positive constants cg,cy,cy,... for which UHy C
coHo and UH, C ¢, Hp—y for allp =1,2,....

Proof. For p = 0, the assertion is proved by Stein (1987). For p > 1, it follows
from the identity,

o0 o0
- / yPe i dy = 2271 4+ (p - 1)ed / P23 dy, (9)
z

z

for 2 > 0 and a simple induction.

Lemma 2.

dUh = /°° zh(z)®(dz)
and

BUh = %/_Z(zz — 1)h(2)8(dz), Vhe H.

The simple proof of Lemma 2 is omitted.

In the next result, I' denotes a finite signed measure of the form dI' = fd®,
where f is a real valued measurable function which is integrable with respect to
®; and Th = [ hdl, whenever h € H and the integral exists.

The following result is similar to one exploited by Stein (1987).

Stein’s Identity. Let p > 0 be an integer. If dI' = fd®, where f is absolutely
continuous on (every compact subinterval of) R and

| e < o, (10)

then
Th—-T1x ®h = / Uhx f'd®, Yhe Hpy,.
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Proof. There is no loss of generality in supposing that ®h = 0 and h € Hp4q,
since otherwise h may be replaced by (h—®h)/c for an appropriatec. If h € H,pyy,
then Uh € cpy1H,, so that |[Uh x f'| is integrable (w.r.t. @), by (10). Now,

,/ow Uh x f'd® = —\/;_;/ [/ h(y)e 2y2dy]f’(z)dz

= o= [T [ 1] ety
- / B (v) - FO)]B(dy),

where the interchange of integration is easily justified using (9) and (10). A
similar argument may be applied to the integral over (—o0,0]; and it follows that

oo

[ vnxraw= [ hai) - sone) = [ hiae=rh

-0 -

5. Consequences

Observe that if B, occurs, then the posterior distribution, I', say, of Z,
given X,,...,X, is of the form dI',, = f,d®, where

ful2) = é{(O)J(én,H)IR"(z), 2 €R, (11)

where 0 < ¢, = ¢,(X3,...,X5) < 00, R,, denotes the range of Z,, and z and 6
are related by (3).

Some restrictions on the prior density are needed to exploit Stein’s Identity.
Let = denote the collection of all continuous densities £ on §2 for which £(6) — 0
as either § — f or § — 8; let =, denote the class of all £ € = with compact
support in §; let AC denote the collection of all absolutely continuous functions
on §; and let

o

£df < o0, > 1},

!

Elz{E€E|£€ACand/ &

Q

and
[ 4

£df < 00,3 > 1}.

"

52={§€E|{'6ACand/ &

Q

To simplify some of the formulas below, it is convenient to let

K&(w,8) = (5')(9)J(w 6) + Jor (w,0)
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and
!

Kf(w,0) = (%")(0)12(w, 8) + 3(—{)(9)J(w,9)J01(w, 9)
+ J(w, 0)Joz(w,0) + J2,(w, 8)

for w,0 € Q, £ € E; and £ € Z;, where 0/0 = 0. The values of I(f and Kf on
the line w = @ are especially important; they are

K4(0) = K46,6) = _1;1"_(0_) . %(9) _ 5_1%%
and
K$(8) = K§(8,6) = ¢"1(0) .?(g) _ ;}Pn(gg .%(9)
PR 1 )

36 d)//(g)a 4 ¢Il(0)2’

Lemma 3. If £ € E; and By, occurs, then the function f, defined in (11) is
absolutely continuous with

1 ,.
fi(z) = ﬁlff(Bn,G)fn(z), z€R.
If £ € Zg NE; and B, occurs, then f] is absolutely continuous with

fi(2) = 2 K§(0n, 0)fa(2), zER.

Proof. Suppose first that £ € Z; and B,, occurs. Then it is clear that f, is ab-
solutely continuous on every compact interval of R,, with the claimed derivative.
So, it suffices to show that f,(z) approaches zero as z approaches an endpoint of
R,. If I(én,ﬁ) = 00, then there is no right endpoint; and if I(én,a) < 00, then
J (én,o) remains bounded as # — @ and, therefore, f,(z) — 0 as z approaches
the right endpoint. The left endpoint, if any, may be handled similarly.

The proof of the second assertion is similar and simpler.

Recall that G¢ denotes the linear space of all functions G : Q@ x § — R for
which (7) holds.

Proposition 3. If £ € Zg N Z; then |Kf]°‘ € G¢ for some 1 < a < oo; and if
£ € EgNE,, then |K§|°‘ € G¢ for some 1 < a < co.

Proof. Let Q¢ denote the compact support of £ € Z3 N =Z;; and let ©y denote
another compact set for which ¢, C Q8 C Qo C Q, where §§ denotes the interior
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of 9. Then J and |Jy1|, are bounded on 2y X ¢, by continuity and compactness;
Iyz is bounded on Qg x §2¢, by compactness; and 1/1 and 1/|Iy;| are bounded on
Q) X Q¢ by convexity and monotonicity. So, there are constants C’ and C” for
which

on @ x Q¢, by (4) and (5). So, |(£'/€)J|* € G¢ and |J1|* € G¢ for some
1 < & < 00, by Corollary 3 and, therefore, |K1€|°‘ € G¢ for some 1 < a < oo.
Similarly, if £ € SoNZE; then [(£"/€)J?|* € Ge, |(£'/€)T Jo1|* € Ge and JE, € G¢
for some 1 < a < 00, by (12). The term JJy; requires more care. Since JJps is
bounded on £ x (¢, there is a constant C for which

JJo2| < J|=—=J ——(Ip3J 2142 J Ji
| Jo2} £ 2] 01+m( 03/ + 2152 J Jo1)

< C{1+ |Jo1| + J% + J*Jon|}
on 2 X Q¢. So, K§|* € G forsome 1 < a < 0o, by (12) and Corollary 3.
£ 2 £

Proposition 4. Suppose that £ € Z, and that K_f € G¢. Then

1 nrr-€rp
= B2 (K§(5,, 0)UA(Z,) (13)
(simultaneously) for all h € Hy a.e. (P¢) on B, for alln > m for some m > 1;

and if |[K¢|” € G¢ for some 1 < a < oo, then (13) holds for all h € H. If
E € Eo naz, then

EF{h(Z,)} = ®h +

1
/n

Jor allh € H a.e. (P¢) on B, for n > m, for some m > 1, where U? = UoU.

E}{h(Z,)} = ®h+ (@Uh)Eg‘{I(f(én,O)}+%E?{Iﬁ’g(én,O)Uzh(Zn)} (14)

Proof. For (13), let m be as in (7) with G = I\"f, or G = |K|*, and let f, be
as in (11). If » > m and B, occurs, then

Vi [Pl = | 1aKS G, 00 a2)

— 00

= EM|Za|P|K$(6,,0)]},

where § and z are related by (3), for all 0 < p < 0. If p = 0, the last line is
finite w.p.1, since Kf € G¢; and if |K1€|°’ € G¢ for some a > 1, then it is finite
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w.p.1 for all 1 < p < oo, by Hélder’s Inequality and Corollary 2. In either case,
EP{h(Zy) - ®h} = / h(2)T'n(dz) — Bh
—00

= /_ ” Uh(z)f.(2)®(dz) (15)

1 e
= Z=E{KL (6, ©)UA(Z)}
for all h € Hpy1, a.e. on B, by Stein’s Identity, establishing (13).
For (14), one first verifies that [ |z|P|f¥(2)|®(dz) < o a.e. on B, for all
p=1,2,..., as above. Then
1

—EMK$(6 _ L
‘/ﬁEé {I l(on,@)Uh(Zn)} \/;L-

= [7 unarsiereias) - @um | r@e)

(QUR)EZ{K{(6x,0)}

- /_ " Uh(2)f"(2)0(dz) = %Eg{ffg(én,e)uzh(zn)}

(>0}

forallh € H, a.e. on B, forp=1,2,....

A definition is needed for the last result of this section. Let Y;,Ys,...
denote a sequence of random variables adapted to a family of sigma-algebras,
Ai,Az,..., on a probability space (X, A, P); and let T denote the collection
of all finite stopping times 7 w.r.t. A, As,...; then Y;,Y,,... is said to be
nearly dominated iff {Y; : 7 € T} is uniformly integrable. Observe that then
E|Y;|, T €T, is bounded and sup, », |Vy| < 0o w.p.1. If Wy, W,,... are random
variables for which E{sup,>, |Wa|} < oo, then Y, = E(W,|4,), n > 1, is
nearly dominated, since |Y;,[ < E(supy>, |Wk||Ap) for all n = 1,2,.... Also, if
1< a, B < oo are conjugate values (1/a + 1/8 = 1) and if |W,|*, n > 1, and
[Y,|%, n > 1, are both nearly dominated, then so is W, Y,,, since fA |W.Y;|dP <
{4 W, |*dP} /> x {J41Y-|PdP}!/# for all stopping times 7 and events A.

This definition is used below with A, = ¢{X1,...,X,}, n = 1,2,... and
P = P¢. For the definition of the essential supremum of a family of random
variables, needed below, see, for example, Chow, Robbins and Siegmund (1971,
p-8). '

Proposition 5. If 1 < p < oo and IKfIP € G¢, then the sequence

€ss sup ‘/ﬁlEg[h(Z‘n)] - (I>h’|IB'.a n 2> m,
heH,
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18 nearly dominated for some m > 1.

Proof. The following inequality is used: if 0 < b, ¢ < 00,1 < p < o0, and
0<z<b+ca®V/P then z < pb+ cP. It is easily verified by constructing
a tangent to the curve y = b+ cz(P~1)/? at £ = ¢?. Let m be as in (7) with
G= |Kf|p. If h € Hp, then, by Proposition 4,
V| EZ[A(Za) — ®h)| = |EZ{KF(6n, ©)U(Z,))|
Ll

n 0 1o 7
< EZ{|Kf (6, 0)7}> Ef {|Uh(zn)|;%} :

a.e. on B, by Proposition 4 and Hoélder’s Inequality. If p = 1, then the last factor
is to be interpreted as the maximum of |Uh(z)|; and since this is at most 2¢;, by
Lemma 1, the Proposition follows easily. For 1 < p < 00, let g,(2) = 1+ |z|?, for
z € R. Then

|UR(2)[77T < (2¢,)777 g,(2)

for all z € Rand all h € H,, by a simple application of Lemma 1. It follows that,
a.e. on B,,

1 - 1 p=1
EZ[W(Z,) — ®h| < —=2c, EF{|K$(0,,0)|P}? E?{g,(Z. )} .
eisézlipi 5[ (Zn) | < N Cp g{l (1(0n,0)|7} 5{9p( )}

Let b = ®g,, ¢ = (2¢,/v/n)EF{|Kf(6,,0)P}!/?, and & = EF[g,(Zn)]. Then
z<b+cz(PV/? 3¢ on B,. So, a.e. on B,

n 2 P n
EZ{gs(Zn)] < pb+ ¢ = pgy + ( EZ{IK$(6, 0)7);

)
and, therefore, E[g,(Z,)]IB,, n > m, are nearly dominated. So,
ess sup v/l EZh(Z,)] - @h|15,
h€H,
<26, E{|K{ (6, 0)1")> E{l05(Z))} + In,, 2 m,
are nearly dominated (by Holder’s Inequality, as above).

Corollary 4. ess sup |E¢[R(Zn)]|IB,, n > m, are nearly dominated.
heH,

6. Second Order Expansions

In the Theorem below, £ denotes a fixed member of Z;; and t = t,, a > 1,
denotes an increasing family of stopping times, w.r.t. A, = o{Xy,...,X,},
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n =1,2,..., for which there exist 0 < 7 < 00 and a positive function p for which

P{X:ed'(W}=1, Ya>1,0€eQ, (16)
ti — p*(8) in Pj-probability a.e. 8, an

and
Pefta < 7} = o(a™") (18)

as a — oo for some g > 1/2. Observe that (18) holds for every £ € = if for every
compact g C §, there is an 7 = n(£p) for which

Py{t, £ n}df = o(a™?), asa — oo. (19)
Qo

Also observe that (17) and (18) require p to be essentially bounded on the support
of £.

For the theorem below, observe that E;|Z;|P < oo for any stopping time ¢,
if £ € Z; and [Kelp € G¢, by Corollary 4 and let

Ry o(&;h) = Va{EL[h(Z:)] - R} — (BUR)E[p(0)K$(0)]
for h€ Hy and a > 1.

Theorem 1. Suppose that £ € =, and |I\f|7’J € G¢, where 1 < p< oo. Ift=1,
are stopping times for which (16), (17) and (18) hold, then

lim Eg{ess sup |R1,.(&;h)|} = 0.
heH,

a-—o0

Proof. First observe that there is a constant C for which

/ ess sup | Ry o(&; h)|d P
{t(r’a} hEH

<cf/ (1+|Zt|”)dP5+C/ p(0)|KE(0)|dP;

{t<na} {t<na}

for all @ > 1. The final integral here approaches zero as a — oo, by (17) and
(18). For the first, let 7 and ¢ be as in (18);let 1 < @ < 2g; and let 8 = a/(a—1)
denote the conjugate value. Then

16
ﬁ/ (1+1Z?)dP; < VaPe{t < na}l/"Eg{ max(1+ | Z[")Is, }
{t<na} k<na

which is of order \/a - a=9/ -log? a = o(1), by (18) and Corollary 2.
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To estimate the integral over {t > na}, it is convenient to write (using
Proposition 4)

Riq(&R) =1, + 11, + 111,

where
L = /(DB [K§(6.,0) - EYRE(©)N)UA(Z:)}

1L = /($)ELKS(©)}E{UA(Z:) - (2UR)}

I, = (@Uh)Eg{icf(@) [\/(;T) - p(@)] }

In the analysis of these terms write I¥ = ess SUPhen, la X I{t>na}, etc.. It is
clear from (17) and (18) that [\/(%)— p(©)]I{¢>na} — 0 in probability as a — oo
and that |/($) = p(©)|I{t>na} < 1/\/M+p(O), which is essentially bounded. So,

Jmtarc<c [ ki@ - po)far ~ 0
{t>na} t

as @ — 00, by the dominated convergence theorem. It is clear from Proposition 5
that II¥ — 0 in P;-probability as a — oo. If p = 1, then |E{[UR(Z:) — @UAY,
a > 1, are bounded, by Lemma 1, so that Hf, a > 1, are uniformly integrable;
andif1 < p < oo, then IIa# ,a > 1, are uniformly integrable by Holder’s Inequality
and Corollary 4. In either case, lim,_,, E¢(II¥) — 0. For the first term, it is
easily seen that

-~ ~ -1
/ TP < ZE(1K(0,0) - ERWOIFY x Ee{(1+120P7)77) ',

where the right most factor is to be interpreted as 2 if p = 1. Then the right
most factor remains bounded as a — oo, by Corollary 4; and

E¢{|K{(6:,0) — ELK1(0)]"}>
<E¢{sup |K{(6n,0) — K§(0)"15,}* + E{|EL[KS(0)] - KE(©))3,

n>na

which approach zero as a — oo, by the dominated and martingale convergence
theorems.

For the corollaries below, suppose that ¢,, a > 1, satisfy (16), (17) and (19)
for some ¢ > 1/2 and that p is absolutely continuous on (all compact subsets




INTEGRABLE EXPANSIONS FOR POSTERIOR DISTRIBUTIONS 105

of) 2. Then the conditions of Theorem 1 are satisfied with p = 1 for every
EEEpNE,. Let

1 ,¢]l n 1

A Ty S

!
x P
p
and
RO = [ m(@p0)E(0)0.
Observe that x; does not depend on €£.

Corollary 5. For all § € Zo N =4,

lim Eg{ ess sup \/—\Eﬁ[h(Zt) — ®h] - \/..(tI)Uh)m(f)l} 0. (20)

a—00

Proof. It is clear from Theorem 1 and the martingale convergence theorem that
(20) holds with &; (&) replaced by Eg{p(O)Kf(O)}; and

Elp(@R{(©)) = [ p(0)| 7 -£0) - 5 - Jracne(o] o

= [[(B) @+ 5 popsrzr®]coras
= [ @018 = 7a(6)
by a simple integration by parts.
One nice feature of the transformation (3) is that the correction terms in
the asymptotic expansion may be described by rescaling. For z € R, 6 € 2 and

a>1,let

Fa,g(z) = Pg{Zt < z}
and

Corollary 6. For all§ € Zy N =y,

lim sup
a— o0 hEHl

/ﬂ Va[Fugh - <1>f,{2,h]g(a)do‘ ~0. (21)
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Proof. Since [ F, h&(0)d0 = E¢[h(Z;)), the integral on the left side of (21) is
the sum of

L = VaE¢[h(Z:) — ®h] — (BUR)R(€)

and
I, = _/ {\/E[cbff},h — ®h] — (<I>Uh)n1(0)p(())}§(0)d8
Q

for each h € H; and a > 1. Here I, — 0 uniformly in h € H; as a — oo, by
Corollary 5. Moreover, the integrand in II, is at most

/ Va{e[z = Z=p(O(0)] - (=)} h()dz = p(6)s1(0) / 2h(2)p(2)dz
< / |va{e| - 76/0(0)&1(9)] ~ 9(2)} = p(O)s1(8)20(2)|(1 + [2])dz,

which is independent of A € Hy, approaches zero as a — oo for each 6, and is
bounded by a constant multiple of 1 + |p’|. So, II, — 0 uniformly in & € H,, by
the dominated convergence theorem, to complete the proof

Corollary 6 does not assert that F, 4(z) — @gll), o(1/y/a) as a — oo

for any fixed 6 or z. Rather, ley?g(z) may be regarded as an approximation to
appropriate averages of Fy ,(z) in small neighborhoods about 6. Alternatively,
the integral in (21) defines a linear functional on (the linear span of) Sy N E
and (21) may be regarded as a form of weak convergence of the integrands.

=1,

7. Estimation after Sequential Testing

One of the more interesting applications of Theorem 1 is to approximate the
sampling distributions of maximum likelihood estimators in sequential problems.
To understand the nature of the difficulty consider the simple problem in which
Xi1,X3,... areiid. N(6,1), where 0 < 8 < oo is unknown, and

t=t, =inf{n >1:95, > a}.

Then ; = X, and Z: = V(O - X¢) on {X; > 0}. It follows easily from
Anscombe’s (1952) Theorem that Z; is asymptotically standard normal under
Py as a — oo for every 0 < 6 < oo; but the simulations of Woodroofe and Keener
(1987) indicate that this normality may not provide a good approximation to the
distribution of Z; for values of a of practical interest. See Table 1 below.

In this problem, it is easily seen that p(f) = v, 0 < 6 < oo, so that
p(0)k1(8) = —1/2v/8, 0 < 8 < 00, and Corollary 5 suggests the approximation

Fap(z) 2 00)(2) = @(2) + \/—99(2) % 4(2), (22)
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say, for —oo < z2< 00 and 0 < a, 8 < oo.

In Table 1 below Monte Carlo estimates of Pg{Z; < z} are reported for a =
12,0 = 0.5 and 1 and selected values of z, along with direct normal approximation
®(2) and the right side of (22). The most striking aspect of the simulations is the
amount by which normal approximation underestimates the probabilities. The
approximation (22) is closer in all cases reported and much closer in some.

Table 1. Simulations of P3{Z; < 2} for a = 12

8=10.5 6=1.0

z M.C. Q:’g(z) ®(2) M.C. Q;,o(z)
—1.80 .049 .052 036 .046 .047
-1.20 151 .145 .115 .136 .143
—-0.60 .338 .342 274 317 323

0.00 .576 .582 .500 .556 .558

0.60 .789 .795 .726 .766 774

1.20 921 .925 .885 911 913

1.80 978 .980 .964 .975 975

Note: ®; 4(z) is the right side of (22).
Source (of the simulations): Woodroofe and Keener (1987);
based on 40,000 replications.

8. Higher Order Expansions

For higher order expansions the coefficient of 1/\/a in Theorem 1 must be
computed with more care.

Lemma 4. Lett = t,, a > 1, be stopping times for which (17) holds. Suppose
that £ € Z9 N Z; has compact support §)¢, say; let S denote a compact interval
Jor which Q¢ C QF C Qo C Q; and let A be the event A = {t > na and 6, € Qo}.
If G : Q2 x Q — R is continuously differentiable, then

lim /A\/awg{a(@,e) - G(6,,0)}|dP; = 0.

a— oo

Proof. It sufﬁcgs to prove the lemma with Va replaced by +/t. Now,
Vvn{G(0,0) - G(6,,0)} may be written as the sum of

I = GIO(anaan)Zn

VI (6r)
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and

II, = vn{G(0,0) - G(6,,0)} -

for n = 1,2,.... Using Proposition 4 and the continuity of Gy and %" it is
easily seen that there is a constant C for which

_ GIO(ét,gt
[ reaofare= [ |06 myzojar
Glo(ot,at)

/ Tl I’f(ét,@)ldPg < C/A%dpé,

which approaches zero as a — oco. Using the Mean Value Theorem, it is easily
seen that II; — 0 in probability as a — oo and that |II;| < C|Z;| w.p.1 on A for
all @ > 1 for some constant C. So,

/|E§(IIt)|dP€§/ [1L;|dPe — 0
A A

as a — 00. The lemma follows.

In the next theorem let t = ¢, denote stopping times for which (16) and (17)
hold; and

Ra.a(€; ) = a{ EA(Z0) - BH] - — (@UR)EL{KS(0)]

1 -
- —(@Uh)E{[p*(0)K3(0)]}
for he€ H and £ € 5y N Z,, where U%2 = UoU.

Theorem 2. Lett =t,, a > 1, be stopping times for which (16), (17) and (19)
hold for some ¢ > 1. If £ € 5y N Z,, then

lim Eg{ ess sup | Rz 4(¢; h)l}
h€H,

a—0o0

Proof.

lim ess sup |Ry,a(&;h)|dPe = 0
4™ J{t<na} hEH,

as @ — 00, may be established as in the proof of Theorem 1, since ¢ > 1.
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For the integral over {t > na}, it is convenient to write (using Proposition 4)

R2,a(€; h) =1, + Iy + 11l + IV,,

where

L = vay[(D@UN B [K§(0,,0) - KE(O)],

I, = ZEB¢{[K§(6.,0) - E[R{(©)]]Ur(20)},

I, %Eg [K§(0)] EL[Uh(2:) - ®UA],

f

— 2 tf 7€ a o
IV, = (U h)Ee{IQ(G))[t 4(@)]}.
The analyses of II, — IV, are similar to and simpler than those of I, — III, in

Theorem 1. For I,, let 29 and A be as in Lemma 4; let 1 < @ < o0 be such that
|K1e |* € G¢; and let § denote the conjugate value. Then, by Lemma 4,

\/a/A \/@| [BL[KE(8,,0) - K§(0)][aPe — 0;
and
o 0S5

52\/§E5{ sup
n n>na

which approaches zero as a — oo by Propositions 1 and 3.

. ay L . 1
Kf(on,e)] } x P {0, ¢ Q0,30 > na}?,

For the Corollaries below, suppose that p’ is absolutely continuous; recall
the expression for K5(6); and let

1 2\ " 2\t 15 12 1 (4)
kg = . )07 (7)) 15 T 1

,dJII p2 w"? p2 36 1/)"3 4 ,‘/)HZ

and

%@=Lm@ﬂ%@w

Corollary 7. If, for every compact §2y C {2,

alirgo\/&/n Eg(\/_g) - p(0)id0 =0, (23)
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then
. 1 _ N
ali-»n;o hsg}%a [E¢(h(Z:)) - ®h] — ﬁ@Uh -®1(€) - Z@U h- n2(£)| =0 (24)

for every £ € 2o N =,.

Proof. By the definition of Rj 4, the term on left side of (24) may be written as
the absolute value of the sum of

I, = \/EQUh{Ef{\/gEE [Il’f(e)]} - El(f)},

11 = dU2h{ E¢{p*(0)K§(0)} — %a(6)},
and

IIIa = ES{RLa(e;h)}
forall h € Hy, a > 1, and £ € Zp N Z;. Here 11, — 0 uniformly in k2 € H,, as
a — 00, by Theorem 2; and II = 0 for all h € H,, by an integration by parts, as
in the proof of Corollary 5. For the first term, there is a constant C for which

Ll = valeun e[, [2&5(0)] - B oI5

g [/s - no)] & @)}
<2Cva /n 139(\@) - p(8)|| K5(8)|¢(6)as,

which is independent of h € H; and approaches zero as a — o0, by (23).

<2Cva

Corollary 7 may be restated in a form analogous to Corollary 6. Recall the
definition of F, 4 and define signed measures @fﬁ; by

1
(pflz’zh = &h + %I{I(O)QU’I -+ %RZ(H)QUQh

for h € H and 6 € . Then @ﬁ%z provides a higher order, very weak approxima-
tion to F, 4 in following sense.

Corollary 8. If (23) holds for every compact 0y C Q, then

lim sup a
a— 00 h€H2

/n [Fa,eh —~ ‘I’flz,‘)gh]ﬁ(é’)dal _0

forallE € 5y N Z,.
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