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TESTING FOR AGREEMENT
AMONG SEVERAL GROUPS OF RATERS:
A CONTINGENCY-TABLE APPROACH

S. M. Sadooghi-Alvandi

Shiraz University

Abstract: A contingency-table approach to the problem of testing for agreement
among m groups of raters, each ranking k items, is presented. The approach is
based on a natural decomposition of the hypothesis of agreement into a hierarchy of
subhypotheses. It is argued that unless the samples are unusually large, only a small
number of these subhypotheses can actually be tested. A conditional testing proce-
dure is then recommended, but a flexible unconditional procedure is also presented.
Both procedures employ the familiar chi-squared statistic and are illustrated with
numerical examples.
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1. Introduction

Suppose that a sample is taken from each of m groups -of raters (judges)
and each rater independently ranks the same set of k items. How do we test
agreement among the m groups? For example, suppose the items are ranked
by two groups of raters, male and female; how do we test that male and female
raters have a common opinion?

There is a large literature on measures of agreement (concordance), for both
within and between groups; recent contributions include Gross (1986) and Fegin
and Alvo (1986). Nevertheless, no generally accepted nonparametric procedure
for testing agreement among several groups has emerged. (For parametric ap-
proaches to the problem, see Pettitt (1982) and Tanner and Young (1985).)
A statistic for testing agreement was first proposed by Schucany and Frawley
(1973). Adopting a different viewpoint, Hollander and Sethuraman (1978) ad-
vocated an alternative test statistic. The two tests were discussed by Kraemer
(1981), who argued that they are based on different notions of ‘agreement’, and
that “this divergence of what constitutes the ‘relevant’ hypothesis leads to an
irreconcilable conflict of results”. In another review, Snell (1983) remarked that
““there is no generally accepted statistic estimating agreement between popula-
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tions”.

The purpose of this paper is to present a nonparametric contingency-table
approach to the problem. This approach is not based on any particular ‘measure
of agreement’, and does not involve restrictive assumptions. The proposed pro-
cedures are very simple, both conceptually and computationally, employing the
familiar Pearson chi-squared statistic, and allow a more detailed analysis of the
data. As will be seen, the approach is also rather flexible.

As noted by Hollander and Sethuraman (1978), the problem of testing for
agreement among m groups may be regarded as that of testing the homogeneity
of m multinomial distributions, each with k! categories. The difficulty, as they
note, is that since k! is usually large, many of the cells of the corresponding two-
way table will be empty, and the usual chi-square tests would not be appropriate.
(For a recent warning on the use of chi-squared statistics in sparse tables, see
Haberman (1988).) The approach presented in this paper, which is based on the
work of Plackett (1975), is aimed at resolving this difficulty. In fact the analysis
of this situation, where the samples are small compared with k! but large by
usual standards, is the main focus of the paper, and it is to be emphasized that
it is in this specific context that the approach will be presented. The proposed
test procedures are, however, flexible in that they take into account the sizes of
the samples, with the tests essentially reducing to the usual chi-squared test if
the samples are very large.

The proposed approach focuses on the preferences of the raters (rather than
the rankings of the items), and utilizes a natural decomposition, first used by
Plackett (1975), of the preference probabilities. For clarity, the basic idea is
introduced in Section 2 in a simpler setting: that of testing the interchangeability
of the items for a single group. The decomposition is then used in Section 3
to decompose the hypothesis of agreement into a hierarchy of subhypotheses.
Each subhypothesis postulates the homogeneity of m multinomials, with few
categories, and can, in principle, be tested by a chi-squared test. But, it will be
argued that unless the samples are unusually large, not all the subhypotheses can
actually be tested; typically only the ‘low order’ subhypotheses can adequately be
tested. A conditional test procedure is then recommended. But we also present,
in Section 4, a simple unconditional procedure. Essentially in this procedure
attention is restricted to those subhypotheses which are expected, a priori, to
be testable. Finally some aspects of the proposed approach are discussed in
Section 5.

2. The Basic Approach

The basic approach of the paper will become clear by first considering a,
single sample. Suppose k items, labelled 1,... , k are ranked by each of n raters,
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assumed to be a random sample from some large population. The opinion of

a rater is usually described by his ranking vector r = (ry,...,7r;) where r; is
his ranking of the ith item. An alternative, and arguably more natural, way of
describing his opinion is by his preference vector t = (t1,...,%x), where t; is

his first preference (the item most preferred), ¢, is his second preference, etc.
Note that, as permutations, t is the inverse of r. In contrast with most previous
methods of analysis, this paper focuses on the preferences of the raters t — rather
than the rankings of the items r. As will be seen, it is this shift of focus which
makes the proposed approach rather natural and useful.

Throught the paper t = (¢,7,/,...) will be used generically to denote a
vector of preferences (similarly with r). The corresponding random vector, i.e.
the preference vector of a typical rater will be denoted by T. Let py = pr (T = t),
and let ny be the number of raters with preference vector t. Then {n¢} has a
multinomial distribution with index n and parameter {p¢}, written

{nt} ~ M(n’ {Pt})-

In a similar notation for rankings, {n,} ~ M(n,{p:})-
In order to give some direction to the discussion, consider the problem of
testing the hypothesis of (mutual) interchangeability of the items:

1
Hy:pe= —, allt, (2.1)

k!’
or, equivalently, p, = 1/k!, all r. This hypothesis, which states that all the items
are essentially similar, may be of independent interest (e.g., in market research),
but is introduced here because of its similarity with the hypothesis of agreement.
Working with preferences, the expected frequencies under Hy are ni = n/k!.
But-unless n is very large, say n > 5k!, these will be too small and the usual
chi-squared statistic

X2 = "{(ne - ny)*/ns} (2.2)
t

would not be appropriate. (Similarly if we work with {n,}.) This statistic is
inappropriate basically because there are too many parameters relative to the
number of observations, so that reliable inferences can not be made about all the
parameters. Essentially the same difficulty arises when testing agreement among
several groups.

The main advantage of working with preferences — rather than rankings - is
that preferences have a natural ordering which allows a natural decomposition
of the preference probabilities:

— -

DPijt... = PiPijPijl " (2.3)
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where {p;} denote the first-preference probabilities:

pi = pr(Ty =1);

{pi;} denote the second-preference probabilities conditional on the first prefer-
ence:

pij = pr(Ty = j|T1 = 1),

etc. This decomposition was first used by Plackett (1975), as a basis for deriving
models with relatively few parameters. We shall, however, regard it merely as
a useful reparametrization, with {p;}, {pi;}, ... as the new parameters; this
will keep the approach nonparametric. It is worth remarking that this type
of decomposition has long been used in the analysis of life tables (Kaplan and
Meier (1958); see also Cox (1972, 1975)). In fact this work was motivated by the
methodology of life tables (cf. Berry (1979)); this will be reflected in the proposed
method of analysis. Note that a Plackett decomposition may also be applied to
the ranking probabilities — as in Berry (1979). But in the present context
(n small compared with k!), it is for the preferences that the decomposition is
natural and useful. The main point to note is that changing the labelling of
the items results in a different decomposition of the ranking probabilities. Thus,
unless the items have a natural ordering, the decomposition would be arbitrary.
This problem does not arise with preferences, which do have a natural ordering.
The question of ordering is of special importance in the present context because,
as will be seen, one can make inferences only about the “low order” parameters.
For preferences, the order of the parameters {p;}, {pi;}, ... seems to reflect their
importance, and information about the first and second preferences, say, would
be very useful. To illustrate the difference: it seems more useful to know what
the first and second preferences of a rater are than to know how he ranks the
first and second items, especially so if comparison with another rater is intended
(as will be the case in the problem of testing for agreement).

We now consider the question of making inferences about the new parame-
ters {pi}, {pij}, .... In Plackett (1975), conditional inference was suggested as
an alternative to unconditional inference. In the present context, however, there
are special features which make a conditional approach not only very attractive
but almost the only choice: First note that the new parameters {p;}, {pi;}, ...
are ‘variation-independent’ (or ‘unrelated’; see Lehmann (1986), p.546). This
feature is crucial to the argument for conditioning: Corresponding to the Plack-
ett decomposition (2.3), let n; be the number of raters with first preference 1, n;;
be the number of raters with first preference ¢ and second preference 7, etc. Then
the data may be regarded as having been generated in k — 1 stages: in the first
stage {n;} ~ M(n,{p:}) is observed; in the second stage {n:;} ~ M(n,{pi;}),
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t=1,...,k, are observed; etc. More formally, we have the factorization
WL /) = (ot [T ) { T [ TT035 mst] } -
i J

where t = (4,7,...) is the vector of preferences. This, coupled with the variation-
independence of the parameters, strongly suggests a conditional approach: in-
ferences about {p;} should be based on the distribution {n;} ~ M(n,{p;}); for
each ¢ inferences about {p;;} should be based on the conditional distribution
{ni;} ~ M(n;,{pi;}), etc. The need for a conditional approach becomes more
apparent by noting that the observations may provide little or no information
about higher order parameters. For example, if nj; = 0, then clearly there is
no information about {p12;}. This possibility may be effectively ruled out only
if n.is large compared with k!. But we are specifically concerned with the case
where 7 is small compared with k! — although large by usual standards. In this
case there will be adequate information only about the low order parameters.
Note, also, that it is not possible to determine, a priori, the parameters about
which there will be adequate information; this will depend on the data. Clearly,
a conditional approach is called for.

To illustrate the conditional approach, consider the hypothesis of inter-
changeability (2.1). Using the Plackett decomposition (2.3), this hypothesis is
decomposed into a hierarchy of subhypotheses:

pi=p; =1/k, pij=p; =1/(k-1), ... .

Now the hypothesis p; = p} may be tested by the chi-squared statistic
- XP =) {(ni=np})?/(np})}

(on k — 1 df). For each i, the hypothesis p;; = p;; can be adequately tested if n;
is large, in which case the statistic is

X22i = Z {(nij - nipfj)z/(nfp}‘j)}

J#i

(on k—2 df). In the same way, each subhypothesis may be tested by a chi-squared
test, provided the index of the corresponding multinomial is sufficiently large for
the test to be valid (see Section 5). This essentially amounts to a partitioning
of the statistic (2.2). However, unless n is unusually large, only the low order
subhypotheses can actually be tested.

Since we are dealing with multiple hypotheses, there remains the question_
of combmmg the tests. In view of the hierarchical nature of the subhypotheses,
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a step-down procedure of testing each subhypothesis in turn seems quite natural
and provides a-fairly detailed analysis. Because of the interrelationships between
the conditional distributions on which the individual tests are based, some theo-
retical difficulties arise when formally combining the tests (see Section 5). It can
be shown that the individual chi-squared statistics are asymptotically indepen-
dent, so the tests may be regarded as approximately independent. An alterna-
tive approach to formally combining the tests is to use the Bonferroni inequality
(which does not require independence), to divide the overall level of significance
among the individual tests. It may also be convenient to pool the statistics
for the ‘testable’ hypotheses into a single overall statistic, with an approximate
chi-squared distribution (cf. the unconditional test statistic of Section 4). This
statistic will be denoted by X 2.

Ezample 1. We illustrate the proposed procedures in the simplest case, k = 3,
by applying them to the data of C. Sutton, which previously have been analyzed
by Hollander and Sethuraman (1978) and Pettitt (1982). The data concern
preferred companions for leisure-time activities of two groups of females, white
(group 1) and black (group 2). There are three categories of companions: ‘males’
(category 1), ‘females’ (category 2), and ‘both sexes’ (category 3). Hollander
and Sethuraman (1978) gave the data in terms of ‘rankings’, which we reproduce
in terms of ‘preferences’ in Table 1. For ease of reference, first and second
preferences are also given in Table 2 and Table 3 respectively.

For the first group, the chi-squared statistic for testing p; = p; = ps3 is
X? = 7.43 on 2 df, which is significant at the 0.05 level but not at the 0.01 level.
Next, we consider second preferences. Since n; = 0, there is no information about
{p12,p13}. But, since n, = 8 and n3 = 6, there is some information about the
other parameters. Although binomial tests would be more appropriate, we use
chi-squared tests. For testing p2; = p23, X2, = 4.5, and for testing p3; = p3q,
X2, = 6, each on 1 df, which are significant at the 0.05 level. We may now
confidently reject the hypothesis of mutual interchangeability. The overall chi-
squared value is X? = 17.93, on 4 df, which has a significance level of less than
0.005. For the second group, A7 = 15.85 on 2 df, which has a significance level
of less than 0.001. Thus for the second group a test of the first preferences is
sufficient for the rejection of the hypothesis of mutual interchangeability.

Further analysis shows that for the first group the data are consistent with
the hypothesis of interchangeability of categories 2 and 3, and for the second
group the data are consistent with the hypothesis of interchangeability of cat-
egories 1 and 2. (The procedure for testing these hypotheses is similar to the
procedure for testing mutual interchangeability.) We may conclude that the in-
dividuals in the first group are indifferent whether their companions are all-male
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or of both sexes, whereas the individuals in the second group are indifferent
between all-male and all-female companions. These conclusions are only tenta-
tive and their confirmation requires further data, but at least they indicate that
the two groups have different preference patterns (and, therefore, there is no
agreement between the two groups).

3. Testing Agreement

The procedure for testing for agreement among m groups should now be
clear. Using the superscript g for the parameters and variables associated with
the gth group, g = 1,... ,m, the hypothesis of ‘complete agreement’

Hy:pt =---=p" allt
is &ecomposed into a hierarchy of subhypotheses

pl = ... =p™ (agreement on the first preference),

pli=-= pi; (agreement on the second preference), (3.1)

These are then tested by considering the corresponding sequence of two-way
tables: For testing p! = ... = p™, the statistic is

Xt =222 A(nf - mf)? fm?} (32)

where m{ = (n9n})/n* and “+” denotes summation over a superscript. For
each 7, the hypothesis p}j = -+ = pj; is tested by the usual chi-squared statistic,
here denoted by X3;, provided n{ are sufficiently large for a valid test. Similarly
for the other subhypotheses. As with the hypothesis of interchangeability, agree-
ment may be tested either by employing a step-down procedure of testing each
subhypothesis in turn, or by combining the chi-squared statistics for the testable
subhypotheses into an overall statistic, here denoted by X?2. (Again, it can be
shown that the individual chi-squared statistics are asymptotically independent.)

Ezample 2. Consider testing agreement between the two groups of Example 1.
The table of first preferences, Table 2, yields X? = 11.45 on 2 df, which is
significant at the 0.005 level. Thus, the two groups do not even agree on their first
preferences. Nevertheless, let us look at the second preferences, given in’ Table 3.
The first two subtables provide no information concerning group differences, but
the third subtable is informative and yields X%; = 3.86 on 1 df. The overall
chi‘squared value is X? = 15.31 on 3 df, which has a significance level of less
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than 0.005. Thus, as anticipated by the more detailed analysis of Section 2, the
hypothesis of agreement is rejected.

4. An Unconditional Approach

The main feature of the testing problems considered in this paper is that,
because of the large number of the parameters, the data may not provide suffi-
cient information to test all the subhypotheses. Our conditional approach was,
essentially, to test those subhypotheses which could actually be tested. In this
section we present an unconditional approach which, to a large extent, retains
the flexibility of the conditional approach. Basically, the idea is to restrict at-
tention to those subhypotheses which are expected, a priori, to be testable; this
is determined by the sample size(s). But the approach may also be presented in
more. conventional terms.

Again, we illustrate the basic idea by first considering the hypothesis of
interchangeability, for k¥ = 4 items. First suppose that n = 20. Then, clearly, the
sample will not produce sufficient information about all the second-preference
parameters. We may therefore restrict attention to testing p; = 1/4, using the
statistic

Xt =3 {(ni-5)/5} (41)

(on 3 df). Now suppose that n = 60. Then we may confidently expect the sample
to produce adequate information about all the second-preference parameters -
but not about the third-preference parameters. Restricting attention to testing

- pPi = 1/4, Pi; = 1/3, (4.2)
the test statistic is
Do {(mi =18 /15} + 305 {(nis — mi/3)*/(ni/3)} (43)
i =y
on 11 df. There is, however, a more conventional and more convenient ‘version’
of this statistic: The hypothesis (4.2) is equivalent to

Pij++ = 1/12, i # j,

where pij++ = pr(T1 = 1, T2 = j). Since {ni;} ~ M(60,{p:i;++}), this hypothe-
sis may be tested by the usual chi-squared statistic

e X7 =) {(ni; - 5)*/5} (44)_

i#]
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(on 11 df), which is, essentially, a disguised form of the statistic (4.3).

The unconditional approach to testing interchangeability thus amounts to
‘collapsing’ the original table of frequencies, {n¢}, over high order preferences.
Restricting attention to the first ¢ preferences, the statistic is

Xz = Z {(ntl,... e T mc)z/mc} (45)

where m. = n{(k — c)!/k!'}; cf. (2.2). The value of ¢ is so chosen that m, is not
too small. For example, for k¥ = 4, the following rules ensure that m, > 5: If
n 2 120, no collapsing is needed, ¢ = 3. If 60 < n < 120 collapse on the third
preference, ¢ = 2. If n < 60 collapse on the second preference, ¢ = 1. These rules
are probably too conservative (see Section 5).

~Clearly, the same approach may also be used for testing agreement: de-
pending on the sample sizes, attention is restricted to testing agreement on the
low-order preferences. Again this amounts to ‘collapsing’ the original table of
frequencies, {n{}, over high-order preferences.

Ezample 3. We again consider testing agreement between the two groups of
Example 1. With sample sizes 14 and 13, the data are not expected to produce
much information about second preferences. The appropriate ‘unconditional’
test statistic is X7, given by (3.2). Its observed value is 11.45, on 2 df, which
has a significance level of less than 0.005, thus leading to the rejection of the
hypothesis. ’ -

Compared with the conditional approach of Section 3, the present approach
does not utilize all the available information. But it is more convenient, and
should be quite adequate for most applications, as it tests the most important
components of the hypothesis. (It also avoids the theoretical difficulties which
arise when formally combining the individual tests in the conditional approach;
see Section 5.)

5. Remarks

For simplicity, we have not been specific about how large the ‘sample(s)’ (the
indices of the (conditional) multinomials) should be for an adequate chi-squared
test. This question has been investigated in the literature; and guidelines, usually
in terms of the size of the minimal expected cell value, have been given. A well
known guideline is that it is safe to apply a chi-squared test if all the expected
values exceed 5. But more recent studies, e.g. Larntz (1978) and Fienberg
(1979), suggest that this rule tends to be somewhat conservative, and the test
would be valid even with a minimal cell value of 1. (For a recent review, see
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Lewis, Saunders and Westcott (1984), where a more complicated guideline is
proposed.)

An alternative to the Pearson chi-squared statistic, X? = Y{(0 - E)*/E},
is the likelihood ratio statistic, G2 = 23 {Olog(O/E)}. As pointed out by a
referee, G? performs poorly in small samples (Larntz (1978)) and X? is to be
preferred. It is interesting to note, however, that from a theoretical point of
view, a treatment based on G? would be somewhat neater, since it leads to exact
partition. For instance, the sum of the G? statistics for testing the subhypotheses
of interchangeability, i.e. the G? analogues of X7, X2, ..., is exactly equal to
the G? statistic for a complete test, i.e. the G? analogue of (2.2). Similarly for
testing agreement. This exact partitioning should make the conditional approach
even more plausible (and further supports the chi-squared approximation to the
distribution of the overall statistic X2). Also, the G? statistics corresponding
to the two versions of the unconditional test statistics of Section 4, e.g. the G?
analogues of (4.3) and (4.4), are exactly equal.

The analysis presented in this paper clearly shows that unless the samples
are unusually large, the hypothesis of agreement can not be fully tested; the
proposed tests are only partial tests. It may therefore be useful to indicate,
in terms of ‘partial agreement’, exactly which subhypotheses are being tested:
agreement on the first preference, agreement up to the second preference, ...,
and finally complete agreement. For example, the statistic (3.2) tests agreement
on the first preference. Thus, in the unconditional approach of Section 4, the m
sample analogue of (4.5) tests agreement up to the cth preference. |

The usual test of the hypothesis of interchangeability of Section 2 is Fned-
man’s (1937) rank sum test, originally developed for comparing k treatments
in an analysis of variance context. Clearly the procedures of Section 2 provide
an alternative to Friedman’s test in the same context, and may therefore be of
independent interest. Pairwise comparisons may also be handled by a similar
(conditional) approach.

The conditional approach adopted in this paper seems highly plausibie. Ii
should be mentioned, however, that there are some difficulties with a formal
justification: Although conditional inferences about the individual parameters
(e.g. the conditional tests of the individual subhypotheses) may be formally
justified by the Conditionality Principle (Cox and Hinkley (1974), Berger and
Wolpert (1984), their ‘combination’ can not be so justified, because of the interre-
lationships between the conditional distributions. (The difficulties are essentially
similar to those discussed by Ford, Titterington and Wu (1985), in a different
context). As noted in Section 3, this raises theoretical questions when formally
combining the tests. This is an interesting question for which we do not have a

completely satisfactory answer (we suspect that an extension of the Condition-
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ality Principle is involved, but this will not be discussed here). In fact it was
because of such questions that the unconditional approach of Section 4 was also
presented as an alternative.
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Table 1. Preferred companions for leisure time activities of elderly females (data of C.
Sutton)

Preference configuration

. (1,2,3) (1,3,2) (2,1,3) (2,3,1) (3,1,2) (3,2,1)
Observed frequencies
for white fer?lales 0 0 1 7 0 6
Observed frequencies 1 1 0 0 5 6

for black females

Table 2. First-preference observed frequencies for the data of Table 1.

First preference

1 2 3 Total
Group 1 0 8 6 14
Group 2 2 0 11 13

Table 3. Second-preference observed frequencies for the data of Table 1.

First preference - Second preference Total
2 3
) Group 1 0 0
Group 2 1 1
1 3
0 Group 1 1 7
Group 2 0
1 2
5 Group 1 0 6 6

Group 2 5 6 11
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