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ON ASYMPTOTIC EFFICIENCY
IN ESTIMATION THEORY
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Abstract: This is an account of the mathematical formulation of asymptotic ef-
ficiency in estimation theory from the point of view of the concentration of the
estimators around the true parameter value. The purpose is not to propose any new
definition of efficiency, but rather to consider the inter-relationships among some
rather scattered existing results with the aim of connecting them into a coherent
whole. In the process of doing so, some improvements and extensions will also be
given. The theory is developed first in the case of a scalar parameter. It is then
extended by a simple argument to cover the estimation of a scalar function of a
multi or infinite dimensional parameter.
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1. Introduction

After the pioneering works of Edgeworth (1908-9) and Fisher (1925), it was
believed that the maximum likelihood estimator (MLE) 6, is asymptotically op-
timal among a large class of estimators. According to Pratt (1976), both Edge-
worth and Fisher gave more or less correct proofs of the optimality of MLE (for
a location parameter) among the class of M-estimators, and each of them also
recognized that the optimality actually extends to more general cases. The gen-
eral result that Fisher had in mind (and attempted to prove) may be formulated
mathematically as follows:

(i) V(b — 6)-2>N(0,i71) under Py(X,,).

(ii) If T, is any asymptotically normal estimator (i.e. /n(T, — 9)3 N(0,vs)
under Py(X,)), then vy > i;l.

Here Py(X,) denotes the distribution of the data X, = (X1,...,X,) where

X1,X2,...are independently identically distributed (i.i.d) in R according to a

density fg(-) indexed by a real valued parameter 8, and i, is the Fisher infor-

mation of the family {fs(-)}, defined more precisely below. Part (i) of Fisher’s
claim is typically true under mild conditions on the family of densities {fo(-)}.
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However, an example by J. L. Hodges, Jr. showed that part (ii) of Fisher’s claim
is not true as stated even in the smoothest problems. In Hodge’s example, an
asymptotically normal estimator T, is constructed whose asymptotic variance vy
has the property that vy < i;l for all 0, and vy, < z';'ol for a particular value 6.
Hodge’s example was reported in LeCam (1953), who called such an estimator
“superefficient” at 6. He then proceeded to establish, among other things, the
celebrated result that the set of § where superefficiency occurs is of measure zero.

To state the results in more precise terms, we need to introduce a few
notations and regularity conditions. For simplicity, in Sections 1 to 5 we as-
sume that the parameter space is the unit interval, i.e. § € Q = [0,1]. Let
Xn = (X31,...,X;) be the observation vector taking values in a sample space
(Xn,Bn,vy,) where vy, is a o-finite measure on the o-field B,,. Denote by Py(X,)
the distribution of X,, under 8, and py(x,) the corresponding density function
with respect to v,. An estimator of 6 based on X, is by definition simply a
measurable function T, = To(X,). In this paper, we study the properties of
estimators T, as the “sample size” n tends to infinity, under one or more of the
following conditions on the densities pg(x,).

Condition (M). For every n, pg(x,) is a measurable function in (,x,).

Condition (L). For all h € R Potnsyn X,) = ehlno—3ioh?+Ra(6,h) where,
’ dP,

under Py(X,,), An’a-P*N(O,’ig), R,(6, h)f»O; and ig is a strictly positive and con-
tinuous function of 6.

Condition (P). For any piecewise continuous prior density (-) on , let I, =
interior of {6 : n(0) > 0}; then, for § € I, and any s € R,

P(Vn(0 - 8,) < s |Xn;7) = P(Z5 < s) under Py(X,,).

Here én denotes a mazimum likelihood estimator of § based on X,,, O denotes the
random variable whose joint density with X,, is given by p(,x,) = 7(6)pq (xn),
Zy denotes a N(0,i;') variable, and iy is a strictly positive and continuous
function in 0.

Condition (L) is LeCam’s “locally asymptotically normal” (LAN) condition
(see LeCam (1960)). Condition (P), in essence, requires the posterior distribution
of  to be asymptotically normal when the data is generated from a parameter
value within the support of the prior. In the case when Xj,...,X, are i.i.d.
with a common density fs(z), we can usually take A, 4 to be the normalized
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score function and i4 to be the Fisher information of {fs(-)}, i,e.

n a 6 2
= n—1/2 il . iy — - .
An,o =n < 30 log fﬂ(Xl)v 1’9 - Eo(ao log fg(X)) 1

=

then these conditions are typically satisfied under mild conditions on the family
{fe(-)}. In this paper, however the derivation of conditions (L) and (P) from more
elementary conditions will not be discussed further. It seems that conditions (M),
(L) and (P) are the natural conditions to use in more complex situations, such
as when the observations are dependent; whereas the simpler conditions in the
i.i.d. case that imply these conditions are more difficult to generalize. Since all
the difficulties in formulating a satisfactory concept of asymptotic efficiency are
present even in the smoothest problems, for example, when X, X,,... arei.i.d.
N(6,1), it is felt that the imposition of the above conditions on the parametric
family does not distract us from the central issues.

We can now state, in mathematical terms, the aforementioned result that
superefficiency can occur only in sets of measure zero. LeCam (1953) established
such a result for asymptotically efficient estimators when efficiency is defined
in terms of a risk. That this result holds in fact for asymptotically normal
estimators with asymptotic variances as the criterion was first established by
Bahadur (1964).

Proposition 1. Under conditions (M) and (L), if /n(T, — 9)3N(0,v9) for all
0 € Q, then u{f : vy < i;'} = 0, where u denotes the Lebesgue measure on .

This result has been extended in several ways. First of all, the restriction of
the comparisons to only the class of asymptotically normal estimators seems too
restrictive. But how can one compare estimators having different types of asymp-
totic distributions? A natural way, studied previously by several authors (for ex-
ample, Basu (1956)), is to compare their concentration probabilities around the
true parameter value. Specifically, since the MLE or other supposedly asymp-
totically efficient estimators have N (O,z'gl) as their asymptotic distribution, we
may want to establish, for a class of estimator {T,}, that the concentration prob-
ability Ps(y/n|T,, — 6| < p) is asymptotically bounded above by P(|Zs| < p). The
sense in which the latter can be interpreted as an asymptotic upper bound for
the former depends on how large is the class of estimators under consideration.
The larger this class of estimators, the weaker will be the resulting “Fisher’s
bound” for the concentration probabilities. This is a rather trivial point, yet it
serves as a useful theme in the organization of the results reviewed in this paper.
In Section 2, we fix a parameter value 6y and study conditions on 7, which are
stringent enough that Fisher’s bound holds at 6y. The essence of the regularity
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condition is that some aspect of the distribution of /n(T, — 6,) under any se-
quence {6} of “local alternatives” of 6§y must converge to a limit independent
of the sequence {#,}. An estimator satisfying such a condition will be said to be
“regular” at 6y. Thus, regularity at 6y excludes superefficiency at 6.

In Section 3, we study the larger class of “stable estimators”, i.e. estimators
having an asymptotic distribution at each §. Under stability it is shown that
Fisher’s bound for the asymptotic distribution holds for almost all §. This is a
natural generalization of Proposition 1 above.

In Section 4, we remove all conditions on T, i.e. the class of estimators
is now the largest possible. As a result, the sense of Fisher’s bound must be
further weakened. In general, the most one can conclude is that Fisher’s bound
is satisfied in some “locally averaged” sense. The relationship between this and
Hajek’s “locally asymptotically minimax” (LAM) form of Fisher’s bound will
be examined. We also study, for large n, the “size” of the set of § value where
Fisher’s bound is exceeded by an amount € > 0. The material in Sections 2 and
3 is not essential for understanding Section 4.

In Sections 5 and 6, we present an extension of Fisher’s bound for concentra-
tion probabilities of regular estimators of a scalar functional of a possibly infinite
dimensional parameter.

Although only a small portion of the results are new, proofs are provided
for all propositions stated in this paper. These proofs are collected in Section 7

so as not to disrupt the main exposition. It is the author’s hope that this will
render the account self-contained.

2. Regular Estimators

In this section we fix a particular value 6 in the interior of ® and study
conditions on 7', that guarantee that Fisher’s bound is satisfied at the value 6.
Hodges’s example showed that it is not enough to require only that /(T — 8y)
has an asymptotic distribution; something more is needed. The key observation
was made in Bahadur (1964). We can reformulate his result, given only for
asymptotically normal estimators, in terms of concentration probabilities.

Proposition 2 (Bahadur). Under condition (L), if T,, is asymptotically median
unbiased under local alternatives, i.e. for all (sequences of) local alternatives of
the form 6, », = 0y + h/+\/n,
1
Py (T < O p) — 2
then for alla >0, b > 0,
lim sup Py, ( — a < V(T ~ 6) < b) < P(~a < Zg, < b).

n—oo
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This is the first result of this type, namely, if the distribution of T}, is in
some sense regular as n — oo under local alternatives of a point 6, then Fisher’s
bound holds at that 6y. It will be established below that the median unbi-
asedness condition can be relaxed substantially. However, let us first compare
Proposition 2 to another famous result, namely, the “representation theorem”
for asymptotically “regular” estimators, due to Hajek (1970).

Proposition 3 (Hajek). Under condition (L), if
(i) /7(Tn — 0n,1) has a limiting distribution Fi,(-) under any local alternative
{0, = 00 + h/\/n},i.e., for any h € R,

P, » (\/E(Tn —0n0) < S) — Fp(s) Vs €R

and

(i) Fn(-) is independent of h, with common limiting distribution F*(-), say, then
F* is the convolution of a N(0, i;ol) distribution with some other distribution
function G.

The condition in Proposition 3 requires Py, (Tn -0 n < ’n) to converge
to a limit independent of h for each s, whereas Proposition 2 needs this only for
8 = 0. In this sense Proposition 3 requires a much stronger condition than Propo-
sition 2, but as a consequence it yields a characterization of the whole asymptotic
distribution as opposed to only bounds for concentration probabilities. Moreover,
the limit of Py, , (Tn < 65,s) is required to be 1/2 in Proposition 2, whereas in
Proposition 3 it is allowed to be any constant independent of h. This suggests
that Fisher’s bound for probabilities of concentration may still be valid under a
weaker condition than both.

Proposition 4. Under condition (L), if for all rational p > 0,

limsup Py, ,(Tn < 0n,,) < liminf Py, _ (T < 0n,—,),
n—00

n—00

then, for any p > 0,

lim sup Pa(V/alTs — ol < p) < P(|Za,] < p).

An estimator satisfying the condition of Proposition 4 is said to be regular
at p. Note that the condition in Proposition 4 is weaker than those of both
Propositions 2 and 3. Of course, the conclusion in Proposition 4 is weaker than
both also. In particular, while the lower bound for probabilities of concentration
in Proposition 2 applies to any interval containing zero, the bound in Proposi-
tion 4 is applicable only to symmetric intervals. However, the example below
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shows that, in the absence of asymptotic median unbiasedness, the probabilities
of concentration (of \/n(T, — 8)) in asymmetric intervals are really not relevant
for the concept of efficiency.

Example 1. Let X,,X,,...,X, be iid. N(6,1), (then i = 1). Consider
the estimator T, = X, + 7“; where @ > 0 is a constant. Clearly, T, is an

inferior estimate to the sample mean X,. However, for all ¢ > 0 sufficiently
small, the interval I = (—¢,2a — €) has the property that Py(v/n(T, —0) € I) >
Py(y/n(Xrn —8) € I) for all 6 € Q and for all n.

Remark. While we are on the subject of “regular estimates”, it may be worth-
while to comment that the proof of Proposition 3, presented in Section 5 below,
provides a scheme whereby other theorems can be deduced for the asymptotic
distributions of estimators satisfying condition (i) of Proposition 3. As an exam-
ple, consider

Proposition 5. Under condition (L), suppose

(i) V/n(Tn — 0n1) has a limiting distribution Fy(-) under any local alternative
{0n,h =6 + h/\/ﬁ-},

(ii) The distributions Fy,(-) have a common mean value a (i.e. a = [ydFy(y)
exists and is independent of h).

Denote by Yo a random variable with the same distribution as the limiting dis-

tribution of \/n(T, — 6p) under 0y; then E(YE) > a® + i;ol.

These are the weakest conditions known to the author under which Fisher’s
bound for asymptotic variances is guaranteed to hold at an arbitrary value ;.

3. Stable Estimators

An (sequence of) estimator T, is said to be stable if for all 8, \/n(T, — 8) has
a limiting distribution under 6. Clearly, a stable estimator need not be regular
at all 6.

Proposition 1 suggests that for stable estimators (which includes asymptot-
ically normal estimators), Fisher’s bound pertaining to the asymptotic distribu-
tion, though not necessarily valid for all 8, might be valid for almost all 8. There
are two general ways of obtaining such a result. One approach, introduced in
Bahadur (1964), is to first establish regularity conditions that guarantee Fisher’s
bound at any given point, and then show that stability implies that these regular-
ity conditions are satisfied (along a subsequence) almost everywhere. Using this
argument and Proposition 2, he was able to give a short proof of Proposition 1.

Using the same approach and Proposition 4, we obtain the following extension
of Proposition 1.
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Proposition 6. Under conditions (M) and (L), if T, is stable and if v(8) =
lim Py(T, < 0) is continuous almost everywhere, then, for almost all 8 in ,

lim Ps(v/n|Ty — 8| < p) < P(|Z4| < p) for all p > 0.

Another approach for obtaining the almost everywhere Fisher bound for sta-
ble estimators is to first establish a weaker version of Fisher’s bound, such as the
“locally averaged” version in Section 4 below, and then argue that stability allows
one to improve this bound to an “almost everywhere” version. This idea appears
to have been introduced first by LeCam (1953). Making use of Proposition 12
below, this approach leads to Proposition 7.

Proposition 7. Under conditions (M) and (P), if T is a stable estimator, then
for almost all 6 € Q,

lim Py(v/a|Ty — 8] < p) < P(1Z| < p) for all p > 0.

It appears that stability is close to the weakest regularity condition on T},
for Fisher’s bound to hold for almost all §. For any statistical experiment, if the
distribution of T, is allowed to oscillate, Fisher’s bound may in fact be violated
everywhere!

Example 2*. For any p > 0, define a sequence of numbers {a,} as follows:
ap =0,

a, = (an_l + ﬁ) - (the integer part of a,,_1 + 2—5;)

In other words, (for large enough n) a, is obtained by adding p/2\/n to a,_1,
but “wrapped around” if the resulting sum exceeds 1. Since E?ﬁ = 00, the
sequence {a,} will transverse the interval Q = [0,1] an infinite number of times.
Thus, any 6 € Q will be covered by an interval of the form [a,_;,a,) infinitely
often. Now define the estimator T}, by choosing a point randomly from [a,_1,ay,).
This is clearly a ridiculous estimator. Yet, irrespective of the form of {p4(-)},
Fisher’s bound is violated for all 8 € , because

lim sup Py(v/n|T, — 0] < p) = 1 > P(|Z4] < p) for all § € Q.

4. Arbitrary Estimators

*The author was informed by Professor L. LeCam that he and his coworkers had already

obtained a similar example of this phenomenon, which is reported in a Berkeley thesis of N. H.
Cheng.
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Although the conditions in Propositions 6 and 7 are sufficiently mild to
cover most estimators that we may encounter in practice, from a logical point of
view, we may still wish to have a concept of asymptotic efficiency covering all
estimators. For simplicity of notation, let p > 0 be arbitrary but fixed, and let

gn(0) = PG(\/EITn -6l <p)

and
9(8) = P(|Zs| < p).

Example 2 above shows that for an arbitrary 77, there is no hope of trying to
bound lim sup g,(6) by g(#). Hence it is necessary to further weaken the sense
of Fisher’s bound. One way to formulate a weaker version of Fisher’s bound is
to establish that, for any ¢ > 0 and for all n sufficiently large, the sets

An ={0: gn(0) < g(8) + ¢}

are large subsets of .

First of all, we must be sure that regular or stable estimators would auto-
matically satisfy such a weaker form of Fisher’s bound.

Proposition 8. Under conditions (M) and (P), if T, is a stable estimator, then
#(An) — 1.

What can be said about the size of A, when T}, is an arbitrary estimator?
An important result which bears on this question was given by Hajek (1972).

Proposition 9 (Hajek). Suppose condition (P) holds, then for any 6, € Q,

lim lim sup (Io_ig)flggn(@) < 9(6o).
Hajek (1972) actually proved this result under condition (L) but not (P). We
stated it under (P) so that it relates better with the other results in this section.
Hajek (1972) also contained references to earlier contributors to the development
of this ‘locally asymptotically minimax’ (LAM) form of Fisher’s bound, including
L. LeCam, C. Stein, H. Rubin and H. Chernoff. Proposition 9 is equivalent to
the following proposition.

Proposition 10. Suppose condition (P) holds; then for any ¢ > 0, the set
An = {0:gn(0) < g(0) + €} becomes dense in Q as n — oo (i.e. for any interval
I C QA NI # ¢ for all sufficiently large n.)

Thus, the LAM form of Fisher’s bound, which is applicable to arbitrary
estimators, is considerably weaker than the form available for stable estimators.
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In fact, it does not even exclude the possibility that u(A,) = 0, Vn. Can we say
more about the size of A,, for arbitrary estimators? The answer is yes, but just
by a bit more.

Proposition 11. Suppose condition (P) holds; then for any interval I C 2,
liminf u(A, N I) > 0.
n—o00

Note that Proposition 10 still does not say that A, is large in Lebesgue
measure if n is large. It is tempting for us to go further and attempt to establish
that p(A,) — 1 for arbitrary T,. The following example shows that such an
effort will be futile. The idea of trying a purturbation by a scaled sinusoid in
this example was suggested by Professor Charles Stein when the author posed
the problem to him in a private conversation. To explain the example, we need
a technical lemma.

Lemma. Let Z ~ N(0,1); then for all €,p and |y| sufficiently small, say,
0<e<e,0<p<po,0< |y <7, we have

P(1Z - 5sin(Z + 7)) < p) > P(Z] < p) + <.

Example 3. Let X;,X3,... beiid. N(9,1),0 € @ =[0,1], X, =n"t 37 X;,

2\1/5 sin(v/n X.),
9n(8) = Po(v/n|T, — 6] < p)
9(6) = P(12]| < p)
B,={0€Q: g.(6) > g(0) + €}.
Suppose € < €, p < po where €, po, Yo are as in the above lemma; then
p(Br) > 70/2r for all sufficiently large n. Hence, in this example, with € and p

chosen as above, the sets B,, where Fisher’s bound fails have Lebesgue measures
bounded away from zero. To see this, write

VAT = 6) = V(X = 6) = 5 sin (VA(X, ~ 6) + V7).

Thus, v/n(T, — 8) has the same distribution as

Tp=Xn—

1
Z - Esin(Z ++v/n8) where Z ~ N(0,1).
Suppose 6 satisfies

(*) |v/n8 — 2rk| < 49 for some integer k € (0, g)
T
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Then, by the lemma, we must have
Py(v/n|Tw — 6] < p) > P(1Z] < p) + €.

Hence, B, contains all § € [0,1] satisfying (), i.e. all § € [0,1] satisfying
|0 — 27r7k;| < Yo/vn, k=1,2,... [ﬁg], where [32/7'7] is the largest integer below
vn/2r. Therefore, u(Bn) > ([v/n/27]) (270/v/R) = Y0/7 asn — oo.

In the above discussion we saw that the set A, = {0 : g.(0) < g(8) + €}
where Fisher’s bound holds becomes dense and has non-ignorable measure when
n is large. However, we found that, in general, A, need not have large Lebesgue
measure. Is it possible to obtain a stronger form of Fisher’s bound while still
imposing no condition on 7,?

Recall that our objective is to establish, for any ¢ > 0, that the function
fn(60) = gx(8) — g(0) is bounded above by € when n is sufficiently large. It is seen
in Example 2 and 3 that the difficulty in obtaining such a result lies in the fact
that f.(-) can be highly irregular (non-smooth) function. Now, an important
lesson in modern mathematics is this: when it is difficulty to study a sequence
of irregular functions directly, study smoothed versions of them first. Thus,
although we cannot bound f,(-) directly, we might be able to bound a smoothed
version of it as n becomes large. The following result shows that this is indeed
the case, no matter how small the degree of smoothing. In fact, it is this result
that leads to the most straightforward proofs of all proceeding propositions in
this section.

Proposition 12. Suppose condition (P) holds; then for any 6y in the interior
of Q, and any € > 0,6 > 0, it is true that

1

- (9a(6) - 9(0))db < ¢
|6—60|<&

for all sufficiently large n.
It also follows easily from this result that

Proposition 13. Under condition (P), if 6y is in the interior of ), then

1
lim lim su —/ =(0)d0) < g(6p).
Proposition 13 is analogous to Hajek’s LAM result (Proposition 9), except that

local infinmum is replaced by local averaging, rendering a stronger sense for
Fisher’s bound.
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Some versions of Proposition 12 and 13 were probably known very early
previously (see especially LeCam (1953, 1958)). However, these results appear
not to have been appreciated as much as they deserve to be, as is evident from
the dominance of the LAM formulation in the current literature.

In the author’s opinion, the strongest possible form of Fisher’s bound for
arbitrary estimators may in fact be formulated using local averaging (of the
concentration probability g,(-)). However, Proposition 12 and 13 can still be
improved in various ways. For example, it is more useful to have the bound in
Proposition 12 uniform over 6. Also, for the results to be relevant, practically,
we need to have some idea of how large the sample size needs to be for the bound
to be valid. To obtain such results, stronger conditions than condition (P) may
be required for the parametric family of distributions, though no extra condition
on the estimator T}, is needed.

5. Estimation of Differentiable Functions

Let A(8) be a real valued, continuously differentiable function of 8, i.e.

A0 = 20)

= A'(6) exists and is continuous in 6.
6—6 0, -0

To establish bounds for estimating such a function, the family of distributions
{Ps(X,)} needs to satisfy a condition slightly stronger than condition (L).

Condition (L'). Condition (L) is satisfied with 8 + h/\/n replaced by 0, 5 =
8 + toh/\/n, for any t, — 1.

Proposition 14. Suppose condition (L') is satisfied at § = 6y and X(0) is
a continuously differentiable function in a neighborhood of 8y, with derivative
N (6p) # 0. Let T, be a regular estimator of A\(0) in the sense of Proposition 4,
i.e. forallp>0

limsup Py, ,(Tn < M(0n,p)) < liminf Py, _,(Tn < A(6n,-5))
where 0,, , is as defined in condition (L'). Then

lim sup Po, (v/AITa — A(60)] < p) < P(120] < p)

where

Zo ~ N(0, N(60)*-i5)0).
6. Infinite Dimensional Parameter Space

In this section it is assumed that the family of probabilities { P,} is indexed
by a possibly infinite dimensional parameter ¢ € ® where the parameter space
® is a subset of a linear space £. Denote the true parameter value by ¢o.
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Let Vo C £ be the set of v € £, v # 0 such that
i) there exists an € > 0 such that
do+tved Vit <e,
ii) the one dimensional family {Ps,4¢v, |t| < €}, with t as the parameter,
satisfies condition (L') at ¢ = 0, and has Fisher information i4,(v) > 0.
Let A : & — R be a scalar function on ®. For any v € Vp, we say that
A is pathwise differentiable in direction v if A(f) = A(¢o + tv) is continuously
differentiable in ¢ for [t| < €. Let V4 C Vj be the set of v € V, such that A(+) is
pathwise differentiable in direction v and Aj[v] = d%)\(t)[tzo # 0.
Let T, be an estimator of A(¢). For any v € V;, we say that T, is pathwise
regular in direction v if for any p > 0 and ¢, — 1 we have

limsup Py, ,(Tn < M&n,p)) <liminf Py, _ (Tn < M(¢n,-p))

where

tnp tnp
¢n,p = ¢0 + \/LEV, ¢n,—p = ¢0 - _\/—';;V'

Let V2 C V3 be the set of directions in which T, is pathwise regular.

Proposition 15. Let T, and V; be defined as above and assume that V, is
nonempty. Then, for any p > 0

lim sup Py, (vl Ty — M)l < p) < P(1Z0] < p)

ALIV]2

where Zy is a normal variable with mean zero and variance 0% = SUPvev, T -
(

Proposition 15 follows from the application of Proposition 14 to each family
{Psy4tv;t| < €(v)} induced by each v € V,. The idea that a bound for the per-
formance of estimators of a scalar function of an infinite dimensional parameter
can be obtained by the application of the one dimensional theory to each one
dimensional subfamily is due to Stein (1956).

Very often, the family { Py} is sufficiently smooth so that the space Vo (with
the addition of the zero vector) defined above is a linear space, and there is
an inner product (vi,v2) on Vj such that iy (v) = (v,v) = ||v||?* (see Wong
and Severini (1991)). The quantities (vi,v;) and ||v| are called the Fisher
information inner product (of vy and v;) and the Fisher information norm (of
v) respectively. If A(¢), as a function on the normed linear space (Vp,|| - ||), is
differentiable in a strong enough sense so that A(-) is pathwise regular in each
direction v € Vj, then the variance o? in Proposition 15 has a nice geometric
interpretation as the dual norm of Ay[-] as an element in the dual space (Vg, ||-||*).
This generalizes the familiar geometry of the finite dimensional case: when ¢ €




ASYMPTOTIC EFFICIENCY IN ESTIMATION THEORY 59

R?, we have ||v||> = v'Iv for v € R? where I is the p x p Fisher information
matrix; furthermore, (||u)|*)? = w'I-'u foru e RP.

The problem of finding estimators which can attain such Fisher information
bounds under reasonably general conditions is not entirely resolved. In the case
when the parameter space is compact under an appropriate norm Wong and
Severini (1991) provide conditions under which the bound is attained by the plug-
in estimator /\(ci)n), where d;n is an approximate maximum likelihood estimator
of ¢. Other constructions in the related problem of semiparametric estimation
are discussed by Bickel et al. (1991).

7. Proofs
Proposition 1. This follows from Proposition 6.
Proposition 2. The proof of this proposition is included in that of Proposition 4.

Proposition 3. There are already several proofs in the literature. The shortest
seems to be the one based on an idea of Bickel’s, as reported in Roussas (1972).
We outline an alternative proof because it seems to offer some additional insights
(see the remark before Proposition 5). Let

Yo = Va(Tn = 60), An=Ang,.
Then, under condition (L), {£(Yn,Ar|60), » = 1,2,...} is a tight sequence.
(Here £(W|6) denotes the law of a variable W when 6 is the parameter value.)

By a contiguity argument, for any h € R, we can choose a subsequence {n}’ such
that along this subsequence,

‘C(Y‘n, Anlo‘n,h) - ‘Ch(Y7 A)a
where the limiting law can depend on h. We now need a technical lemma.

Lemma. Let (Y,Z) be two random variables whose joint distribution depends
on a real parameter h. Suppose

a) Ln(Z) = N(h,C), where C is a constant,

b) L1(Y|Z) does not depend on h,

¢) Ln(Y — h) does not depend on h.
Then'Y — Z is independent of Z, for all h.

Proof of Lemma. For simplicity, let C = 1 in (a).
By (a) and (c),

Di = Ex(e"Z=M) and Dy = Ep(e'Y M)

are constants independent of h.
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By (b), 9(Z) = En(e"Y=2)|Z) does not depend on h. We need to show that,
furthermore, g(Z) does not depend on Z. Let f(Z) = (¢(Z) — D2/ D1), then

En(f(Z)e'Z~M) = E(g(2)e"?~M) - D,
= Ep(eY"M) - D, = 0.

Hence [ f(z)e'(* M ¢(z — h)dz = 0 for all h, where ¢(z) is the standard normal
density. Thus, the convolution of f(z), with the function 8(z) = e**¢(z), is
identically zero. Since 6(z) has a Fourier transform which is nonzero everywhere,
we must have f(z) = 0 for almost all 2, i.e., g(Z) = Dy/D; as required.

To complete the proof of Proposition 3, let Z = A/iy; then it suffices to check
that the conditions of the lemma are satisfied: Condition (a) follows because, by
contiguity arguments,

L(An|0n,n) = N(igh,ig); hence L4(Z) = N(h,iy*).

Condition (c) follows from the assumption that £(y/n(Tn — 0r,1)|0n,1) converges
to a limit law independent of h. Finally, condition (b) can be established by the
following argument. Let

Zp = (Anh+ Rn,h)/igh, Z = A/ig.

Then
E(Yn, anan,h) d Ch(Y, Z).

For any bounded continuous f(-) and g¢(-),
E(f(Yn)9(Zn))
= [ 1wn)o(zn)dPe,  (X0)

- / F(yn)g(zn)esomt2ieh gp, (X )
- / f(9)g(2)e*ieh+ 30k apy (v, 7)

- / fi(2)g(z)e*e M M dPy(2) = En(1(2)9(2))
where .
H(Z) = Eo(f(Y)|2).

On the other hand, E(f(Y»)9(Z,)) = En(En(f(Y)|Z)g9(Z)). Hence

En(En(f(Y)|2)9(2)) = Ex(f1(2)9(2))




ASYMPTOTIC EFFICIENCY IN ESTIMATION THEORY 61

for all continuous g¢(-), f(-) and h, and condition (b) follows.

Proposition 4. Following the approach of Bahadur (1964), we deduce Fisher’s
bound from the optimality of the likelihood ratio (LR) test. We use the following
standard consequences of condition (L):

i) 222 2, N(0,i;") under P,.
ii) For any h € R, -éf;i—gN(h,igl) under Py, ,.
For any fixed p > 0 let
a =limsup Py, ,(Trn < 0n,p)
and
b =1liminf Py, _,(Trn < On,—p)-

We will prove the desired inequality for rational p > 0, which will then imply the
result for all real p by monotonicity and continuity considerations.

a) First, consider testing
Ho : Py, , versus the alternative Hy4 : Pg,

based on the data X, = (X1,...,X»). Let By, = {Tn < 0r,} be a rejection
region. Then, by assumption, lim sup{size(Bn,,)} = a. Let A, , = {Anp+ Rn <
ip? + \/z?fzan} where A,,,i, R, are as in condition (L) with 6 = 6y, and z,, is
the lower a, quantile of the standard normal distribution. Let a, | a’ > a; then
it follows from the same arguments that establish (i) and (ii) that

size(An,,) — @' > a = limsup size(Bj,,).
Since An,, is a LR rejection region, we must have

lim sup Py, (v/n(Tn — 60) < p)
= lim sup{power(B;,, ,)}
. Za!
< llmpoo(An,p) = P(Zgo <p+ —\/—;)
b) Next, consider testing

Hy : Py, versus the alternative Hy: P, _ .

Let By ,—, = {Tn < 0n,—,}; then, by assumption,

liminf{power(B,,-,)} = b.
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Let An,—p = {An(=p)+ R, > ip* + \/ip?2,, }, and let a,, — 1 — b’ where b’ < b.
Then,

power(An,_,) = Py, _,(An,—,) > b < b.
Since A, _, is a LR rejection region, we have
liminf Py, (v/n(Ty — 80) < —p) = liminf Py (Bn,-,) > lim Py, (An,—,)

= P(Zoo <—-p+ —z\%)

¢) Since the above inequalities hold for any a’ > a and b’ < b, we have
z
limsup Py, (v/n|Tn — 60| < p) < P(-p+ —\}; < Zgy < p+
< P(|Z9ol < P)-
The last inequality follows because z, < 2, and the normal distribution has

higher concentrations for symmetric intervals than asymmetric intervals of the
same length.

7

Special but straightforward arguments are needed for the case when a or b
take the values 0 or 1. Finally, ifa = b = % then 2, = z, = 0 and we may test

Hy: Py, versus Hy: Py

n,—p1

in part (b), where p; need not be the same as p in part (a). This will give, by ex-
actly the same arguments as above, Fisher’s bound for concentration probability
for all asymmetric intervals.

Proposition 5. Replace the technical lemma in the proof of Proposition 3 by
the following easy lemma.

Lemma. Suppose (Y, Z) have a joint distribution depending on h, and
a) Ln(Z) = N(h,C), where C is a constant,
b) Ln(Y|Z) does not depend on h,
c) Lu(Y — h) has mean value independent of h.

Then Var(Y') > Var(Z) under Lx(Y, Z), for all values of h.

Proof of Lemma. Let E4(Y — h) = D; then D is a constant by condition (c).
Hence Y — D is an unbiased estimate for h. The result then follows from the
Rao-Blackwell argument. '

Proposition 6. Let v(0) = lim Py(T,, < 8) and
Py(T, < 0)—~(8) ifoeq

0 otherwise,

#0) = {
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fn(:) is measurable since, under condition (M), Ps(T, < ) is measurable in .
Then, for any rational h,
1

[ 10+ 11vm)- v

= / fn(t)e’”/\/"‘-h”/2".—-12 e~ dt.
A1

e 3% do

This last term goes to zero by dominated convergence because f,(6) — 0 almost
everywhere. Thus, if we define f, n(0) = fu(0 + h/y/n), then for(-) — 0 in
standard Gaussian measure, and hence there exist a subsequence along which
fn,n(-) = 0 a.e. By diagonal extraction, we arrive at a subsequence along which

fan(-)=30 for all rational .
i.e.

Pyin/ya(Tn <0+ h/\/n)—v(0 + h/\/n) > 0 ae. for all rational h.

Since ¥(-) is continuous almost everywhere, we see that, for this subsequence,
the condition of Proposition 4 is satisfied for almost all §. The result follows.

Proposition 7. Since P(|Zs| < p) is continuous in p, it suffices to prove the
result for rational p. Thus, let p be a fixed rational number, and define

9(0) = Po(V/n|Tn — 6] < p);
9(0) = P(|Z4] < p),
9oo(0) = lim g,(6).

Under condition (M), all these are measurable functions. We wish to prove that

9oo(-) < g(+) a.e. By Lemma (C) in the proof of Proposition 12 and dominated
convergence, we have

/(goo(0) —g(0))d8 <0 for any interval I.
I

For any 6 > 0, let
Ds = {0 €9 : guol8) - 9(6) > 6.
For any € > 0, we can find U = a union of finite open intervals such that

/L(D&AU) < €.,
Then

6u(Ds) < /D (9oo — 9)df < /U(goo — g)df + 2¢

< 2,
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which implies u(Ds) = 0. Since § > 0 is arbitrary, we have {0 € Q : go(8) <
9(0)} = 1.

Proposition 8. This follows from Proposition 7 and Egorov’s theorem.

Propositions 9 and 10. These two propositions are equivalent, and Propo-
sition 10 follows trivially from Proposition 11. To see the equivalence, suppose
Proposition 10 is true. Then, for any fixed € > 0 and § > 0, we can find ng > 0
and

0, € IsN Ap(e) for all n > ny.
(Here, An(€) = {0:9(0) < 9(8) + ¢} and Is = {6 : |0 — 6y| < 6}). Hence,

limsup inf g,.(0) < sup g(6) + e.
6el; 0el;

n—0oo

Proposition 9 follows since g(-) is continuous in §. Conversely, suppose the con-
clusion of Proposition 10 is not true. Then, there is an € > 0, an interval I and
a subsequence {n}’ C {n}, such that

Apn(e)NI=¢ Vne{n}.
Pick 6y € interior of I, and é so small that I; = {|@ — 6| < 6} C I, then
gn(0) > g(0)+€¢ VOe€l; ne{n}.
Hence,

lim sup inf 9(0) 2 jnf g(6) + ¢,
§

n—o0

or

lim limsup (_inf gu(6)) 2 9(60) + ¢
§

=0 nooo

and Proposition 9 is untrue.
Proposition 11. This follows from Proposition 12.
Proposition 12. Define

an(8;X5) = P(\/E(O —0,) < 8 |Xn, 7r)

and

kn(Xn) = P(vn|© = Ty| < p [Xa, 7).

The proof can be completed in three steps.
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Lemma (A). Under condition (P), let 6 € I, = interior of {8 : =(6) >
0}, F(s) = P(Z4 < 8). Then,

sup |an(8;Xn) — F(3)|—P->0 under Pg(X,).
Proof. Let ¢ > 0, § > 0 be arbitrary. Find K so large that F(K) > 1 — ¢,

F(-K) < e. By monotonicity of a, and F in s, it follows from condition (P)
, that there is an mg > 0 such that

Po( sup |an(s;Xn)— F(s)] < 26) >1-6/2 Vn>mg.
|si>K

Since F(-) is continuous, we can find a A > 0 such that

sup |F(s2) — F(s1)] < e.
511326[_K7K1
Js2—s1l<A

Now divide [~ K, K] into M intervals each of length less than A, and let py <
p1 < --- < pp be the dividing points. Then there exists m; > 0 such that

Py (lan(pis Xn) = F(p) < & Vi =0,... M) >1-6/2 Vn>m.
It then follows from monotonocity of a,(-; X,) and F(-) that

Pg( sup |an(s;X,) - F(s)| < 36) >1-46/2,Vn>m.
Is|I<K

Hence, n > max(mo,m1) = Pg(sup, lan(s; Xn) — F(s)] < 36) > 1 — 6, which
proves Lemma (A).

Lemma (B). Under condition (P), let § € I,; then for any ¢ > 0, § > 0, there
exist a mgy such that

Py (kn(Xn) < g(8)+ 6) >1—-46 foralln > my.

Proof.
kn(xn) = P(\/ﬁl@ - Tnl < plxmﬂ')

= P(Tn - p/Vn < © < Ty + p/v/n|Xp,)
= P(\/E(Tn —0,) = p < V/1(© = 6,) < /(T — 82) + p| X, )
< S‘:P[an(s + p; X)) — an(s — p; X;)]

< sup[F(s + p) = F(s — p)] + 2 sup |an(s; Xn) ~ F(s)l.
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The first term is bounded by g(6) because of the shape of the normal density.
The lemma follows by applying Lemma (A) to bound the second term.

Lemma (C). Suppose condition (P) holds. Then, limsup [ 7(8)(gn(0)— g(6))d8
< 0 for any piecewise continuous prior density =(-).

Proof.
[ #6126 = [ (@) P(vaIT. - 01 < plo = 6)a0
| = /P(\/Tz|0 = Tu(xn)| < p| X, = xn,w)p,(xn)dun(xn)
= /kn(xn)l’r(xn)d”n(xn)-

Here pr(xn) = [ Py(xn)m(8')df’ is the marginal density of X, under prior x(-).
Let

Kn(0") = Bo (kn(Xn)) = [ knln)por(xa)dim(xn),
then

/ 7(0)gn(6)d8 = / 7(8) K n(8)d6.

For any 0 € I, and € > 0,6 > 0 arbitrary, it follows from Lemma (B) that there
exists mg such that n > mg implies

Ka(8) < / ko (%0)dPa ()
{kn(Xn)<g(8)+€}
+ Po(ka(X2) > 9(6) + )
<g(0)+ €+,

and hence,
limsup K,(6) < g(0).

Thus, by Fatou’s lemma, limsup [ 7(6)g.(8)d0 < [ n(8)g(6)d6. We have, in fact,
proven a stronger statement than Proposition 12.

Proof of Proposition 14. By the inverse function theorem, locally # and A are
one to one differentiable functions of each other. Reparameterize by A and write
P, = Pg(A),)\o = )\(00). Let A, = Ao + h/\/ﬁ Then,

h

dé
0n - G(An) = 00 + ‘(K(An) . —\/_’;1,_—
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where ), is between )\ and ), and
do - do _
2 An) = =3 (%0) = N(60) 7.

By condition (L'),

dPs, _ 4Py, _ X(80) " A = 3N (80) " %iggh?+ R
Py, — dPs,

Hence, condition (L) is satisfied for the family {P,} with A as the parameter
and M'(6p)~2?ig, as the Fisher information. Proposition 14 now follows from
Proposition 4.
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