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Tze Leung Lai and Zhiliang Ying

Stanford University and University of Illinois

Abstract: Information bounds are developed for estimation of regression parameters
in the presence of left truncation and right censoring on the observed responses,
assuming that the vectors of covariates and censoring/truncation variables are inde-
pendent (but possibly non-identically distributed). Under certain regularity condi-
tions, asymptotically efficient estimators that attain these information bounds are
also given.
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1. Introduction

Consider the linear regression model
vy =BTzl +e (i=1,2,...), (1.1)

where the ¢ are i.i.d. random variables representing unobservable disturbances
and having a common continuously differentiable distribution function F with
density f, B is a d x 1 vector of unknown parameters and the z} are either non-
random or are independent random d x 1 vectors independent of {¢!}. Suppose
that the responses y; are not completely observable due to left truncation and
right censoring by random variables ¢} and ¢} such that —oco < ¢ < oo and
-0 < ¢f <oo. Let 57 = yf Ac; and 6§ = I{yr<cry, where we use A and V
to denote minimum and maximum, respectively. In addition to right censorship
of the responses y! by ¢}, suppose that there is also left truncation in the sense
that (§7,67,z7) can be observed only when §} > t. The data, therefore, consist
of n observations (§;,t;,6;,z;) with §; > t;,i=1,... ,n.

The vectors (t7,c},z}T) are usually assumed to be independent random
vectors that are independent of the sequence {e}}. The special case t} = —o0
corresponds to the “censored regression model” which is of basic importance
in statistical modelling and analysis of failure time data (cf. Kalbfleisch and
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Prentice (1980), Lawless (1982)). The special case ¢} = oo corresponds to the
“truncated regression model” in econometrics (cf. Tobin (1958), Goldberger
(1981), Amemiya (1985)) and in astronomy (cf. Segal (1975), Nicoll and Segal
(1980)), which assumes the presence of truncation variables T} so that (zf,y})

1

can be observed only when y* < T (or equivalently, when —y* > —T} = t}).

Instead of assuming the (tf,c¥,z}T) to be independent so that the sample
{(ti, ciyziyy:i) : 1 < i < n} can be regarded as having been generated by a
larger, randomly stopped sample of independent random vectors (¢}, c], x{T,y:‘ ),
1<i<m(n)=inf{m: Y7, I{tz <y*ncry = m}, an alternative setting proposed
by Turnbull (1976) is to assume that (¢;,c;,z ) are independent random vectors
that are independent of {¢},} and such that ¢; > t; and

10 =0, ; =inf{i > mj_1 1 4] 2 8}, 5 =y, Ay, (1.2)

(ti el zi) = (tj,¢j,2z5) formjqg < i< 7. '
In this formulation, (t;,¢;,z7,y;) are independent random vectors such that the
conditional distribution of y; given (t;,ci,zi) is

P{yi < ylti,ci,zi}
= {F(y - BT2:) - F(t: — BTzi)}/{1 - F(t: - BT2:)}, y > ti.  (1.3)

Suppose that (;,c;,z7) arei.i.d. random vectors whose distributions do not
depend on § and that the conditional distribution of y; given (¢;,c;,z;) is deter-
mined by (1.3). Under the assumption that the density function f of F is known,
the maximum likelihood estimator of § will be shown in Section 2 to be asymp-
totically normal with mean 0 and covariance matrix n~!V}, where Vf—1 is the
Fisher information matrix. Without assuming f to be known, it will be shown in
Section 3 that adaptive estimators can nevertheless be constructed so that they
are asymptotically normal with mean 0 and covariance matrix n~!V; when z;
has mean 0 and is independent of (; BTz, ci— ﬁTa:i). In general, these estima-
tors may have larger asymptotic covariance matrices (in the sense of nonnegative
definite differences) than n~1Vy, but can still be shown to attain the asymp-
totically minimal covariance matrix for the asymptotic distributions of regular
estimators. Such optimality results follow from the generalization of the Hijek
convolution theorem and asymptotic minimax bounds to semiparametric models
by Begun, Hall, Huang and Wellner (1983), since the (t;,c;,z¥) are assumed to
be i.i.d. random vectors. In Section 2 we further remove the restrictive assump-
tion that the (¢;,¢;,z7) be identically distributed, which excludes the important
case of nonrandom t;,¢; and z;, and we also develop asymptotic lower bounds
for minimax risks in the general setting where (¢;,c;,z}) are only assumed to
be independent. Moreover, we consider the setting of independent (tf,cf,z?)
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instead of independent (t;,c;,z;) and develop asymptotic lower bounds in this
alternative setting. Section 3 shows how to construct estimators that are asymp-
totically efficient in either setting, in the sense that the covariance matrix of
the asymptotic normal distribution coincides with that given by the asymptotic
lower bound.

In classical regression theory, it is usually assumed that F has finite mean
a, and (1.1) is usually rewritten as

y::a-{-ﬂTfl?Z'{"fi (i:1127"')a (14)

where the ¢; have mean 0. When the y} are not completely observable because
of censorship and truncation, it is often not possible to give consistent estimates
of a although § can still be estimated consistently and efficiently. Therefore it is
more natural to combine the unidentifiable a with ¢;, leading to the model (1.1).
For completely observable y;, which corresponds to the special case tf = —o0
and ¢} = oo, our results in Sections 2 and 3 still yield asymptotically efficient
estimators of the slope 8. In Section 4 we develop asymptotic lower bounds
for the minimax risks in estimating both a and 8 for the case of independent
(but possibly non-identically distributed) covariates =} but without censorship
or truncation (i.e., tJ = —00 and ¢f =o0), and show how the ideas in Section 3
can be extended to give asymptotically efficient estimators of the intercept a and
the slope 5.

2. Information Bounds for Estimating 8

Suppose that (t},cf,z;7) are i.i.d. random vectors. Then by (1.1),
(t7,cr,zT,yr) are ii.d., from which it follows that the observed sample
{(t:,2T,6:, %) : i = 1,... ,n} consists of n i.i.d. random vectors. Likewise, if
the (¢;, ¢,z ) are i.i.d. and the conditional distribution of y; given (ti,ci,zl) is
determined by (1.3), then (¢;,27,6;,%:),i = 1,... ,n, are i.i.d. random vectors.
Parameter estimation in either setting, therefore, fits into the general setting of
estimation in semiparametric models based on i.i.d. observations as discussed by
Stein (1956), Koshevnik and Levit (1976), and Begun, Hall, Huang and Wellner
(1983). In particular, Begun et al. (1983) develop information bounds in the form
of convolution-type representations of regular estimators and asymptotic mini-
max bounds on risk functions, by making use of (i) the notion of a “Hellinger
differentiable density” for partial differentiation with respect to the nonpara-
metric part (infinite-dimensional nuisance parameter) of the model, and (ii) the
characterization of the “effective score” for the finite-dimensional parameter of
interest as that component of the score function orthogonal (in some Hilbert
space) to all nuisance parameter scores. For the censored regression model (i-e.,
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t; = —o0), Ritov and Wellner (1988) have evaluated explicitly the orthogonal
projections to calculate these information bounds under the assumption that the
(cf,z!T) are i.i.d. with a common distribution not depending on 8.

When the sample observations (t;,z7,6;,%:), ¢ = 1,...,n, are not i.i.d.,
the framework of Begun et al. (1983) is no longer applicable. Instead of using
a functional-analytic approach involving orthogonal projections to calculate in-
formation bounds, we use a more direct approach that involves replacing the
nonparametric component of the model by suitably chosen parametric subfam-
ilies that are asymptotically least favorable in some sense. The difficult step
in our approach, therefore, is to “guess” such parametric subfamilies. We have
actually first guessed what the information bounds should be on the basis of the
asymptotic distributions of certain estimators (presented in Section 3) which we
believe to be asymptotically efficient. With those information bounds in mind,
it is not hard to choose the appropriate parametric subfamilies.

We now outline more specifically the arguments that will be used to develop
information bounds for the estimation of § under independent but possibly non-
identically distributed (¢;,c;,2T). Similar arguments will be used for the case of
independent (t},c},2}T). First, from the joint density function of (¢;,z7,6;,%:),
1= 1,...,n, weobtain the likelihood function of # and f (common density of the
€}), assuming that the density function of (¢;,¢;,z7) does not depend on 8 and
f for every i. When f is known, the maximum likelihood estimator ﬁn of B can
then be determined and the Fisher information matrix can be computed to give
the variance of the asymptotic normal distribution of ﬁn under certain regular-
ity conditions. Under these regularity conditions, Hijek’s convolution theorem
for regular estimators and asymptotic minimax bounds are applicable and we
establish in Subsection 2.1 the asymptotic efficiency of the maximum likelihood
estimator (cf. Hajek (1970, 1972), Ibragimov and Has’minskii (1981)). In Sub-
section 2.2 we drop the assumption of known f and assume only that f belongs to
a family F, of densities satisfying certain regularity conditions. We then define
certain parametric subfamilies of F,, and consider asymptotic minimax bounds
and regular estimators for each such parametric subfamily. Using martingale the-
ory and ideas similar to those of Chapter 4 of Ibragimov and Has’minskii (1981),
we develop asymptotic lower bounds on minimax risks, which will be shown in
Section 3 to be attained by certain rank estimators. Subsection 2.3 considers the
case of independent (7,c},z}T) instead of independent (t;,c;,z7 ). Here we have
an additional complication involving the conditional densities of ¢7 and ¢} given
z}, which can be handled by constructing suitable parametric subfamilies of the
class of conditional densities.

2.1. Maximum likelihood estimators in the case of known f and inde-
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pendent (t;,¢;,z;)

Let (ti,ci,2F), i = 1,...,n, be a sequence of independent random vec-
tors. Suppose that for each ¢, conditional on (¢;, c;,z;), y; has the density f(y —
BTz:)/(1 — F(t; — BTx;)), y > ti. Let qi(+|ti, z;) denote the conditional density
of ¢; given (t;,z;) and let p; denote the joint density of (¢;,z;), where both p;
and ¢; are with respect to some o-finite measures and do not depend on the
regression parameter §. The likelihood function given the data §; = y; A ¢;,
6; = Ity <ci}> i, zi(i = 1,... ,n) is therefore proportional to

Ta"" : - yi — T:c,- 1-6;
La(B) = {[1 f(g:(tz f ﬂTli)]a [1 - ?% - ngi))] 5 } (2.1)

Assuming f to be continuously differentiable, the maximum likelihood estimator
can be determined as a zero of the function

n

=G = BT =) oy S@i = BT=i)
6ﬂ logLn(,B) ; {51 f(g' — ,GTIB,') + (1 6,)1 — F(g, — ﬂT.’L‘i)
St = BT=y) }
1- F(t; — Tx;)

_Z / _/\A(lt I{f<t>>0}[dN (B,t) — A(t)Ji(B, t)dt], (2.2)

where 0/90 denotes the gradient vector, A = f/(1 — F) is the hazard function
and

Ni(B,t) = Iy, —prai<t, s,=13> Ji(Bst) = I(g g7z, 5454, -0T z,}- (2.3)

The second equality in (2.2) follows from the formulas X'/A = f'/f+ f/(1 - F)
and ffooo /\’(t)I{f(t)N)}Ji(ﬂ,t)dt f At) I{f(t)>0}dJ (8,1).

For left truncated and right censored data, it simplifies the analysis con-
siderably by using hazard functions instead of density functions and by using
stochastic integral representations as in (2.2). The following lemma enables us
to apply martingale theory to analyze these stochastic integrals.

Lemma 1. Suppose that (t;,c;,zT),i = 1,... ,n, are independent random vec-
tors with ¢; > t; and that the conditional distribution of y; given (t;,¢;,z;) is
determined by (1.3) for every i. For —0o < s < 00, let B be the complete o-field
generated by ti,ci,zi, (yi — ﬂTx;)I{yi_grz‘Ss},i =1,...,n. Let §; = yi A ¢,
6; = Iy, <c;y, and define Ni(B,t),Ji(B,t) by (2.3). Let

Mi(t) = Ni(B,1) - / Ji(B,$)A\(s)ds. (2.4)
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Then {M;(t),B:, —00 < t < 00} is a martingale with predictable variation process

(M;)(t) = /_oo Ji(B,8)A(s)ds. (2.5)

Proof. Let B_ = N __ B,. Note that (¢;,c;,z;) is B_oo-measurable. More-
over, by (1.3), y; > t; and the conditional hazard function of y; given (tiy ciyzi)

is A(- — Tz;). Hence the same argument as in the proof of Lemma 5 of Lai and
Ying (1991a) can be used to show that

, sA(ci—-BT z;)
Mi(s) = I{yi-ﬁTziSS/\(Ci—ﬁTr.’)} - / I{y.‘—ﬁTr.'Zu})‘(u)du
Y

=BTz,
is a martingale with respect to B,, and that its predictable variation process is

given by (2.5).

Throughout the sequel we shall use for any vector z the notation z° = 1
(scalar), ' = z (vector), and z? = zzT (matrix). We shall denote the actual
value of the unknown parameter 8 by By. Suppose that for some C > 0 and
0<é<1,

llz:]l < C and F(t; — fFz;) <1 -6 as. for every i, (2.6)
F has a continuously differentiable density f such that

| aprar <o, 7)

and that for k = 0,1,2 and for every s with F(s) < 1,

lim n™! ZE{zfl{t‘_ﬁgzisssci_ﬁorx'_}/(l—F(t,-—ﬂg z;))}=Tk(s) exists. (2.8)

n—o00 4
=1

The assumption (2.7) implies that % (A\'/A)?dF < oo, cf. Lemma 2 of Lai and

Ying (1991c). By Lemma 1, {n"1/2 %"  z; fioo{—/\’(s)//\(s)}I{J-“)w}dM,-(s),
Bi,—00 < t < oo} is a martingale with predictable variation process

n t
nt fo / {/\1(3)/)‘(3)}21{17.-—ﬁg'z-;zszt.'—ﬁgz;}’\(s)I{f(s)>0}ds
i=1 - -
t n
= / oo{’\'(s)/)‘(s)}2n—l Z x?I{c;—ﬁg'a:.-ZSZt; —ﬁgx;}I{y;—ﬁgxgzs}

- i=1

(U= F@) @) Lo [ @/ Ta(s)aE(s), (29)
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by the law of large numbers and by (2.8) and (1.3), since (¢;,¢i,z7,y;) are inde-
pendent random vectors. Since [ (A'/A)’dF < oo, it follows that
lim 400 flA’/A|>A()"/)‘)2dF = 0, and therefore by Lenglart’s (1977) inequal-
ity,

n t
- P
sup lln 1/2221‘/ (=N () /AN sy s> nrs3dMi(s)| — 0. (2.10)
i=1 o

Note that the jumps of the process {} -, z; fioo(A'/A)I{W/MSnl;s}dM,-,t > 0}
are < Cn!/3 a.s. Hence we can apply Rebolledo’s (1980) martingale central limit
theorem to conclude from (2.2) and (2.9) that

Vl‘—g%logl'n(ﬂ)lﬁ=ﬁoL’N(O,I(ﬂo)), where I(ﬁﬂ)=/~w(/\'/'\)21‘2dF- (2.11)

Here and in the sequel we use the symbol £, to denote convergence in dis-
tribution. Note that the quantity I(8o) in (2.11) represents the limiting Fisher
information matrix. Under a quadratic-mean differentiability condition on A, the
following lemma gives a refinement of (2.11) so that Hé4jek’s convolution theo-
rem and asymptotic minimax bounds are applicable to the present estimation
problem.

Lemma 2. Under the assumptions of Lemma 1 and (2.6)—(2.8), suppose that
I(Bo) is nonsingular and that

/°° { At +€) = A(t) — eX(2) }2 A21(t)

I{A(t)>0}dF(t) -0 ase— 0. (2.12)

—00

Then for any d x 1 vector u,
log Ln(Bo + u/v/n) = log Lua(fo) —— N(—uTT(Bo)u/2,uTI(Bo)u).  (2.13)
Consequently, for any bounded continuous function w : R? — [0,00) such that
w(0) = 0,w(z) = w(—=z),{z : w(z) < a} is convez for all a > 0, (2.14)
we have for any 0 < € < 1/2 and any estimator T, of f3,

liminf  sup  Esw(v/n(T, — B))
RO |B—Pol<n—¢ .

2(27r)_d/2/ w((I(Bo))~2z)e =" /24y, (2.15)
Rd

and the lower bound in (2.15) is attained by the solution ﬁn of the estimating
equation (0/08)log Ln(B) = 0 in a ball centered at By with radius n=¢. Moreover,
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if T, is a regular estimator in the sense that for any d x 1 vector z and for
B = Bo+n"Y2z, \/n(T, — B) has a limiting distribution ¥ (not depending on
z), then

U= N(0,(I(B)) )« H (2.16)

where * denotes convolution and H is some other distribution. In particular, ﬁn
is regular with ¥ = N(0,(I(Bo0))™1), i.e., with H concentrating all its mass at 0.

Proof. To prove (2.13), first note that f(y; — $7z;) > 0 and F(%; — 87z;) < 1
a.s. Let

i = (M@ — Bg =i — wTzi [V/R) [ A3 — BT 2:)]% - 1.
Then by (1.3), (2.6) and (2.12), with probability 1,
max E[{Cin = 8in 2T 2 N (5 = BT ) /A — Bz}, ¢, 7]

/c.-—ﬁgf-‘ [A(s —ulz;/\/n) —}i\((:’)) - n_l/ZuTﬂvi/\'(S)]z

=1max
isn

)
1-— F(t,‘ - ,BTQJ,')

ds = o(n~1).

Hence for every € > 0, with probability 1,
max P{|Ci,n| Z (lti,Ci,$i}
i<n

< max P{In= 2T oy || N'(§:— BT ©:) | MFi— 8] #:)| 2 €/2]ti, ¢i, z:}+(2/ €)*o(n™1)

uTa:i)2 ()\’(s)) f(s)

</o* [ ds+o(n™") = o(n"1),
CllullN(s)/\(s) |2 ev/m/2 ( vr/ AXs)/1-6

again making use of (2.6). Therefore as n — oo,

P{max(Ginl 2 ¢} < nE[max P{IGinl 2 dlts,ci,2i}] 0,

by the dominated convergence theorem. Hence max;<n |(i x| %, 0 and for every
0<e<1/2,

P(A, ) — 1, where 4, ( = {m<ax|(;,n| < Ae}. (2.17)

Since A(y; — Tz;) > 0 a.s., we also have A(§; — Brz; — uTz;/\/n) > 0 as.
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on {6; = 1} N {|¢i,n] < 1/2}. From (2.2), it follows that on A,,,
log Ln(Bo + u/v/n) — log Ln(fo)

= E{é.-[log A@i — BT zi — uTei/v/n) — log \(§i — BT z:)]

[A(y. - 0 xz - U zi/\/—) A(gz - ﬂgzz)]
+[A(ti — B3 @i — uTzi/v/n) — A(ti — B z:)]}

>/ " {log \(s — uTa:/v/r) ~ log A()}dNi( o, 5)

+3° [ (A~ uaif ) ~ M),
i=1 v %
where A(t) = fioo A(s)ds = —log(1 — F(t)). Therefore on A, ,,
log Ly (8o + u/v/n) —log La(fo)
= Z/ I{}‘(-’)>0y|)‘(3"urz‘.‘)/%(s)-—1|<e}{[log s — uTz;/\/n) — log A(s)]dMi(s)
i=1 vV T®

As — uTz;[/\/n) — A(s) ’
T A ($)i(Bo, 5)ds

— Ji(Bo, $)[M(s — uTzi/v/n) — )\(s)]ds}. (2.18)

Using the law of large numbers together with (2.6)—(2.8) and (2.12), it can
be shown by an argument similar to that in (2.9) that

'Z:; /°° (A(s —uz;/\/n) — /\(s))z/\(s)Ji(ﬂO’s)ds

+ [log (1 +

A(s)

LuT[/ I‘g(s)/\(()) ] (2.19)

Applying (2.17), (2.19) and the Taylor expansion log(1+7) = r— 17r%(147%)72,
with r* lying between 0 and r, we obtain by letting n — oo and then € — 0 that

i/—z {[log(l + (s—u Ib/{(/;)/-) Als) )] /\.(s) — [/\(s - UTIi/\/T—'«) - )\(s)}}

X Ji(Bos $) L (A(5)>0,|A(s—uT : //R) /A(5) -1 | <} &S £ ""u I(Bo)u. (2:20)

Again using the Taylor expansion for log(1l + r), an argument similar to (2.9)
and (2.10) can be used to show that Rebolledo’s (1980) martingale central limit
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theorem is applicable to yield

— [ As —uTzi/v/n) — A(s)
Z/ I (5)>0, (5= uTz:) / M(s) 1] <€} 10g( 2(3) )dM.-(s)
i=1 VY —X

£, N(0,uTI(B)u), letting n — oo and then € — 0. (2.21)

From (2.17), (2.18), (2.20) and (2.21), the desired conclusion (2.13) follows.

From (2.13), it follows that for any 2 € R? the sequence of probability
measures { Py (n1(8,))-1/22} 18 locally asymptotically normal (LAN) with nor-
malizing matrices (nI(8))~1/?, cf. page 120 of IH (which we shall use to de-
note Ibragimov and Has’minskii (1981)). Hence the asymptotic minimax bound
(2.15) follows from Theorem 12.1 on page 162 of IH, while (2.16) follows from
the Héjek convolution theorem, cf. Theorem 9.1 on page 154 of IH. Fmally, the
desired asymptotic normality and asymptotic efficiency properties of ,Bn follow
from well known results on maximum likelihood estimators in LAN families (cf.
Sections 1 and 4 of Chapter 3 of IH).

2.2. Asymptotic lower bounds on minimax risks when f is unknown
in the case of independent (t;,c;,z;)

To begin with, suppose that f is embedded in a parametric family {fo}
such that the hazard function of fs is Ag(t) = A(t) + 87 n(t), where fisa d x 1
vector and 7 : R — R? is some function to be specified later. Replacing f in the
likelihood function (2.1) by fg yields

n

log Ln(8,8) = D {8ilog Ae( — 7 2:) — Ag(§i — BT z:) + Ao(ti — BT 2,)}, (2:22)

i=1

where Ay(t) = fioo Ag(s)ds = —log(1 — Fy(t)). Hence if n(s) = 0 whenever
A(s) = 0, then

9 _ N~ [ b - BT B
59 108 Ln (6, B)le=0 = Z{—)\(—y—_—m —/t ﬂ(s)ds}

=BTz,

= Z/ (3)[dN B, s) = Ji(B,s)A(s)ds],

setting 0/0=0 and noting that [*° ([*_ 7(s)ds)dJ;(8,1) — [ Ji(B,t)n(t)dt;

moreover,

9 Ny, [T N ,
75 19810 lemo = 3 / S0 NGB, - T8, 0N 0]
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as in (2.2). Let ¢, = log L,,. Therefore, under (2.6)—(2.8) and suitable regularity
conditions on 7, an argument similar to that in the proof of (2.11) yields

1 ((9/08)ta(0,50)\ hore 1 ((Tos Tos
\/ﬁ((a/aﬂ)ln(O,ﬂo)) N(0,1,), where I, (Ig}, Ipﬁ)’ (2.23)

o L PR JD IOy Ju )72
Ipo = lim }-EE {i—pgoistce —fy '}[’7( )] dF(t)

n—00 1- F(t,‘ - ,Bg‘(lh) /\(t)
B n(t)n (¥)
_/_wr(t) o dF(t),
© 1 I{t. —pTai<t<ei—pT2:} ] —N ()7 (1)
lig=Jim, | ZE e ey B Y

- [ - A2'((t))rl(t)nT(odF(t),

Ip=lim [ X i B[z} Liti—pFaigige -7 3y [A'(t)]zdF(t)
B n—oo f_ oM 1 F(t,’ - ﬂgx,) /\(t)

/ T3 (t) [f\((:))] dF(t).

Assume I, to be nonsingular. The lower right d X d submatrix of the 2d x 2d
matrix I71 is

il

(oot o) ={ [ a3 arw- ([ inon o)

([ o oare)™ (7 Fgmorwerw)} . a2

For the univariate case d = 1, an application of the Schwarz inequality shows
that the right hand side of the above equation is

°° /\'(t) N (t) ’Ti() }—1
<
< Lmol) eo- [ 5e) maero)
with equality when = —A'T; /T. For general d, if we still choose n = —A'T' /Ty,
we again have (Ipg — I5 15 Top) ™! = (I5(B0))", where

I1(Bo) = /_ Z [ra(t) - Flgfgftf)(t)] [)/‘\I((:))rdF(t). (2.25)

Under the assumptions (2.6)—(2.8) and assuming I¢(8) to be positive def-
inite, we can choose, for every A > Ap (sufficiently large), a continuous function
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na : R = R? such that

na(s) = 0if f(s) < 1/A, sup||na(s)| < 4, (2.26a)

I, is positive definite, where I,,, is defined in (2.23), (2.26b)
[ Ina® =N

Algnoo ~ n):l((t)) - [ A(t())] F(l)gt; I I{/\(t)>0,ro(t)>0}dF(t) =0. (2.26C)

Take any € satisfying 0 < € < 1/2. For ||0]] < n™¢ and all sufficiently large n,
Ao,4(t) = A(t) + 67 n4(2) is a hazard function. Let ¢y 4() = Ag,a(t)exp{— fioo
Ag,A(8)ds} denote the corresponding density function. Let F, be a family of
density functions such that for every fixed A > Ay,

$6,4 € Fp for ||0]] < n™¢ and all large n. (2.27)

In Section 3, without assuming f to be known, we shall construct estimators
Bn of B such that as n — 00, the limiting distribution of \/ﬁ(ﬁn — () is normal
with mean 0 and covariance matrix (/;(f))~" under Pg 4, and the convergence
to normality is uniform in |3 — Bo|| < n~¢ and ¢ € F,, for some family F, of
densities such that (2.27) holds for every given A > Ay. The following theorem
shows that the limiting covariance matrix (I;(8y))~! is asymptotically minimal
and gives an extension of Lemma 2 in which I(8y) is to be replaced by I+(Bo)
for the present setting of unknown f. Note that the “information loss” in not
knowing f manifests itself in the replacement of the integrand T'y(t) in I(Go) by
Ta(t) = Ty (TT(6)/To(2) in Iy (Bo).

Theorem 1. Let 0 < € < 1/2. Under (2.6)—(2.8), (2.12) and the assumptions
of Lemma 1, define I¢(Bo) by (2.25) and assume that it is positive definite. Let
Fn be a family of densities satisfying (2.27) for every given A > A,.

(i) Let w : R — [0,00) be a bounded continuous function satisfying (2.14). For
any estimator T, of (3,

lim inf{ sup Epow(v/n(Tn — B))}
T ||B—BollSn<,pEF,

>(2m)=/? / w((I;(B0)) "V 2z)e~I1=17/2 gy,
Rd

(ii) Suppose that an estimator T, is regular in the following sense: For any
sequence (Bn, dn)n>1 with /n(B, — B) converging to some vector and ¢,, € Fn,
V1T, — Br) has a limiting distribution ¥ under Pg, 4. where ¥ does not depend

on the particular sequence (B, ¢n)n>1. Then ¥ = N(0,(I;(Bo))1)* H for some
distribution H.
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Proof. Take any A > Ao and consider the parametric subfamily {¢g 4 : ||8]] <
n~¢} of F,. For this parametric subfamily, defining L,(8,3) by (2.22) with Ag
replaced by Mg 4, it can be shown, by making use of (2.6)—(2.8), (2.12), (2.26)
and an argument similar to the proof of (2.13), that for any d X 1 vectors u and
v,

log L, (:/1—%,[30 + \%) — log L(0, Bo)
—£+N( - %(uT,vT)I,,A (:) ,(uT 0TI, (")) (2.28)

v

where I,), is defined in (2.23). In view of this local asymptotic normality (LAN)
property, for every bounded nonnegative function w* on R% x R? such that w*(0)
=0, w*(z) = w*(—z) and {z : w*(z) < a} is convex for all a > 0, we have for
any estimators 7T, of # and §n of @ the asymptotic minimax bound

lim inf{ sup Ep g5 4w (v/1(0,—8), vVu(Tr~B))} > Ew"(N(0,I;}))
n=0 i6—Boll<n< 10l S

(cf. page 162 of IH). In particular, for the special case w*(y,z) = w(z), this
reduces to

lim inf { sup Eg 46 »w(v/n(Tn — B))}
n=0 |5 poll<n=*, 6}l <n"
>Ew(Za) with Za ~ N(0,(Ipp - 15153 0p)3"). (2.29)

where (Igg — I%I&,llgﬁ)zl is the lower right d X d submatrix of I;} and is given
by (2.24) with 7 replaced by n4. From (2.27) and (2.29), it follows that for every
A 2> AO?

lim inf{ sup Eg sw(v/n(Tn — 8))} > Ew(Z4). (2.30)
" | B-BoliSnT¢,0€EF

Since (2.30) holds for every A > Aq and since (Igg — I;Tﬁlg_gllgg);l — (I#(Bo))?
as A — oo by (2.26¢), (i) follows.

To prove (ii), take any u,v € R? and A > Ag. Let B, = Bo + u//n,
VYnw = Oy m,a- BY (2.27), Pn,v € Fy for all large n. Since /n(T, — Bn,u) has
a limiting distribution ¥ under Pg, , 4., for any u,v € R%, it then follows from
the LAN property and Hajek’s convolution theorem (cf. IH, page 154) that ¥
is the distribution of the sum Z4 + R4 of independent random variables Z4 in
(2.29) and R 4. Since this holds for every A > Ay and since Z4 has the limiting
N(0,(I(B0))"!) distribution as A — oo, it then follows that R4 has a limiting
distribution H as A — oo, and therefore ¥ = N (0,(Is(5o))™!) * H.




30 TZE LEUNG LAI AND ZHILIANG YING

2.3. Partial likelihood and information bounds in the case of indepen-
dent (£,¢7,2})

Instead of assuming the observed (t;, z;, §;, §;) to be independent as in (1.3),
where the unobservable (t},c},z}) at times i € {rj_1 + 1,... ,7; — 1} are all set
equal to (¢j,¢;,z;) and 7; is the first time ¢ after 7;_; to yield an observation
(i-e., §i > t;), we now consider the case in which (t!,c},z7) are independent
random vectors that are independent of the sequence {¢%}. We shall still assume

(2.7) and (2.12) on the common density f of the ¢ but replace the assumptions
(2.6) and (2.8) by

lzi]l £ C a.s. for all i and some nonrandom constant C, (2.31)

m
"}i_{noo m~! EE{z:kI{t?—ﬁoTr.»‘Sssc: —pTz:3} = Tik(s) exists for k = 0,1,2
i=1

and s < F71(1), (2.32)

m—00

m
lim m ™! ZP{t:‘ - B8z <cf — Blar < s} =T*(s)
i=1

exists for every s < F~1(1), (2.33)
o0 S inf{s : T3(s) > 0} < oy 2inf{s > 0o : (1 - F(s))Th(s) = 0}.  (2.34)

To begin with, suppose that the common density f of the €} in (1.1) is known.
Let g;(:|z]) be the conditional density of ] given z} with respect to Lebesgue
measure, and let Ci(z},tf) = P{c; > tI|z!,t}}. Let v; be the distribution
function of z}. Let 7o = 0, 7j = inf{i > 7;_; : §7 > t7}. Then z; = z},, i = Yros
etc., and
P{rj > mj_1 + nl(trytr,@r,6r,Gr),r < 5 — 1}
=P{§; <] for 7;_1 + 1 < i < 7521 + nl(7r,try 21, 6, §r )y < G — 1}
Tji—1+n
= H //(1 - F(t - ﬂT:c))Ci(t,z)gi(t|x)dtd1/,-(z).

Tj—-1+1

Suppose that in addition to (ti, i, 8:,7i)i<n, one also observes 1y,... ,7,. As-
suming f, C and v; to be known and g; to belong to a smooth parametric family
{gi~} with vy € R¥ and ¢; = gi0, the likelihood function of (v,3) based on
(Ti,ti, 24,65, §i)i<n is proportional to

Ln(7,8)
- H {fﬁf(@j = BT2;)(1 = F(G; = 872)]'"™%
j=1

1-F(t; - fTz;) (1= F(t; = B725))g7 4(s]25)]
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X 1‘[ / / (1 — F(t — BTz))g; ,(t|z)Ci(t, z)dtdu,(x)} (2.35)

i=7j1+1

Let Gi(+]z}) be the conditional distribution function of t} given z!. Letting
h; . denote the hazard function of g; ., suppose that h; ., is of the form

~T fioo P(s,z)dGi(s|z) }

hiq(tlz) = h:-(tlw){l +77¥(t,2) - 1= Gi(tlz)

(2.36)

where hi = h;p and w(s z)is a dx 1 vector to be specified later. Since g; ,(t|z) =
hi(t|z) exp{— f_ hi~(s|z)ds}, it follows from (2.36) that

G (tl)lyo = ¥(t,2)0itlo) (2.37)

noting that [h;(t|z)/(1-Gi(t|z))ldt = (1-G;(t|z))~2dGi(tlz) = d[1/(1-G;(t|z))]
and using integration by parts to evaluate ffoo{fiw (s, z)gi(s|z)ds}d[1/(1 —
Gi(t|z))]. From (2.35) and (2.37), it follows that

0
a_ log Ln('}/, ﬂ)|’7=0

) . -1 If (1 = F(t — BT2))Ci(t, 2)¥(t, z)gi(t|)dtdv(z)
Z {'P(t.n J)+'_.T’ZI+1 ff (1 = F(t — BTz))Ci(t, z)gi(t|z)dtdvi(z) },

log Ln(77 :B)I’Y-O

3[3
=N t - i — BTz,
If a:f(t ~ BTz)Ci(t, z)gi(t|z)dtdv;(z)
* ZZ T (1= FG— 7o) Citt, e)ait )t

where N;(8,t) and J;(8,t) are defined in (2.3). Hence, for the particular choice
"/’(taz) = xf(t - ,BTIE)/(I _ F(t - IBT:E)), (238)

and letting £, = log L,,, we have

550n(0,6) = > / : S 48,0 = B ONDAH] + 556a(0,9). (239)
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Let t¥(8) = t7 — Tz}, §7(B) = §f — BT z}. Let B* be the complete §-field
generated by

8520 Lt <oy 60 Lt (80) <97 (B0) <53 183 (B0) Suz (Bo) ) Ltz (Bo) <7 (Bo) <}
(u<si=1,2,..). (2.40)

Let BX , = N2 _ B, and S, = (8/87)¢.(0,6). Note that S,,m,72,... are
B ,,-measurable. Define M;(t) as in (2.4). Then {M;(s),B*,—00 < s < 00} is a
martingale (cf. Lemma 5 of Lai and Ying (1991a)). Letting

N, [Ny e I R 0)
W, = ; ,/_oo ) [dN:(Bo,t)—Ji(Bo, ) A(t)dt] = g ,/_ 0 2 dMy(2),

it then follows, under suitable integrability assumptions, that E{(W,+5,)ST} =
ES, E(W, + S,)? = EW? + ES? (where W2 = W, W7, etc.). Hence

Cov((a/b‘v)ln(o,ﬂo))_ In oy I,mp)_ (Esg ES? )
(0/08)en(0,60)) ~ \IZ,s Inps) ~ \ES. EW.+ES:)’

and therefore

In,ﬁﬁ In 'yﬁIn 'y'yI B8 = EWzv (241)

where the inverse refers to the generalized Moore-Penrose inverse without as-
suming ES? to be nonsingular. Thus, the Fisher information for estimating J in
the parametric subfamily {g; .} defined by (2.36) and (2.38) for the conditional
densities of ¢} given z¥ is EW?, and there is no loss in information if we replace
L» by the following partial likelihood (cf. Cox (1975), Wong (1986)):

Ly(8) = [[ {7 @;— BT=;)[1~F(5;-BT2;))" ™% | [1-F(t;-8T<;)] }, (2.42)

=1

which ignores the other factors that involve the term (1-F(t-BTz))g; ,(t|z) in
the full likelihood (2.35). Indeed

logL (8)lp=go = Zz, / /\’\(t()t)[dN(ﬂo,t) Ji(Bo, OA(8)dt) = W,

Note that the partial likelihood L7 (8) can be regarded as the likelihood function
of B for the family of conditional probability measures Pj given (7i,t;,7),1 =
1,...,n. Since the factor (1— F(t—87z))g;(t|z) that 1nvolves B in the joint den-
sity of (7i,ti, z;) contains the unknown g;, it is intuitively clear that restricting to
the conditional probability measures P should not result in loss of information,
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especially in the case where the g; can be arbitrary densities that change with 4
so that the sample contains negligible information about them. We have shown
that even if the g; can be embedded in a d-dimensional parametric family {g; -}
whose hazard functions are parametrized by (2.36), there is a “least favorable”
choice of 9 in (2.36) such that the Fisher information of the parametric family
for the estimation of B agrees with that based on the conditional probability
measures Pg.

We now consider the case of unknown f. Suppose that f can be embedded
in a parametric family {fy} of the form in Subsection 2.2. A simple modification
of the preceding argument can be used to show that using the conditional prob-
ability measures Pj ; given (7,1;,%i),% = 1,...,n, again results in essentially
no loss of information for estimating (6,3). Hence we can estimate (6,3) by
maximizing the partial likelihood

L3(6,8) =[T{ 7 @ - 87201~ Fa(g; - 72,)1' % [ [1-Fa(t;-67 ;)] }. (2.43)
RSt

For the parametric family A\g(t) = A(¢)+6Tn4(t), where \g is the hazard function
of fo and n4 satisfies (2.26a)—(2.26c), the following theorem shows that the
parametric family of conditional probability measures { P* R, Botu/ ﬁ} has the

LAN property for any u,v € RY, i.e.,
log L} (u/v/n, B0 + v/+/n) —log L%(0, Bo)
-—L—>N( - %(UT,DT)IT,A (u) ,(uT, 0L, (Z) ) (2.44)
v

From this LAN property and the preceding discussion that shows no loss of
information in using the partial likelihood instead of the full likelihood, we can
use that same arguments as those in the proof of Theorem 1 to show that the
conclusions of parts (i) and (ii) of Theorem 1 still hold in the present setting.

Theorem 2. Suppose that (t],c},z!T), i = 1,2,..., are independent random
vectors which are independent of {€;} and whose distributions are not specified
and do not depend on . Suppose that (2.31)—(2.34) hold and that the commom

density f and hazard function X of the €, satisfy conditions (2.7) and (2.12). For
k=0,1,2, define

re(s) = Ti(s)/ | " Ty(0) + T (0)}AFQ). (2.45)

With Ty defined by (2.45), define 1,, by (2.23) for n: R — R® and define I;(5o) by
(2.25). Assume that I;(Bo) is positive definite, and choose n4 : R — R? so that
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(2.26a)—(2.26c) are satisfied for every A > Ag. Let g a(t) = A(t) + 0Tna(2),
$o,4(t) = Mo, a(t)exp{— [*__Xo a(s)ds}. Let 0 < € < 1/2 and let F, be a family
of densities satisfying (2.27). Then for the parametric subfamily {¢g 4}, the LAN
property (2.44) holds for all d X 1 vectors u,v and every A > Ay. Consequently,
the conclusions of parts (i) and (ii) of Theorem 1 still hold under the present
setting and notation.

Proof. Let 7o =0, 7; = inf{i > 7j_; : § > t}},n* = 1,,. Then with probability
1,as n — oo,

m—oo —0

n"/n—»( lim m—lip{t: < g;})_1={ / ” [I‘g(t)+I"‘(t)]dF(t)}—l (2.46)

(cf. Lai and Ying (1991b)). Letting N*(8,t) = Lige—pror e, 6:=1), J7(B,8) =
Ii4n _pTzr<t<gr—pT2r}, We can rewrite (2.43) as

log L;,(6,8) = > {67 log Xe(#; —B72})~Aa(§7 ~BT2])+Ae(t; — 8721) e i)

=>4 /_ " log Ae(s)ANZ(8,5) + /_ " Ao(s)dJ7(B,9)). (2.47)

Fix A > Ao. We shall make use of (2.47) to show that for the parametric
family Ag(t) = Ag a(t) = A(t) + 0Tn4(t), the LAN property (2.44) holds for any
u,v € RY.

Let in = {[A(@ ~ B3 27 ~ vT2l/vn)/MGF - B3 «7)1% — 1} (12 <5y Using
(2.46) and an argument similar to the proof of (2.17), it can be shown that
maXi;<n= [(inl £, 0. Note that by (2.26a), n4(s) = 0 and therefore Ag(s) = A(s)
if f(s) < 1/A. Let A, = {maxXicn- |Cin| < €} for 0 < € < 1/2. On A, ., we
have from (2.47) that analogous to (2.18),

log L7, (u/v/n, Bo + v/+/n) —log L},(0, o)

n* 0o
= Z/ 1{/\(8)>01|>\(8—UTI-'/\/E)/A(S)—1|<€}
i=1 V>

—vTz;//n)+ n V20T p (s — T2/ /0
{ log [’\(s [v/7) + ) na _/\/-)]dM{(S)
s—vTz;/\/n) — A(s) + n~1/2y s—vlz;/\/n
+10g [1+’\( T l/\/—) ’\( )1‘(8) 2 T77A( T 1/\/_)] /\(s)Jf(ﬂo,s)ds

—Ji*(ﬂo,s)[’\_(s —vTz;/v/n) - \s) + "_1/2UT77A(8 - UT%‘/\/E)]dS},
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where M (t) = N*(Bo,t) — f:oo J(Bo,s)A(s)ds. Let B} be the complete o-field
generated by (2.40). Then {M(s),B;,—00 < s < oo} is a martingale with
predictable variation process (M})(t) = fiw J¥(Bo,s)A(s)ds, cf. Lemma 5 of
Lai and Ying (1991a). Moreover, n* is B* _ -measurable, and analogous to (2.9),

n* ot
2/ I{l(a)>0,lk(a-—v”i/\/77)/%(8)—11«}
i=1 Y~

x log? [1 + A(s —vTzi/\/n) = A(s) 1’(731)_1/2 uTna(s — vTZz'/\/ﬁ)]

P U
X )‘(S)I{g;—ﬂgzyzszt; —poTz;}ds - (“T,’UT)Im (v) )

by (2.12), (2.26a), (2.31), (2.32) and (2.46), noting that Iigr —pT ot 35212 —pT 27}
are independent random variables to which the law of large numbers is applicable.
The rest of the proof of (2.44) is essentially the same as that of (2.13).

3. Asymptotically Efficient Estimators of §

In this section we first review the development in Lai and Ying (1991b) of
rank estimators 8, of # based on left truncated and right censored data such
that \/ﬁ(ﬁn — f) has a limiting normal distribution with mean 0 and covariance
matrix (I;(8))~!, which is asymptotically minimal in the sense of Theorem 1 (or
2). We then provide some refinements and extensions of these results. Earlier,
for the censored regression model (i.e., with ¥ = —o0) and under the assump-
tion of i.i.d. covariates z; and i.i.d. censoring variables ¢}(= ¢;), Ritov (1984)
introduced another method, which is much more complicated and involves quite
stringent assumptions, to construct asymptotically normal estimators that attain
the information bound (I;(8))~! suggested by the general theory of Begun et
al. (1983) and others in semiparametric estimation based on i.i.d. observations.

A starting point of the development in Lai and Ying (1991b) is the following
general class of rank statistics formed from the residuals e;(b) = #; — bTz;.
Let e(1)(b) < --+ < ex)(b) denote all the ordered uncensored residuals. For
i=1,...,k, let

J(i,0) = {j < n:t; —bTz; <ey(b) < §; — bTz;), ni(b) = #J(i,b),
26,0 = () z;)/ni(b), : (3.1)

JEJ(i,0)

where we use the notation # A to denote the number of elements of a set A. Let v
be a twice continuously differentiable function on (0,1) such that sup, |¢''(z)| <
0o. Let p be a nondecreasing and twice continuously differentiable function on
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the real line such that
P(y) =0for y <0and p(y) =1fory > 1. (3.2)

Take 0 < A < 1/18 and define p,(z) = p(n*(z — cn™?)) for 0 < z < 1. Define
the product-limit estimator F, , and the rank statistic associated with 1 by

I=Fap)= J[  {1-pa(n ni®))/milb)}, (3.3)

ey (b)<u,biy=1

k
Sa(b) = 3 $(Fns(ey ONpaln ' i)z ~T(0:0)). (3.4)

A rank estimator 8, of 8 is defined as a minimizer of 1Sn ()| for ||b|| <
assuming knowledge of an upper bound p > ||8]|.

P,

For the setting in which (¢},¢},z!T) are independent random vectors, Lai
and Ying (1991b) showed that the rank estimators G, are consistent and asymp-
totically normal under (2.31)—(2.34) and some additional assumptions. In par-
ticular, the limiting normal distribution of \/n(8, — Bo) has covariance matrix
(I(Bo))~* if the score function 4 is so chosen that 9o F is a scalar multiple
of A'/A, where By denotes the true value of the unknown parameter 8, F(t) =
P{e; < tle} > 0o} and oy is defined in (2.34). Since the hazard function A of
the €] is typically unknown, Lai and Ying (1991b) also proposed the following
modification of (3.4) that involves an adaptive choice of the score function.

An important idea in the modification is to divide the sample into two dis-
joint subsets, the first of which is {(t,;,8;,%:) : ¢ < n/2}. From the first sub-
sample define the residuals e;(b) = §; — bTz;(i < n/2) and order the uncensored
ones among them as e(1)(b) < -++ < e(x,)(b). Let ny = [n/2], i.e., the largest
integer < n/2, and define J(i,b),n(b),Z(7,b) as in (3.1) but with n; replacing
n (i.e., on the basis only of the first subsample). Let 1, 2(s) be an estimate of
A'(s)/A(s) based on the second subsample of 75 = n—n; observations and define
in analogy with (3.4)

k1 ,
Sna(b) = Z ¥n,2(e(iy(0))pn(n ™ i (b)) {2 (i) — Z(4,b)). (3.5)

Likewise from the second subsample define the residuals e} (b) = §n,4i —bTZn, 4
(i £ n3) and order the uncensored ones among them as efy(b) < -+ < ei"kz](b).
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Asin (3.1), let
J*(5,b) = {m1 <7 < te — b7z, < efy(b) < G — b7z, }, ni(b) = #T7(3,b),
7*(i,b) = ( > z,) [nx(b).

r€J=(i,b)

Let 1,,1(s) be an estimate of A'(s)/A(s) based on the first subsample, and define

k2
Sn2(b) = Z¢n,1(€f'.~](b))Pn(n—1nf(b)){zmﬂz‘} - z"°(1,b)}. (3-6)

Combining the two subsample statistics (3.5) and (3.6) gives the adaptive rank
statistics

§3(8) = Sua() + Sua(b). (3.7)

From the jth subsample, starting with a preliminary consistent estimate
bn,; of 3, Lai and Ying (1991b) showed (i) how to construct from the uncensored
residuals §; — bzyja:; in the jth subsample a smooth consistent estimate X,,,j of
the hazard function A, and (ii) how to smooth X;] /Sn,j to obtain a smooth
consistent estimate 1, ; of A'/A. In view of their consistency results on rank
estimators defined from rank statistics of the form (3.4), one can use such rank
estimators for the preliminary estimates b, ;. Using smooth consistent estimates
Yn,1,%n,2 of A’/X in the adaptive rank statistics S%(b), they also showed that the
adaptive rank estimator En, which is defined as a minimizer of S;;(b) in some small
neighborhood of (b, 145, 2)/2, is asymptotically normal; in fact, ﬁ(ﬁn—ﬂo) £,
N(0,(Zs(6o0))™") under (2.31)—(2.34) and the following assumptions (in which
0o and o, are given in (2.34)):

[ is twice continuously differentiable with sup|f”(s)] < oo and
S

oo (3.8)
/ sup [f'(s + t)/ f(t)]*dF(s) < oo for some 7 > 0;
—oo [t|<n
I¢(fBo), defined by (2.25) and (2.45), is nonsingular; (3.9)
sqp(E|c;'|qI{c‘,-50} + Elt7|°I{~oo<t <0}) < 00 for some g > 0; (3.10)

lim m"(l_A) E [P{t: - ﬂgzi < og — (5}[{1:‘(00))0}

m-—00 €
1=1

+ P{c} - BTz} > 01 + 6} (F(o1)<1}] = 0 for every 6 > 0;  (3.11)
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sup Z[P{sst?—bT:cZ§s+h}+P{s§c;‘—sz;'53+h}]
el <py—o0<s<o0 =5

= O(mh) as m — oo and h — 0 such that mh — oo. (3.12)

A refinement of the proof of the asymptotic normality of the adaptive rank
estimator ﬁn in Lai and Ying (1991b) gives the following stronger uniformity
result which is related to the information bounds in Theorem 2. For every 4 > Ay
(sufficiently large), choose a twice continuously differentiable function 7,4 : R —
R? satisfying (2.26a)—(2.26¢c) and the additional condition

2
sup (115 74) + =7 ma (o)) < A (3.13)

Let Xg.a(t) = A(t) 4+ 0Tna(t) and ¢p,4(t) = g a(t)exp{— fioo Ao, 4(8)ds}, as
in Theorem 2. Let 0 < ¢ < 1/2. From (2.26a), it follows that Ag 4 > 0 for
|6} < »~¢ and An~¢ < 1/A. Take 0 < § < ¢/2 and let

Fn={¢e,a: 6] <n~¢, A < A< 0} (3.14)

Clearly, F, satisfies condition (2.27) for every fixed A > A;. Making use of
(2.26a)—(2.26c) together with (3.8) and (3.13), we can modify the arguments of
Lai and Ying (1991b) to show that for all sufficiently small § > 0, as » — oo,

V(B = ) 5 N(0,(I(60))™") under Pa,g,
uniformly in |[3 — Bo]| < n™¢ and ¢ € F, (3.15)

as will be explained in the Appendix. This implies that for any bounded contin-
uous function w : R — R,

nler;o{ sup Ep,(bw(\/ﬁ(an - ﬂ))} = E{w(N(O,(If(ﬁO))_I))},
IB=Boll<n=<,0€Fa

and therefore J, attains the asymptotic lower bound on minimax risks given in
Theorem 1(i).

Using Lemma 1 above to replace Lemma 2 of Lai and Ying (1991b), we
can also extend the arguments of that paper to prove that (3.15) holds for the
adaptive rank estimator ,En in the setting of (1.3) with independent (t;,c;,z;),
under the assumptions (2.6), (2.8) and (3.8)—(3.12) in which we replace t}, ¢}, 2}
by ¢, ci, z;. It is interesting to compare the limiting covariance matrix (I(Gp))~!
with that of the maximum likelihood estimator which assumes knowledge of f,
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given by (I(8o))?! in (2.11). Since
I(Bo) = /oo (N/A)’T2dF and If(Bo) = /_oo (A'/A)*(Ty = T3/To)dF, (3.16)

it follows that En is asymptotically as efficient as the maximum likelihood esti-
mator when I'y = 0, which by (2.8) is the case if

Ez; = 0 and z; is independent of (t; - ngi,Cg - ﬁgazi) for every ¢.  (3.17)

Thus, under (3.17), adaptive estimation (cf. Bickel (1982) for the definition )
can be accomplished by using the rank estimators Bn. In general, (3.16) implies
that I(Bo) — I;(Bo) is nonnegative definite and adaptive estimation may not
be possible; however, Theorem 1 shows that (I;(8p))~?! is still asymptotically
minimal when f is unknown.

4. Asymptotically Efficient Estimators of Both the Slope and the
Intercept in the Absence of Truncation and Censoring

In this section we first specialize the results of Sections 2 and 3 to the case
t; = —o0 and ¢ = o0, i.e., the y; are completely observable. Since (z},y]) =
(zi,yi) in this case, we will simply write z;,y; instead of z},y] in the sequel.

Under the assumption (2.7), let

5= [ (1prar (4.1)

denote the Fisher information number. Since ¢t = —o0 and ¢} = oo, the assump-
tion (2.33) is automatically satisfied with I'*(s) = 0, while Tj(s) = 1 in (2.32)
which then reduces to the assumption

lim n7! Z Ez; =Ty, lim n7! Z E(z,-:viT) =T,. (4.2)
n—oo n—0o0
=1 =1
Since I'g(s) = 1, (2.34) clearly holds with 0g = —o00 and o3 = F~!(1). Moreover,
the assumptions (3.10)—(3.12) are trivally satisfied since ¢t = —o00 and ¢} = .

Since [0 (M/A)?dF = [ (f'/f)*dF (cf. Efron and Johnstone (1990)), the
definition (2.25) of I¢(8o) reduces to

If(Bo) = J¢ (T2 = T?), where I'? =TI, TT. (4.3)

Hence, under the assumptions (2.7), (2.12), (2.31) and (4.2), the conclusions
of Theorem 1 hold, assuming that I;(f) defined in (4.3) is positive definite.
Moreover, if (2.7) and (2.12) are replaced by the stronger assumption (3.8), then
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we can construct adaptive rank estimators Bn of 3 as in Section 3 so that (3.15)

holds.

In the present setting of completely observable Y7, it is usually assumed that
the €} in (1.1) has a finite variance and (1.1) is usually written in the form

vi=a+ Tz +e, (4.4)

where ¢; are i.i.d. random variables with mean 0 and variance 0. Letting € =
a + €;, the preceding discussion gives asymptotically efficient estimates of 3 when
the underlying distribution of the ¢; (and therefore of the ¢! also) is unknown.
We now consider asymptotically efficient estimation of the intercept a.

Since a = E(y; — 8Tz;), an obvious estimate of « is

@ =01y (3 - ATy), (4.5)
i=1

where En is the adaptive rank estimator described in Section 3 such that

Vi (Bn = B) = N (0,(12 =T ). (4:6)
From (4.4) and (4.5), it follows that

n

an—a=n'l{zn:ei—(ﬁn—ﬂ)TZz,’}. (4.7)
i=1

i=1

A refinement of the analysis of 3, in Lai and Ying (1991b) shows that

(B <r0(5 i) o

An outline of the proof is given in the Appendix. From (4.7) and (4.8), it follows
that

V(@ — a) -5 N(0,0° + TT(T, - T2)71T,/J,). (4.9)
Let g be the common density function of the ¢;. Note that [ (g'/g)?gdt =
J¢. If g is known, the maximum likelihood estimators of a and fB are asymp-

totically normal and the covariance matrix of their limiting normal distribution
is

T\ ! T _ 12y-1 _pT _T2y-1
(4 50) o= (0 TR )
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In view of (4.6), this implies that En is asymptotically as efficient as the maximum
likelihood estimator of 3 that assumes knowledge of g. Hence adaptive estimation
of B is possible, as was already noted by Bickel (1982) under the additional
assumption that the covariates z; are i.i.d.

From (4.9) and (4.10), it follows that the limiting distribution of v/n(@, — a)
has a larger variance than that of the maximum likelihood estimator which as-
sumes knowledge of g, and the difference between the two limiting variances is
o%(= Ee?). We now show that the limiting variance in (4.9) is still asymptot-
ically minimal when f is unknown by establishing information bounds for this
semiparametric estimation problem.

Let ag,fB0 be the unknown values of the parameters o, 3. We shall embed
f in a parametric family of the form

fo(t) = F(){1 + (a — a0)¥(t)}, (4.11)
so that f,, = f, where % is a function satisfying
/_ P(t) f(t)dt = 0, /_ ty(t) f(t)dt = 1. (4.12)

Note that (4.12) ensures that [0 fo(t)dt = 1'and [ tfa(t)dt = . For this
parametric family the log- hkehhood function is

bo(a,8) = D log folyi — BT z:), (4.13)
i=1

and therefore by the central limit theorem, under (2.7), (4.2) and suitable regu-
larity conditions on 1,

(8/0a)n(c0,B0)\ _ Y(e) -
Vn ((a/aﬂ)fn(ao,ﬂo)) Vn Z( (—f'/F)(e )]a;,.) N (0,1, (6)),

where 1,(6) = (?‘;Z 5:5)’ (4.14)

Ina = /; ¢2dF, Ia,@ = Fl/ (—f”(b/f)dF, Iﬁﬁ = er2~

— 00

Assuming I, to be nonsingular, the top right entry of I;l is
(oo — IopI55Iap)™

([ _wrar - @iy [ Z("f’l/)/f)dFr/Jf}_l- (4.15)
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The constraint (4.12) is satisfied by the functions ¥(t) = —f'(t)/ f(t) and
P(t) = (t — ag)/0?, and therefore also by

_ o)t
¢(t) - f(t) + (1 ) 0,2 ’

where the constant ¢ will be specified later. For 4 given by (4.16), we have

(4.16)

/m YF =cJ; 4+ (1 - c*)o2, /oo (=f'Y/f)dF =cJ;+ (1 —c)o™2.

—0c0
Putting these values in (4.15) and then maximizing (4.15) with respect to c gives
the maximizing value

o = I{T;'Ty
T (1-TIfryin)eds + 0715y

(4.17)

for which (4.15) reduces to o + I'{(I'; — I'})7'T,/J;, which is the limiting
variance in (4.9).

Let ¥* denote the function (4.16) in which ¢ is given by (4.17). Under the
assumptions (2.7) and 0 < 62 < 0o, we can choose for every A > Ay (sufficiently
large) a continuous function ¥4 : R — R such that

Ya(s) = 0if f(s) < 1/A, sup|a(s)] < 4, (4.18a)
I, is positive definite, where Iy, is defined in (4.14), (4.18b)
| sarwar=o, [~ wawsaa=1, (4:18¢)
Jim /_:(¢A - ¥*)2dF = 0. (4.18d)

Take any e satisfying 0 < € < 1/2. For |a — ap| < n™¢ and all sufficiently large
n, fa,a(t) = f(£){1+ (@ —ao)¥a(t)} is nonnegative and in view of (4.18c) is also
a density function. For fixed A > Ao, denoting fo,4 by f, and defining Ln(a, )
as in (4.13), the same argument as the proof of (2.13) can be used to show that
for any u € R and v € R?,

1
talawtu/ VR Bt o/ V)= tnton, Bo) o (= 5 001 (a0 ().
Hence, as in Theorem 1, we have the following.

Theorem 3. Suppose that in the linear regression model (4.4) the €; are i.i.d.
randomn variables with mean 0, variance 0?(< o0) and a continuously differen-
tiable density function go such that f satisfies (2.7) and (2.12), where flu) =
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go(u — ag). Suppose that the z; are independent random vectors that are inde-
pendent of {€,} and such that (2.31) and (4.2) hold. Defining J; by (4.1) and
assuming that Ty — I'? is nonsingular, let

v,(ao) = 0’2 + l“f(I‘g - I’%)‘ll‘l/Jf. (4.19)

Let 0 < € < 1/2 and let G, be a family of densities of €; such that for every given
A > AO;

fo,a(-+ @) € G, for |a — ag| < n™° and all large n. (4.20)

(i) Let w : R — R be a bounded continuous function satisfying (2.14). For any
estimator T,, of a,

liminf{ sup Eop,,w(v/n(T, - a))}
n—ee Ia_aolvllﬁ_ﬁo "_<_n-€1 gegn
>Ew(Z), where Z ~ N(0,v¢(ap)). (4.21)

(ii) Suppose that an estimator T, is regular in the following sense: For any
sequence (an,Bn,gn)n>1 With /n(a, — ag) and \/n(B, — Bo) converging to some
limits and gn € Gn, /n(Tn — an) has a limiting distribution Q under Pa, g, .,
where @ does not depend on the particular sequence (anyBn,gn)n>1- Then Q =
N(0,v¢(ag)) x H for some distribution H.

In particular, let G, = {fo,a(- + @) : |a = ap| < n7¢, 4y < A < n®} with
0 < 6§ < e. It can be shown that for the estimator @, defined by (4.5), the
asymptotic normality result (4.9) can be strengthened to:

Vn(a, - a) R N(0,v¢(ap)) under P, g,
uniformly in |a — ag| V||B = Bo|| < n7¢ and g € G,, (4.22)

as n — oo, for all sufficiently small 6§, as will be explained in the Appendix.
This implies that the estimator &, attains the asymptotic lower bound (4.21) on
minimax risks for any bounded continuous loss function w, and therefore &, is
asymptotically efficient.
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Appendix

We outline here the proof of (4.8) and of the uniformity results (4.22) and
(3.15). The arguments are basically modifications and extensions of those in Lai
and Ying (1991b), which we shall abbreviate by LY.




44 TZE LEUNG LAI AND ZHILIANG YING

Proof of (4.8). Specializing the proof of Theorem 2 and Corollary 2 in LY to
the present setting in which tf = —oo and ¢! = o0, it can be shown that

nI;(8)(Bn — B) = —S(8) + o,,(f)

X(s) (L Tis1Tilg2a\
‘Z/ A(s)”" EI{‘ >’})( C T Iiges L)

> e > I ) (o 2272"‘“”1{""2’})%(3)

i=ni+l j=na1+1 j=n1+1 1{5;23}

+ op(v/n), (A.1)

where n; = [n/2] and M;(s) = Lecoy — Lo AMu) (e >uydu. Since {M;(s),B,,
~00 < 8 < 00} is a martingale by Lemma 1, Lenglart’s (1977) inequality can be
applied in conjunction with empirical process theory (cf. Lai and Ying (1988,

1991b)) to show that (A.1) can be further approximated by the more tractable
expression

(0B -0 ==Y [~ -z )amo)

= 2 [ 5 - T )iM(s) + o)

i=n14+1Y 7"
= Un1 + Un,n1 + Op(\/ﬁ)9 say, (A2)
where Z,, = 'Y 2 T, = (0 — my)7! P ni+1 Ti- Note that

oo 1,Unl) is a sum of independent random vectors and is independent of
(Xicn,+1 € Un,ny) which is another sum of independent random vectors. More-
over, since {z;} and {¢} are independent,

n

Cov( Y65, Un,) = Z /- *A(()) - % )(€F - @)dMi(5)}

1
=3 [ N Bl - i) =o,
A similar argument shows that Cov(3 7 +1€Unn,) = 0. The desired conclu-
sion then follows from (A.2) and the central limit theorem.

Proof of (4.22). Let F, = {fa,4 : |a — ag] < n7¢, A4y < A < n%}, which is a
family of densities of €] = €; + a. A refinement of the proof of (A.1) shows that
the op(y/n) term in (A.1) under (1.1), in which € has density ¢, is uniform in
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I8 — Boll £ »~¢ and ¢ € F, if § > 0 is sufficiently small. Also empirical process
theory and Lenglart’s (1977) inequality show that the 0,(y/n) term in (A.2) under
(1.1) in which €} has density ¢ is uniform in ||8 — fo]| < n~¢ and ¢ € F,. The
desired conclusion then follows from (4.7) by applying a uniform central limit
theorem for sums of independent random vectors satisfying a uniform Lindeberg
condition (cf. Theorem 1 of Lai (1977)).

Proof of (3.15). Modify the proof of Theorem 2 and Corollary 2 of LY to
establish (A.1) and (A.2) in which the o,(y/n) terms under Pg 4 are uniform in
[IB = Boll < n~¢ and ¢ € F,,. Then apply a uniform central limit theorem to
U‘n1 + Un,nl-
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