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EXACT RUN LENGTH DISTRIBUTIONS FOR ONE-SIDED
EXPONENTIAL CUSUM SCHEMES

F.F. Gan

National Unwversity of Singapore

Abstract: Exact expressions are derived for the probability functions of run lengths
of one-sided cumulative sum (CUSUM) schemes when observations are exponen-
" tially distributed. Average run lengths (ARLs), standard deviations of run lengths
. (SDRLs) and percentiles of run length distributions can then be obtained by recur-
sively evaluating the probability functions. The run length distributions of CUSUM
schemes are found to be highly skewed, and consequently conclusions based on ARL
alone can be misleading. Knowledge of run length distributions would provide a
comprehensive understanding of CUSUM schemes. A comparison of the perfor-

mance of CUSUM schemes is presented, and general considerations in the design of
CUSUM schemes are discussed.
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1. Introduction )

The main objective of this paper is to provide a comprehensive understand-
ing of the properties of run length distributions of one-sided cumulative sum
(CUSUM) schemes when observations are exponentially distributed. Such CUS-
UM schemes are used, for example, to monitor the intensity of a homogeneous
Poisson process as associated with the occurrence of rare events.

Let X;,X5,... be a sequence of independent and identically distributed
continuous random variables with a common probability density function f(z).
The lower-sided and upper-sided CUSUM schemes are defined as

T() = v, Tt =min{0,Tt_1 +(Xt—k)}, t= 1,2,... 3
and
So = u, St = max{O,St_l + (Xt - k)}, t= 1,2,. ey

respectively where k is a suitably chosen positive constant. Note that —h < v <0
and 0 < u < h where h is the control chart limit. The lower-sided CUSUM

"scheme is intended to detect a downward shift in the mean and it signals an
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out-of-control alarm at the first ¢ for which T; < —h. Similarly, the upper-sided
CUSUM scheme is intended to detect an upward shift in the mean and it signals
an out-of-control alarm at the first ¢ for which S; > h.

If CUSUM schemes are used to monitor the rate of occurrences of defects for
a homogeneous Poisson process, and if X; corresponds to an exponential interar-
rival time, then an upward shift in the mean indicates an improvement in quality
while a downward shift in the mean indicates a deterioration in the quality. A
theoretical treatment of detection of failure rate increases is given by Lorden and
Eisenberger (1973). Vardeman and Ray (1985) described an application of the
exponential CUSUM scheme in controlling the intensity of a Poisson process. By
repeatedly solving simple first-order differential equations, Vardeman and Ray
obtained exact expressions for the ARLs of CUSUM schemes when the observa-
tions are exponentially distributed. Various methods have been used to approxi-
mate’probability distributions for run lengths of CUSUM schemes. These include
procedures developed by Brook and Evans (1972), Reynolds (1975), Khan (1978),
Zacks (1981), Abel and Avenhaus (1984, comments on Zacks’ paper), Woodall
(1983, 1984) and Waldmann (1986). The cited papers did not approximate the
run length distribution for exponential observations.

Exact expressions for the probability functions of run lengths have not been
obtained before because of the complexity of the derivation. The simple form
of the exponential probability distribution allows exact expressions for the run
length distribution to be derived, and these are presented in Section 2. The
recursive approach given in this paper is related to the differential equation ap-
proach used by Vardeman and Ray (1985). Integral equations for the probability
functions of run lengths are solved instead of differential equations. A compar-
ison of the performance of CUSUM schemes based on ARLs and percentiles is
given'in Section 3. A CUSUM scheme is found to be more effective in detecting
small shifts in the mean when k is close to the target mean. As the absolute
difference between k and the target mean increases, a CUSUM scheme becomes
less effective in detecting small shifts in the mean but becomes more effective
in detecting large shifts in the mean. General considerations in the design of
CUSUM schemes are considered in Section 4. Design procedures developed by
Page (1961), Bowker and Lieberman (1972), and Woodall (1985) for normal
observations can be adapted here for the design of CUSUM schemes for expo-
nential observations. The main advantage of knowing the probability function of
run length is to enable a quality control engineer to use a CUSUM scheme with
confidence.

2. Probability Functions of Run Lengths of CUSUM Schemes

- We shall restrict attention in this article to the case in which X; is expo-



ONE-SIDED EXPONENTIAL CUSUM SCHEMES 299

nentially distributed with mean g, that is, where
ﬁ_l exp(—x/ﬁ), z 2 0,

2.1
0, z < 0. (2.1)

)=
If Y is the number of events occurring in a given unit of time and 1/8 is the rate
of occurrence, then the time between occurrences of two events is an exponential
random variable with mean (. Define N as the index at which an out-of-control
alarm is first given by a CUSUM scheme and Pr(n, u) as the probability that N =
n given that the initial value is u. The probability function Pr(n,«) of a CUSUM
scheme with chart parameters h and k£ when X; is exponentially distributed with
mean J is the same as the probability function Pr(n,u/8) of a CUSUM scheme
with parameters h/f and k/f when X is exponentially distributed with mean 1.
Therefore, we shall, without loss of generality, consider the case in which § = 1.
Recursive exact expressions for Pr(n,u) are derived in this section.

For n > 2, the basic recurrent relationships for run length probabilities of a
lower-sided CUSUM scheme are

Pr(n,u) = Pr(n - 1,0)Pr(X; > k —u) + /0 Pr(n —1,z)f(z + k — u)dz, (2.2)
—h

for —-h < u< —-h +k, and

0
Pr(n,u) = Pr(n—1,0)Pr(X; > k—u)+ / Pr(n—1,z)f(z + k — u)dz, (2.3)
u—k i
for —h+k < u < 0. Similarly, recurrent relationships for run length probabilities
of an upper-sided CUSUM scheme are

Pr(n,u) = Pr(n - 1,0)Pr(X; < k- u) + /h Pr(n - 1,z)f(z + k — u)dz, (2.4)
0

for 0 < u < k, and

h
Pr(n,u) = /—k Pr(n - 1,z)f(z + k — u)dz, (2.5)

for k < u < h. Recursive equations similar to equations (2.2)—(2.5) for a general
process were first derived by Ewan and Kemp (1960).

We shall now derive exact expressions for Pr(n,u), n = 1,2,... for lower-
sided CUSUM schemes. Let L denote the smallest integer such that A < Lk. The
derivation of exact expressions for run length distributions will be illustrated here
for cases L = 1 and L = 2. Constants c,n,; will be used to facilitate the derivation

“of run length distribution. Note that n is the run length, integer m is selected
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such that—h + (m — 1)k < u < —h + mk and integer j provides a label for the
terms in the expression Pr(n,u).

First, consider the case L = 2. For —h < u < —h + k, the CUSUM scheme
will signal an out-of-control alarm at the first observation, X;, if u — k < u +
X1 -k < —h. Hence

Pr(l,u)=Pr(u~k<u+ X; —k < -h)
=1-exp(—k+h+u) (2.6)
=1+ c111 exp(u).

For —h + k < u < 0, T1 will be greater than —hA, which implies that

- Pr(1,u) = 0. (2.7)

-~

For —h < u < —h 4 k, equations (2.2), (2.6) and (2.7) imply that
Pr(2,u) =0-Pr(X; > k- u)

—h+k
+ / [1+ c111 exp(z)]exp(—z — k + u)dz
~h

0 2.8
+ / 0:-exp(—z — k + u)dz (2:8)
~h+k

= exp(—k + u)[exp(h) — exp(h — k)] + c111 exp(—k + u)k

= ¢311 exp(u).
For —h + k < u < 0, equations (2.3), (2.6) and (2.7) imply that

Pr(2,u)
=0-Pr(X; >k —u)

—h+k
+ / [1 4+ c111 exp(z)]exp(—z — k + u)dz
u-—k
; (2.9)
+/ 0-exp(—z — k+ u)dz
—htk
= 1—exp(—k + u)exp(h — k) + c111 exp(—k + u)[-h + k — (v - k)]

=14 c221 exp(u) + c222 exp(u)(u — k).

Exact expressions for Pr(n,u), n = 3,4,..., are obtained by evaluating the
integrals (2.2) or (2.3) repeatedly, depending on whether —h < u < -h + k or
—h + k < u < 0 and identifying the general pattern of c¢,pm; where 1 < 7 < m _
< 2. A complete summary of these expressions for Pr(n,u) can be found in the
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appendix. For L =1 and ~h <4 <0,

Pr(l,u) =1 —exp(-k + h + u), (2.10)
and
_ [ exp(h)
Pr(n,u) —{ T+ h (1 - exp(—k)— exp(—k)h]}
n—1 (211)
en-na+n) e,
for n = 2,3,.... These are similar to the probability function of a geometric

random variable.

~ The same approach was used to derive exact expressions for run length
probability functions of upper-sided CUSUM schemes and a complete summary
of these expressions can be found in Gan (1989c). With L =1 and 0 < u < h,

Pr(n,u) = cn11 + cni2 exp(u), (2.12)

n = 1,2,... where ¢j3; = 0, c112 = exp(—k)exp(—h), ca11 = c112, €212 =
ciiz(h — 1)exp(=k), and cn11 = €a—1,11 + €n-1,2, Cn12 = exp(—k)[hen_112 —
Cn-1,12 — Cn-1,11 exp(—-h)].

Recursive evaluation of the exact formulas of Pr(n,u) can be used to evaluate

moments and percentiles of the run length distribution. Let N, denote the run
length of a CUSUM scheme given that the initial value is u. The ARL is denoted
by E(N,) and the standard deviation of run length (SDRL) is

SDRL = /E(N?) — [E(N,)]?. (2.13)

Recursive expressions for Pr(n,u) listed in the appendix and Gan (1989c)
require little modification for translation into computer programming statements.
FORTRAN programs implementing the procedures described in this paper were
developed by Gan (1989a,b). All the computations are performed in double
precision to prevent excessive rounding errors. The ARLs obtained using the
recursive expressions of Pr(n,u) are identical to those obtained by Vardeman
and Ray (1985).

3. Relative Performance of CUSUM Schemes

The ARLs, SDRLs and percentiles of 5 lower-sided and 5 upper-sided
CUSUM schemes with the same in-control ARL of 500 are displayed in Tables 1
and 2 respectively. The starting values of these CUSUM schemes are set at zero.

For a faster detection of an initial out-of-control situation, Lucas and Crosier
" (1982) suggested using nonzero starting values. B
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All CUSUM schemes have the same in-control ARL but the percentiles reveal
substantial differences in the run length distributions. Any out-of-control alarm
issued when a process is in control is considered a false alarm. The main difference
between these CUSUM schemes involves probabilities of early false alarms. The
lower-sided CUSUM scheme with 8 = 1, h = 6.506 and k = 0.800 signals within
the first 46 samples with probability 0.05. However, a CUSUM scheme with a
smaller k (and h such that the in-control ARL is 500) would signal within a
smaller number of samples with the same probability.

Besides having a smaller chance of early false alarms, a CUSUM scheme with
k close to 1 (target mean) is more effective in detecting a small shift in the mean.
A lower-sided CUSUM scheme with k = 0.7, for example, will remain inactive
as long as the observation obtained is greater than 0.7. Thus, the effectiveness
of a lower-sided CUSUM scheme in detecting a small shift in the mean increases
as k increases to 1. This phenomena is reflected in both ARLs and percentiles.
Similar argument holds for upper-sided CUSUM schemes.

When the shift in the mean increases, a CUSUM scheme with k such that
|k — 1| is large, is more effective. The reason is clear by inspecting the chart
parameters of CUSUM schemes. An upper-sided CUSUM scheme with h = 6.617
and k = 1.500 requires an observation of at least 8.117 to signal an out-of-control
alarm. However, an upper-sided CUSUM scheme with A = 19.594 and k = 1.010
requires an observation of at least 20.604. A lower-sided CUSUM scheme with &
close to 1 is not effective in detecting a large downward shift in the mean since
the smallest mean possible is zero and the most extreme observation that can be
obtained is zero. It was pointed out earlier that a lower-sided CUSUM scheme
with h = 6.506 and k£ = 0.800 is very effective in detecting a small downward shift
in the mean but very ineffective in detecting a large downward shift in the mean.
Note that this CUSUM scheme requires 9 zeros for it to accumulate beyond the
chart limit —h because of the relative sizes of k and h.

A Shewhart scheme is obtained by plotting sample observation against sam-
ple number. A Shewhart scheme signals an out-of-control alarm at the first
sample for which the observation is more extreme than the chart limit. The
lower-sided CUSUM scheme with £ = 0.002 and A = 0.000 and the upper-sided
CUSUM scheme with £ = 6.215 and A = 0.000 are both Shewhart schemes. A
Shewhart scheme which put all its weight on the present observation is thus very
effective in detecting very large shifts in the mean. The upper-sided Shewhart
scheme performs slightly better than the upper-sided CUSUM schemes when the
mean is larger than 6. The largest downward shift in the mean is at most 1 which
is not large enough for the lower-sided Shewhart scheme to perform better than
the lower-sided CUSUM schemes. )
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4. Design of CUSUM Schemes

Tables 1 and 2 show that the run length distributions of CUSUM schemes
are highly skewed. The ARL and the median run length (MRL) are substantially
different and conclusions based on ARL alone can be misleading. For example,
the lower-sided CUSUM scheme with k = 0.500 and A = 1.905 has an in-control
ARL of 500, but it would be difficult for a less statistically skilled quality control
engineer to accept that he will get runs less than 32 rather frequently, about one
in 20 times. Also, half of all the run lengths are less than 349.

The main advantage of knowing the run length distribution of CUSUM
schemes is to be able to provide quality control engineers a comprehensive un-
derstanding of the run length properties of CUSUM schemes. The confidence
of a quality control engineer in control charts can be quickly eroded when he or
she encounters a few short run lengths but no assignable causes can be found.
Information like MRL and probabilities of early false alarms, for example, are

useful to quality control engineers for a good understanding of the working of a -

CUSUM scheme.

Reported design and analyses of CUSUM schemes have generally been based
on ARL considerations but these have been widely criticized (see Barnard (1959)
and Bissell (1969)). The two main reasons for this trend are due to (1) compu-
tations of the run length distributions are extremely difficult in most cases, and
(2) in-control run length distributions are ‘roughly’ geometric and hence they
are ‘roughly’ characterized by ARL. Reason (2) somewhat justifies the use of
ARL in the design of a CUSUM scheme. The results in Section 3 show that a
CUSUM scheme with k close to 1 is sensitive in detecting small shifts in the mean
and the probability function of run length of such a CUSUM scheme is substan-
tially different from that of a geometric random variable. I therefore propose
that once a CUSUM scheme has been selected from CUSUM schemes with the
same in-control ARL, then selected percentiles of run length distribution of the
CUSUM scheme are computed. These percentiles or probabilities can then be
used to explain the run length properties of a CUSUM scheme to quality control
engineers.

The design procedures based on ARL developed by Page (1961), Bowker and
Lieberman (1972), and Woodall (1985) for normal observations can be adapted
here in an obvious way for monitoring exponential observations. Tables of ARLs,
SDRLs and percentiles of CUSUM schemes with in-control ARL = 100, 200, ...,
1000 are available from the author or can be computed easily using the computer
program developed by Gan (1989a,b).

Alternatively, we can adapt design procedures recommended by Page, Bow-
ker and Lieberman, and Woodall to be based on MRL instead of ARL. The_
MRL has the advantage of ease in mterpretatlon in relation to a highly skewed
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distribution. If probability of early false alarm of a CUSUM scheme is of main
concern, then the 5th percentile of the run length, for example, may be used in
place of the ARL or computed to provide additional guidance in the selection of
a CUSUM scheme. Whichever design procedure is used, it is recommended here
that once a CUSUM scheme is selected, selected percentiles or probabilities of
run length distribution are computed to provide a better understanding of the

working of a CUSUM scheme.
5. Conclusions

When observations are exponentially distributed, exact values of run length
probabilities can be evaluated recursively from the formulas provided in the ap-
perrdix and Gan (1989c). These can be used to evaluate the ARLs, SDRLs and
percentiles of run length distributions. When the observations are normally dis-
tributed, CUSUM schemes are known to be more effective than the Shewhart
scheme in detecting small shifts in the mean but slightly less effective in detecting
large shifts in the mean. Upper-sided CUSUM schemes have similar properties
when the observations are exponentially distributed. The largest downward shift
in the mean is at most 1 which is not large enough for the lower-sided Shewhart
scheme to perform better than the lower-sided CUSUM schemes. When k is
close to the target mean, a CUSUM scheme is more effective in detecting small
shifts in the mean. As the absolute difference between k and target mean in-
creases, a CUSUM scheme becomes more effective in detecting larger shifts in
the mean. A two-sided CUSUM scheme is obtained by running a lower-sided and
an upper-sided CUSUM schemes simultaneously. Thus, a comprehensive under-
standing of the lower-sided and upper-sided CUSUM schemes would provide a
better understanding of the two-sided CUSUM scheme.
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Appendix: Probability Function of Run Length of a Lower-Sided
CUSUM Scheme

Consider a lower-sided CUSUM scheme with control chart parameters h and
k and let L be the smallest integer such that h < Lk, L > 2. Note that 0° is
defined to be 1. The general form for Pr(n,u) and explicit expressions for {cnm;}
were first worked out for cases L = 2,3,4 and L > 5. They were then combined
together to give the results in this appendix.
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For L > 2,

Pr(1,u)
=1+ c111 exp(u), -h<u< -h+k, (A1)
=0, _ -h+k<u<0. (A2)
For L >3and2<n<L-1,

Pr(n,u)
= i Cnmjexp(u)(u — (5 — 1)k)7-1, ~h+(m-1)k<u<~h+mk,

= m=1,2,...,n—1, (A3)
=1+ i cnnjexp(u)(u — (f — 1)k, —h+(n-1)k<u< -h+nk, (A4) :
= (;, = —h+nk<u<0. (A5)
For L>2andn=1L, |

Pr(n,u)
= § Cnmjexp(u)(u— (5 — 1)k)7-1, —h+(m-1)k <u< —h+mk,

= m=1,2,...,L 1, (A6)
=1+ "Elanj exp(u)(u— (j—1)k) 1, —h+(L-1Dk<u<0. (AT)

j=

For L>2andn>L+1,

Pr(n,u)
= én: Cnmjexp(u)(u— (j — 1)k)71, ~h+(m-1)k<u<~h+mk,

= m=1,2,...,0 -1, (A8)
= f:lanj exp(u)(u — (5 — 1)k)771, —h+(L-1k<u<0. (A9)

i=

The constants {cnm;} are defined as follows:
For L>2andn=1,2,

c111 = — exp(—k)exp(h), (A10)
€1a6 =0, a=2,...,L, b=1,2,...,aq, (A11)
c221 = exp(—k){—exp(h — k) + c111(—h + k)}, (A12)
ca11 = exp(—k){exp(h) + c111h} + 221, (A13)
€222 = —c111 exp(—k), (Al4)

¢2a6=0, a=3,...,L, b=1,2...,a, (for L >3 only). (A15)
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For L > 3 and n = 3,

con = oxp(—R){ - exp(th — 24) + 3 ey HHEZIEL Y, (A16)

i=1

C321 = exp(—k){czn(—h + k)

2 NN
—~h+(2-9)k)
- Zczgj( + - 7)k) + exp(h — k)} + c331, (A1T7)
i=1 J
cs11 = exp(—k)hean + €321, (A18)
C3ab = —C2,0-1,b-1 exp(—k)/(b - 1)7 a = 2,3, b= 2" .. ,a, (Alg)
c3ab=0, a=4,...,L, b=1,2,...,a, (for L >4 only). (A20)
ForL>5and4<n<L-1,
n—1 . ;
_h — k)
Cony = exp(—k){ —exp(h — (n—1)k) + ch-l,n_l,j( i (’J’_ 7)k) },(A21)
Jj=1
n—2 . .
—h+(n—-37-1)k)
Chn-11 = exp(-k){ ch-—l,n—Z,j( ( : ] ) )
< 7
1=1
n-1 . ;
—h —7—-1Dky
- Ecn—l,n—l,j( t(n 7 k) + exp(h — (n-2)k)} + cnn1, (A22)
i=1 J
a-1 . :
—h + (a - 7)k)
Cnal = exp(—k){ ch—l,a—l,j( ( : ]) )
i=1 J
B - —h - k)
—ch_l,aj( +(a J) ) } +Cn,a+1,1, a = n—2,... ,2, (A23)
- j
i=1
11 = exp(—k)hcn_1,11 + o1, (A24)
Cnab = —Cn—-1,a-1,p-18Xp(—k)/(b—-1), a=2,...,n, b=2,...,aq, (A25)
Crap =0, a=n+1,...,L, b=1,2,...,a. (A26)
ForL>4andn=1L,
n-—1 . ;
_h — k)
Cpnl = exp(—k){ —exp(h—(n-1)k)+ Z cn_l,n_l,j( + (TJL 7)k) },(A27)
Jj=1 :

L-2 .
—h+(L-1-7)k)
o = op(R)| T ennpoa LI

=1
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L-1

—h+ (L -1-75)k)
=Y en et IS E I o (120 s, (a28)
Jj=1
a-1 .
—h+ (a - 7)k)?
Cnal = exp(—k){ Ecn—l,a—l,j( (_7 1)

=1

a . ;
-h — NkV
- ch—l,aj( ks (a J) ) } + Cn,a41,1, a = 2’ cee 7L - 2’ (A29)
i=1

J
cn11 = exp(—k)hen_111 + Cn21, (A30)
Cnab = —Cn_1,a-1p-1exp(—k)/(b—-1), a=2,...,L, b=2,...,a. (A31)

For L>2andn=1L+1,

L
coin = exB(=E){ n-s.c1 + 3 enra (=G~ DY

Jj=2
- (=h+ (L — j)ky
+ E Cn-1,L-1,j 7 + exp(h — (L — 1)k)
j=1
L . , NN :
-7 - Dk) ~h 4+ (L -7k
j=1 J J
a-1 . :
~h 4+ — kY
Cnal = exp(_k){ ch-—l,a—l,j( (a J) )
! J
j ‘
= —h+ (a —j)k)?
- ch—l,aj( (a J) ) } + Cn,a+1,1,
_ i=1 J
a=2,...,L -1 (for L > 3 only), (A33)
cn11 = exXp(—k)hen_111 + cna1, | (A34)
Crnab = —Cn_1,0-1-1xXp(—k)/(b—-1), a=2,...,L, b=2,... ,a. (A35)
ForL22andh2L+2,
L
CnLl = eXP(—k){Cn—l,Ll + ch—l,Lj(_(j - 1)k)j—1
Jj=2
L-1 .
—h + (L - j)k)?
+ ch—l,L-—l,j( ( . J) )
i=1 J

L . , .
(=G =Dk)  (=h+(L-j)k)
o + j;cn_l,LJ[ — ; ]} (A36)
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a-1 .

_h EVAY

Cna1 = exp(~—k){ ch-l,a-—l,]’( i (j 1)k)
i=1

a (=h + (a — 5)k)’
- ch—l,aj .
J

a=2,...,L—1 (for L >3 only),

cn11 = exp(—k)hcn—1.11 + €n21,

} + Cn,at1,15

=1

Cnab = —Cn-1,a-1-1exp(—k)/(b-1), a=2,...,L, b=2,...,a.

(A37)
(A38)
(A39)
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