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- Abstract: A class of nonparametric tests for comparing two survival distributions
F and G based on randomly right censored data is proposed. The tests developed
assume neither the proportionality of the hazard functions of F and G nor the
equality of the censoring distributions. A subclass of the proposed tests compares
favorably to the Gehan and logrank tests for testing standard hypotheses. It can be
used to test hypotheses concerning F and G over a prespecified interval.
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1. Introduction

In clinical studies, some patients may withdraw from or drop out of the
study; and some may still be alive at the end of the study.” Therefore, the
lifetimes of the patients are not all directly observable. Instead, we observe only
right censored lifetimes. There are many efficient nonparametric procedures for
comparing two survival functions in the presence of right censoring. The two
most notable ones are Gehan’s (1965) extension of the Wilcoxon test and Mantel’s
(1966) logrank test which is closely related to Cox’s (1972) regression test and
Mantel-Haenszel’s (1959) test. Other extensions of these tests can be found
in Efron (1967), Peto and Peto (1972), Tarone and Wane (1977) and Prentice
(1978).

Gehan’s test, the logrank test, and other related tests tend to be insensitive
to the “cross-hazards alternative”. Fleming, O’Fallon, O’Brien and Harrington
(1980) proposed a modified Kolmogorov-Smirnov test to handle this type of
alternative. Empirical results seem to show that their test is more powerful
than Gehan’s test and the logrank test under the “cross-hazards alternative”.
The modified Kolmogorov-Smirnov test is designed to detect a difference in the
distributions which is particularly significant for at least one point in time. _

Tn this article, a class of nonparametric tests is proposed. A subclass of
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the tests can be used to compare two survival distributions over a prespecified
interval of time. Testing a hypothesis of this type may be desirable in some
situations. For example, life testing experimentation is often terminated over a
prespecified time interval, and thus it is natural to test the equality of survival
distributions over this interval. Also, in clinical trials involving aggressive treat-
ment, patients, who are given such treatment, generally may experience one of
the following two consequences: (1) They may experience an excellent short-term
improvement in survival rate but little or no long-term survival advantage over
individuals subjected to the standard treatment. (2) They may experience much
improved long-term survival even though their survival during the initial stage
of the treatment may be worse than that of those given the standard treatment.
In both cases, researchers would like to compare the survival distributions over a
prespecified interval of time. The rest of this article is organized as follows. The
proposed class of tests is described in Section 2. The asymptotic distribution
and properties of the tests are derived in Section 3. The results of a Monte Carlo
simulation study are presented in Section 4. Application of the proposed tests to
real data sets is presented in Section 5. Section 6 contains concluding remarks.

2. The Proposed Class of Test

Suppose that true lifetimes X?,... , X2 form a sample drawn from a distri-
bution F and that Y?,...,Y? form an independent sample drawn from a distri-
bution G. Let Uy,...,Un and Vi,...,V, be independent samples of censoring

variables from the censoring distributions H and I respectively. The censoring
variables are assumed to be independent of the true lifetimes. The censoring
distributions can be different.

‘We observe X; = X? ANU;, 6; = I[X.()=X‘.](’i =1,...,m); Y; = on AV,
€ = I[yjozyjl(j = 1,...,n). Throughout this article the notations a A b and
a V b denote respectively the smaller and larger of a and b; and {4 denotes
the indicator function of event A. Based on (X;,6;) (¢ = 1,... ,m) and (Yj,¢;)

(7 =1,...,n), we wish to compare the two survival distributions F = 1— F and
G =1 — G over a prespecified interval of time.

Let W (z) and W(z) be two bounded nondecreasing functions. Assume that
W(z) is also a function of (X1,81),...,(Xm,6m) and (N1,€),... ,(Ya,€,) and
that W(z) converges to W(z) with probability one as m, n — co. Let F and G
denote respectively the Kaplan-Meier (1958) product limit estimators of F' and
G. One natural class of test statistics for comparing F' and G over the positive
real line is of the form

1
. S =/0 [GoQ(p) — FoQ(p)]dW oQ(p). B
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Throughout this paper, let fog(z) = f(g( ), Q(p) = inf{z|F(z) > p}, and
Q(p) inf{z|F(z) > p}. Let 0 < p < --- < px < ¢ < 1 be the points at which
W oQ(p) has jumps. Let £ =Q(p:) (4 =1,... k) and define o = —oo. Then

we can write

k
S = Z[G(&) ~ PENIW (&) = W(Eim1))-

1=1

In the next section, it is shown that under the null hypothesis F' = G on
(0,00) and some regularity conditions as m, n — oo with n/m— A, 0< A< o0,
n!/2§ converges in distribution to a normal random variable with zero mean and
variance

o} = A /0 /0 TR(Q(s), Q(£)) AW 0 Q(s)dW 0Q(2)
q q
+ / / T'(Q(s), Q1)) AW 0Q(s)dW o Q(2)
0 0

where for u < v,

Pr( ) = (1~ Flit - Fo) [ =i 1)

1WG(uvv) = [1 - u)][l - / [1 dcé(]'y(zy)]z (2)

F(z)= P(X; < 2,8, =1) 3)
H(z)=1-[1- F(z)][1 - H(z)] (4)

- G(y) = P(Yi < y,ei = 1) (5)
GI(y) =1-[1- Gl - I(y)]. (6)

The expression for 0% is still true (see Section 3) even if F # G. In fact 0% can
be simplified when F = G.

Let X(}) < Xg) < -+ < X( ,y and Y < < Y. be the m' distinct
ordered values of the X;’s and the n’ distinct ordered values of the Y;’s respec-
tively. Let rz; and ry; be the total number of individuals that are alive or dead
at X(' 9 and Y’ respectively; and dz; and dy; be the total number of individuals
dead at X(’) and Y( ) respectively. Let D; = [W({,) - W(E,-_l)], i=1,... k.
Then, an estimate of % is

k k
= Z Z[(n/m Tp(€r,&)Dr Dy + Ta(é,6)D, Dy, (7)
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where for é, < és,

. s s .- AT X/, < &)(dzi/m
Tpé,6)=[1- FE)L - FEN DY { (TL};)(TJ(. dxi)/)m} (8)

i=1

- o L. n' Y’,Sérdi/n
To(é.€) =11~ GEN - GEN Y { <r[yf/)n>(ryi](— Zy»;n }

(9)

Note that T'r(€,,€,)/m is the Greenwood (1926) formula for the variance esti-
mate of F’({r). Also note that, for example, if X(,,) is an uncensored observation,
then £ > X(m) and fg(fk,ék) = 0o0. Hence in practice, if either X,y or Yy
is uncensored, we sum over all é,-’s that are less than X(,,) A Y(5) in the com-
putation of § and 6s. Now, Zg = n'/25/6s, which is approximately standard
normal under Hy, can be used to test the hypothesis concerning F and G.
Suppose we wish to compare the two survival distributions F = 1 — F and
G = 1 — G over some prespecified interval (a,b). If a and b are known, then we
can choose W (z) and W(z) so that dW (z) = dW(z) = 0 for z outside (a,b). If a
and b are unknown, and consistent estimates & and b of a and b are available, then
we can choose W(z) and W(z) so that dW(z) = 0 outside the interval (a,b). Let
S(a,b) denote the proposed test statistic with dW (z) = 0 outside either (a,b) or
(&,b) depending on whether or not a and b are known. nl/2 S(a,b)/6s, which is
also approximately standard normal under Hy, can be used to test hypotheses
of the following types in the usual way: -

(1) The null hypothesis is F(z) = G(z) for a < z < b and the alternative is
F(z) # G(z) for some z € (a,b).

(2) The null hypothesis is F(z) < (>)G(z) for a < = < b and the alternative is
F(z)> (<)G(z)fora < z < b.

Two examples, where a and b need to be estimated, are presented below. In
the first example, we assume that F is the distribution function of the life times
of a population treated by a standard treatment (control population). It may be
desirable to compare F and G over an interval defined by two prespecified per-
centiles of F', @ = Q(p;) and b = Q(p;). In this case, a and b can be consistently
estimated by a = Q(pl) and b = Q(pg). In the next example, we assume that
F(z) < G(z) cross exactly at one point a (0 < a < o0). Suppose that we want
to compare F(z) and G(z) on the interval (—oo,a), then the estimated interval
(—o00,d) is the largest interval on which either F(z) < G(z) or F(z) > G(z).
A similar idea can be used to compare F and G over (a,00). Note that d is a
consistent estimator of a. "
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Next, we discuss the choice of a weight function W(z). In principle, if H,
I and, apart from some unknown parameters, the functional forms of F and G
are known, it is possible to choose a weight function W(z) which will yield an
asymptotically optimal test. Since, in practice, F, G, H and I are rarely known,
we do not pursue it here. However, some prior information about F and G can
help us choose a weight function. For example, if distribution differences are
expected to be evident late in time, we should choose W(z) with larger jumps
dW(z) at later times and smaller jumps dW(a:) at earlier times. In this article,
we study only the weight function W(z) = G(a~)I(z < a) + G(:c) (a<z<b)
+ G(b)I(z > b) where G(a™) is the left hand limit of G at £ = a. Note that if
a=0and b =00, S is an estimate of 1/2 — P(X° > Y?).

With the above choice of weight function, S(a,b) is not symmetric in F' and
G. Experience from application of S(a,b) to real and simulated data seems to
suggest that labeling F and G so that F' < G over the interval (a,b) of interest
will generally lead to a larger value of §(a,b) and thus a more powerful test.
This may be explamed by the following facts.

Let p; < p2 < -+ < pi be the points at which Q(p) has jumps. The £ =
Q(p,) (i = 1,...,k) are the ordered uncensored observations of the X- sample.
If G(z) > F(:c) on some interval (a,b), then, on any interval ({,,f,H) contained
in (a,b), G(z) is hkely to have a large number of jumps in (f,,§,+1) Therefore,
the jump sizes dGoQ(p) of GoQ(p) over the interval in which G(:r) > F(z) will
tend to be larger than those over the interval in which G(z) < F(z). Hence, in
the computation of S, [GoQ( )— FoQ(p)] will tend to receive larger weights over
the interval in which G(z) > F(z) and smaller weights (sometime zero weight)
over the interval in which G(z) < F(z). We adopt this labeling convention to
construct the proposed test with this choice of weight function.

3. Some Asymptotic Results

Assume, throughout, that F, G, H and I are continuous. Let £, = Q(p)
and ép = Q(p), and 73 and T, be the uppermost support points of 1-FH and
1-GI respectively. Let g be some positive number between 0 and 1 such that
€ <Th NT3.

The following general conditions will be needed to prove the asymptotic
results.

1. F has bounded second derivative on [0,&, + 6) for some § > 0.
2. 0mf F'(&) > 0.

3. F'(z) is bounded on [0, &,].

Theorem 1. Suppose conditions 1 to 3 hold. Then as m,n — oo with n/m —
“A(f< A < 00), m*[FoQ(p) — FoQ(p)] and nl/z[GoQ(p) GoQ(p)) converge
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weakly to mean zero Gaussian processes Zp(p) and Zg(p), respectively, defined
on 0 < p < q. The covariance structures of Zr(p) and Zg(p) are given for
0<s<t<qgbyTr(Q(s),Q(t)) and Te(Q(s),Q(t)) respectively as defined by
equations (1) and (2). Also, Zr(p) and Zg(p) are independent.

Proof. We shall only prove the result for G({,,) Exactly the same argument
can be used to prove the result for F(£,). By Corollary 1 (i) of Cheng (1984), as
n — 00

sup |£p §p|=O(n"1/2(loglogn)l/2).
0<p<yg

The above fact and Theorem 1 of Cheng (1984) imply that, with probability one,
as m,n — oo with n/m — ),

sup [n'/?[G () — G(&)] — n**[G(&) ~ G(&))] = O(n~ 4 (logn)*/*). (10)

0<p<g¢q

Note that conditions 1 to 3 are needed to apply Cheng’s results. By Theorem 5
of Breslow and Crowley (1974), as n — oo for 0 < p < g, n!/2[G(&,) — G(&,))]
converges weakly to a Gaussian process Zg(p) on (0,¢). The independence of
Zp(p) and Zg(p) follows from that of F'(€,) and G(€,). This completes the proof
of the theorem.

Using (2.3) of Cheng (1984) and Corollary 6.1 of Burke, Csérgé and Horvéth
(1981), we have, with probability one,

_ sup |m'?[p — F(&)) - Zr(p)| = O(m~/3(logm)*/?)
0<r<gq

as m — 0o0. Hence by Equation (10), we also have the following Corollary:

Corollary 1. Suppose the conditions of Theorem 1 are satisfied, and 0 < p; <
p2 < q. Then, with probability one, as m,n — oo, we have

sup |m'?[F(§,) — F(&)] — Zr(p)| = O(m™/*(log m)*/?)

P1<p<p2

sup  [n!/%[G(€,) = G(&)] = Za(p)l = O(n™/*(logn)*/?).

r1<p<p2

Theorem 2. Let py = F(a) and p; = F(b) where 0 < p1 < p» < ¢ < 1. Suppose
that aG=and b converge respectively to a and b with probability one. Suppose that
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assumptions 1 to 3 are satisfied. Let p; = 13‘(&) and pp = ﬁ’(i)) Define
P2 o .
T(a,b) = [ (Go0(r) - Fol(w)] dWoQ(r)
p

~ ["1606(p) - Fo@(@)] aW oQ(p)
I = | " MY K 0Q(p) — K oO(p)] dW o O(p) - WoQ(p)]

where K =F orGandM =mifK=Fand M =nif K =G. If,asm,n - o©
with n/m — X (0 < A < ), and Jg(p1,p2) and Jr(p1,P2) converge to zero in
probability, then n'/*T(a,b) converges in law to a normal random variable with
zero mean and variance,

o) =A [ [ Tr(Q(s), Q1)) dWoQ(s) dWoQ(1)
1 P (11)

+ / / T'a(Q(s), Q(t)) dWoQ(s) dW o Q(2).

Proof. Write
p1— p1 = F(&) - F(a) = F(&) - F(a) + F(a) - F(a).

By the continuity of F and uniform convergence of FtoF, p converges to-p;
with probability one. Similarly, p, converges to p, with probability one. Write

W7, = [ 0 God(r) - GoQ]dWoQr) + Jalin,b2)
.2p. (12)
() [ mi1£e0) - Fo@)awoq(m) - (%) s(i ).

m 1

Consider the first integral

/”2 n1/2[GoQ(p) — GoQ(p)]dWoQ(p)

1

B / " n121GoQ(p) - GoO(p)] dWoQ(p) (13)

P1
q ~ ~ -~
+/0 {Iiss<p<ia) = Iipy <p<na) J 72 [G0Q(P) — GoQ(p)]dW 0 Q(p).

By Theorem 1 and the invariance principle for weak convergence, the first integral _
of the right hand side of Equation (13) converges in law to a normal random
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variable Vg with zero mean and variance given by the second integral of (11).
Since sup, n'/2|G(z) — G(z)| converges in law and p; converges to p; (i = 1,2)
with probability one, the second integral of (13) converges to zero in probability
as m,n — o0o. Hence, the first integral of (12) converges in distribution to V.
Likewise, the third integral of (12) converges in law as m,n — oo with n/m — A
to a normal random variable Vr with zero mean and variance given by the first
integral of (11). Also, Vg and Vg are independent. By assumption, Jo(P1,P2)
and Jp(p1,p2) converge to zero in probability as m,n — oo with n/m — A.
Hence, the result of the theorem follows.

With additional conditions on W(z) and W(z), we can show that as m,n —
00, Jr(p1,P2) and Jg(p1,P2) converge to zero with probability one.

Theorem 3. Suppose the conditions of Theorem 2 are satisfied. In addition,
assume that W(z) is a continuous function and that sup, |W(z) - W(z)] — 0
with probability one as m and n — oco. Then Jp(p1,p2) and Jg(p1,P2) converge
to zero with probability one as m and n — oo.

Proof. We shall only prove the result for Jg(p1,p2). The same argument can
be used to prove the result for Jr(p1,52)-

Let

D(p) = WoQ(p) - WoQ(p)
Z(p) = n*[GoQ(p) — GoQ(p)).

Then write

-

p

P2 .
Jo(pii) = [ 2o(r)dDir)

P

q R R 2 R
= /O {Ii5, <p<pa) = Lips <p<pa) } Z6(P) dD(p) + / Z(p)dD(p)
P

=L + I,.

1

~ q -~ ~
5] < sup In'/?[G(z) - G(z)]|/0 sy <p<pa) = Lips <p<pal| AW 0Q(p)
A q
+sup [n'/?[G(2) - G(-")]I/O 15, <p<ia) — o1 <p<pall W 0Q(p).

Since, with probability one for sufficiently large m and n, (p1,p2) N (p1,p2) # 0,
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it follows that

q ~ ~
/0 15, <p<pa] = Lips <p<pal| GW 0Q(P)
<[WoQ(p1V ) - WoQ(p Ap)]+ (WoQ(p2 V p2) — WoQ(p2 A p2).
Write
[WoQ(p: Vpi) — WoQ(B: Api)]
=[WoQ(pi Vp:) — WoQ(B:i V pi)] - [WoQ(p:i Api) — WoQ(p:i Api)]  (15)
4+ [WoQ(h: V pi) — WoQ(p:)] — [WoQ(i Api) — WoQ(pi)]-

Since p; V p; and p; A p; converge to p; almost surely, SupPocy<,q |Q(p) - Q(p)| and

sup, |W(z) — W(z)| converge to zero almost surely, and W (z) is continuous, the
expression in (15) converges to zero almost surely. It follows that I; converges
to zero almost surely.

Now write

P

L= " (o) - Zop)N 4D + | Za(p)D) = Is + L

1 p1
By Corollary 1, I3 converges to zero with probability one as m and n — oo.
To show that I; — 0, consider any sample sequence:

(X1,61)7(X2,52),"' ;(1/1,61)9(}3362)"--

for which supg<,<, |D(p)| — 0 as m,n — oo. Along any such sample sequence
and any fixed m and n, I, is a Stieltjes integral of a continuous function Zg(p)

On[Phpzl-
Let py < 1 < @2 < ... < gk = p2 and g = P1- Fori = 1,...,k, let

m; = min_ Z  M;= max Z " Defin
gi-1<p<ai s(P) e c(p). Define

k k
Bk=§j M[WoQ(g:) - WoQ(gi-1)), bk=Z mi[WoQ(g:) — WoQ(gi-1)],

k k
Bi=)_ Mi[WoQ(g:) - WoQ(gi-1)), be=) milWolQ(g:) - WoQ(gi-1)),
=1 =1
B= / " Z(p) dW oQ(p), B= / " Zo(p) AW oQ(p).
P P

1 1

Giv;ITé.ny €>0,4q1,q2,... ,q are chosen so that | B — Bj| < € and |B = bi| < €
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Then write

~

(Bk—B):(Bk—-Bk)-{-(Bk—-B)((Bk—Bk)-i-f

k
|Bi — Byl < Z IM|[[WoQ(g:) — WoQ(g:) + |[WoQ(gi1) — WoQ(gi-1)]].

Hence, along such a sample sequence, lim (By — Bx) = 0, and lim (B —
m,n—oco m,n—oo

B) < e. Similarly, we can show that lim (bx—B) > —e. Since (by—B) < (B-

m,n-—+oo

B) < (Bx — B), along such a sample sequence, it follows that —e < lim (B -

m,n=—00

B) < Iim (B - B) < e Since € can be arbitrarily small, (B — B) converges

m,n—00
to zero as m,n — oo along any such sample sequence. Hence, Iy — 0 with

probability one as m,n — oo and consequently I — 0 with probability omne.
This completes the proof of the theorem.

Remark 1. If F(z) = G(z) for z € [0,00), then [J[GoQ(p) — FoQ(p)]dW o
Qp) = 0 and T(0,,) reduces t0 S(0,,) = [1GoQ(p) - FoO(p)]dW 0Q(p)
and n'/%25(0,¢,) converges in law to a normal random variable with zero mean
and variance 0%(0,q). If the support of the censoring and survival distribution
is (0,00), we can choose g arbitrarily close to 1. Hence, in application, we may
assume ¢ = 1 in this case.

Now suppose that F(z) = G(z) for z € [a,b]. Given any 6, 0 < é <
(P2 —p1)/2, define gy = p1 + 6, G2 = P2 — 6, q1 = p1 + 6, and g2 = p; — 63. Then
there exist ¢; and ¢5 such that [¢1,¢2] C [¢1,93] C [p1,p2], and, with probability
one for sufficiently large m and n,

[Q(d1), Q(d2)] C [Q(41), Q(2)) C [a,b]-

Since F(z) = G(z) for « € [a,b], n*/? [*[GoQ(p) — FoQ(p)]dW oQ(p) = 0
with probability one for sufficiently'large m and n. Hence, as m,n — oo with
(n/m) — X, nt/28(€,,,&,,) converges in law to a normal random variable with
zero mean and variance 04(q;,q2). Since we can make g; arbitrarily close to p;
(4 = 1,2), we may use n'/25(¢,,,£,,) to test the null hypothesis F(z) = G(z)
for z € [a,b).

Remark 2. If the conditions of Theorem 3 are satisfied, then

. P2 R R a4
— A= [ [GoQ(p)— FoQ(p)]|dWol(p)

P1
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converges with probability one to

p2
A= [ [GoQ(p) - FoQ(p)dWoQ(p)
P1
as m and n — oo. This implies that the test based on S(a,b) is consistent. To
see this, write

A

A —
- / " {1Go0(p) - FoQ(p)} - [GoQ(p) — FoQ(p)]} dW oQ(p)

P2 . R L 16
+ [ [GoQ(p) — FoQ(p)d[WoQ(p) — WoQ(p)] (19

P1
1
+/0 {13, <p<ia) = dipy <p<pa) }G0Q(P) — FoQ(p)] dWoQ(p). -

Clearly, the first and third integrals of the right hand side of (16) converge to
zero with probability one as m and n — oo. Using integration by parts, the
second integral of the right hand side of (16) can be written as

[GoQ(p2) — FoQ($:2)][WoQ(p2) — WoQ(h2)]
- [G?Q(ﬁl) — FoQ(p1))[WoQ(p1) — WoQ(p1)]

_ / "W od(p) - WoQ(p)] dIGoQ(p) - FoQ(p)]-

By assumptions, the above expressions converge to zero with probability one.

If W = G, then the above integral can be written as foq[GoQ(p) - Fo
Q(p)]‘%%g—%z)— dp where g(z) = G'(z) and f(z) = F'(z). Hence, if the difference

of G and F is positive and increasing over an interval, then goQ(p)/foQ(p) will
be greater than one and increasing over this interval. The reverse will be true if
the difference is negative and decreasing over an interval. This may explain why
labeling F and G so that G(z) > F(z) for a < z < b will generally lead to a
more powerful test in detecting the alternative that G(z) > F(z) for a < z < b;
because choosing W = G will give [GoQ(p) — FoQ(p)] greater weight on [a,d]
than choosing W = F.

4. A Simulation Study

_Monte Carlo simulation was conducted to determine how well the normal
distribution approximates the distribution of the test statistics S and 5(a,b) and
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to compare the power of the S test with that of the Gehan and logrank tests. The
simulation was done on a Zenith-386 microcomputer in Fortran 77 programming
language.

The Gehan’s extension of the Mann-Whitney form of the Wilcoxon test is
based on the statistic W = 3372, 327, Us; where

1 fX;>Y;ande;=1or X; =Y;,6; =0,¢; =1,

Uij: -1 ifX,'(Y}'andéizlorX,‘-ij,éizl,gjzo,
0 otherwise.
Let t(3) < --- < Yk be the distinct uncensored observations of the combined

sample and d; and d;; be respectively the total number of deaths at f(;) from
the two groups and from the first group (X-sample). Let A; be the proportion
of the total risk set at #(;) which belongs to the first group. The logrank test is
based on the statistic

k
L= (di— Aidy).
i=1

Clearly from the definitions of these tests, they can perform poorly in detect-
ing distribution differences when F and G cross. For example, if F(z) > G(z) for
z < a and F(z) < G(z) for z > a, the U;; will likely give a negative contribution
to W for X; and Y; < a and a positive contribution to W for X; and Y; > a.
Similar thing happens to L when the hazard functions of F' and G cross.

The lifetime distributions included in the study were exponential, Weibull,
and lognormal. The lognormal random variables were obtained from normal
random variables that were generated by the Box and Muller (1958) transfor-
mation. The random variables of the other two distributions were generated by
utilizing a cumulative distribution transformation to uniform random variables.
The censoring distribution was uniform distribution over some interval [0,T).

The rejection rates of the tests based on S and S(a,b) at levels = 0.1, 0.05,
0.01 for exponential and lognormal lifetimes with F = G and various sample
sizes are presented in Table 1. The (a,b) were chosen to be (Q(p1), @(p2)) with
(p1,p2) = (0,0.4), (0.2,0.7) and (0.5,1). The § test corresponds to the choice
(p1,p2) = (0,1). Also, the censoring rates were fixed at 43% for the exponen-
tial distribution and at 55% for the lognormal distribution. The sizes of the
test were estimated from 1,000 simulation samples. For m = n = 12 and in
the intervals (Q(0.2),0(0.7)) and especially (Q(0.5),Q(1)), there were few cases
where there was only one or no uncensored observation. For these cases, the null

hypothesis were accepted because there was not enough evidence to reject the
null"Hypothesis. ' -



COMPARING TWO SURVIVAL DISTRIBUTIONS 277

Table 1. Estimated sizes of S(a,b)

Sample Size Level of Test
Distribution (p1,p2) m n 0.1 0.05 0.01
Exponential (0,1.0) 12 12 0.084 0.049 0.014
(0,1.0) 20 20 0.097 0.045 0.012
(0,0.4) 20 20 0.090 0.061 0.009
(0.2,0.7) 20 20 0.070* 0.042 0.014
(0.5,1.0) 20 20 0.083 0.042 0.008
Lognormal (0,1.0) 12 12 0.098 0.044 0.016
(0,1.0) 20 20 0.089 0.049 0.018*
(0,0.4) 20 20 0.104 0.056 0.016
(0.2,0.7) 20 20 0.087 0.040 0.005
(0.5,1.0) 20 20 0.093 0.047 0.008

Apart from the ones marked by “*”, the estimated sizes were all within
two standard deviations from the nominal level. Hence, Table 1 shows that for
the (&, b) considered, the normal distribution approximates the distributions of
S(a,b) and S quite adequately.

The power comparison for the S tests, Gehan test, and logrank test under
the standard situation where F and G do not cross is presented in Table 2. The
levels of these tests are set at a = 0.05. The rejection rules of these tests were
all based on their asymptotic critical values. The power estimates are based
on 500 simulation samples. When sampling from the exponential distribution,
the scale parameters were fixed at 1.0 for distribution F' and were chosen to be
1.0 (0.2) 2.0 successively for distribution G. When sampling from the Weibull
distribution the scale and shape parameters were fixed respectively at 0.01 and
1.0 for distribution F. For distribution G, the shape parameter is 1.0 for scale
parameters chosen to be 0.01, and is 0.85 for scale parameter chosen to be 0.0121,
0.0136, 0.0155, 0.0181, and 0.0218. When sampling from the lognormal distri-
bution, the variances of the log-transformed variable were fixed at 1.0 for both
distributions F and G. The means of the log-transformed variables were fixed at
0 for distribution G but were chosen to be 0 (0.2) 1.2 successively for distribution
F.

Since asymptotic critical values were used, the observed levels of significance
of the tests are different — some are lower and some are higher than the asymptotic
nominal level @ = 0.05. Therefore, in order to have a fair comparison of these

tests, the sums of o and 3, the probability of type II error, are also presented in
Table 2. ) B
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Table 2. Power estimates of the Gehan, logrank and § tests under exponential, Weibull
and lognormal distributions. Asymptotic nominal level a = 0.05

m n Power a+
Distribution (% censored) Gehan Logrank S Gehan Logrank S

Exponential 20 20 0.038 0.048 0.054
(43 43) 0.078  0.084 0.094 0.960 0.964 0.960
0.084 0.074 0.146 0.954 0.974 0.908
0.142 0.162 0.198 0.896 0.886 0.856
0.172 0.186 0.268 0.866  0.862 0.786
0.300 0.302 0.344 0.738 0.746 0.710

20 20 0.044  0.032 0.058
(43 0) 0.078 0.078 0.084 0.966 0.954 0.974
0.102 0.110 0.146 0.942 0.922 0.912
0.182 0.210 0.224 0.862 0.822 0.834
0.240 0.332 0.318 0.804 0.700 0.740
0.404 0.470 0.412 0.640 0.562 0.646

30 15 0.052  0.042 0.052
(43 0) 0.084 0.094 0.114 0.968 0.948 0.938
0.128  0.152 0.196 0.924 0.890 0.856
0.198  0.258 0.280 0.854 0.784 0.772
0.330 0.430 0.370 0.722 0.612 0.682
0.382  0.480 0.474 0.670 0.562 0.578

Weibull 20 20 0.044 0.050 0.052
(55 55) 0.082 0.070 0.072 0.962  0.980 0.980
0.188 0.150 0.136 0.856  0.900 0.916
0.276  0.234 0.352 0.768 0.816 0.700
0.532  0.446 0.466 0.512 0.604 0.586
0.680 0.556 0.644 0.364 0.494 0.460

20 20 0.042 0.022 0.052
(55 0) 0.080  0.032 0.112 0.962 0.990 0.940
0.172  0.072 0.196 0.870 0.950 0.856
0.276  0.114 0.398 0.766  0.908 0.654
0.526  0.260 0.568 0.516 0.762 0.484 -
0.648 0.334 0.704 0.394 0.688 * 0.348

30 15 0.060 0.036 0.052
(55 0) 0.066 0.056 0.118 0.994 0.980 0.934
0.212 0.134 0.260 0.848 0.902 0.792
- 0.356  0.242 0.416 0.704 0.794 0.636
0.512  0.382 0.554 0.548 0.654 0.498
0.700  0.528 0.680 0.360 0.508 0.372

Lognormal 20 20 0.038 0.048  0.054
(43 43) 0.126  0.092 0.126 0.912 0.956 0.928
0.106 0.076 0.190 0.932 0.972 0.864
0.164 0.166 0.246 0.874 0.882 0.808
0.234 0.216 0.320 0.814 0.832 0.734
0.422 0.366 0.454 0.616 0.682 0.600

20 20 0.044 0.032 0.058
(43 0) 0.106 0.088 0.124 1.038 0.944 0.934
0.118 0.084 0.178 0.926  0.948 0.880
0.184 0.158 0.240 0.860 0.874 0.818
0.270  0.290 0.362 0.774 0.742 0.696
0.490 0.502 0.532 0.554 0.530 0.526

30 15 0.052 0.042 0.046
(43 0) 0.124  0.098 0.146 1.028 0.954 0.900
0.154  0.124 0.196 0.898 0.918 0.850
0.212 0.220 0.278 0.840  0.822 0.768
0.364 0.362 0.414 0.688 0.680 0.632
— 0.480 - 0.492 0.540 0.572 0.550 0.506
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Table 2 suggests that for exponential lifetimes, there is no clear winner
among the three tests. However, for the cases of unequal censoring rate, the
performance, as measured by power and a + (3, of the logrank test, is better for
the last two scale parameter values. If the lifetime distribution is Weibull, the
performance, as measured by power and a+f, of the § test, is consistently better
than that of the Gehan and logrank tests. For lognormal lifetime, the logrank
test performs poorly compared to the Gehan and § tests. The performances of
the Gehan and S tests are similar but the S test seems to have a slight edge over
the Gehan test for the cases of unequal censoring rates. The poor performance
of the logrank test for Weibull and lognormal lifetimes can be explained by the
nonproportionality of the hazard functions. It is interesting to note that the
observed level of the S test is quite stable — it ranges from 0.046 to 0.058. The
observed level of the logrank test tends to be unstable — it ranges from 0.022 to
0.048.

In order to compare the tests under “crossing-hazard alternatives”, we con-
sidered three cases:

A. F and G are piecewise exponential distributions with respective hazard func-
tions:

5, z€(0,.2) 3, z€(0,.2
Ar(z) =< 3, =z€(2.4) Ag(z) =< .5, z€(.2,4).
1, z€(4,) 1, =z € (4,00)

In this case, the differences in F and G are most evident early in time.
B. F and G are piecewise exponential with hazard functions:

- 2, z€(0,.1) 2, z¢€(0,.1)
5, z€(.1,4) 3, z€(.1,4)
A =< A = .
FE) =33 e (4,.7) 6(2) 5, z€(4,.7)
1, ze€(.7,0) 1, z€(.7,0)

In this case, the differences in F' and G are most evident in the middle of time.
C. F=W(.5,.5) and G = W(2,2), where W(\,a) denotes a Weibull distribu-
tion with distribution function 1—exp[—(At)?]. In this case, the differences occur
late in time. F’ and G cross at a = Q(0.33) with G(z) > F(z) for z € (a, o).
Here, we compare the powers of the tests for testing the null hypothesis
Hy : F(z) = G(z) against the alternative hypothesis H, : F(z) < G(z) over some
interval (a,b) at asymptotic nominal levels @ = 0.05 and 0.01. The censoring was
taken to be uniformly distributed over [0, 1] or [0,2], and the sample sizes m =
‘n =20 and m = n = 50 were considered. One thousand pairs of samples were
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generated for each selected configuration of survival and censoring distributions
and sample sizes. The power estimates are presented in Table 3.

In addition to the tests considered in Table 2, a test based on $(a,b) was
included in this simulation study. The interval (a,b) is the interval or which
F(z) < G(z) for each of the cases considered.

Table 3. Power estimates of the Gehan, logrank, S and S(a,b) tests under “crossing-
hazard alternatives”

Distribution Gehan  Logrank S S(a, b)
Survival Censoring n 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05
A U(0,1) 20 .171 .422 .074 .206 .503 .597 .571 .727

50 .512 .785 .138 .351 .743 .844 .944 .969
U(0,2) 20 .147 .345 .048 .174 .430 .526 .617 .747
50 .379 .638 .078 .257 .637 .736 .948 .969

B U(0,1) 20 .122 .306 .099 .258 .394 .483 .327 .450
50 .322 .594 .247 .514 .686 .790 .656 .763

U(0,2) 20 .095 .308 .065 .198 .441 .522 .412 .526

50 .303 .548 .156 .341 .640 .730 .670 .782

C U(0,1) 20 .014 .058 .098 .252 .120 .142 .071 .109
50 .016 .047 .256 .534 .262 .355 .387 .457

U(0,2) 20 .068 .183 .322 .605 .244 .309 .263 .340

50 .104 .282 .830 .966 .551 .656 .668 .746

From Table 3, it is clear that for cases A and B, the tests based on $ and
S(a,b) are clearly more powerful than the Gehan and logrank tests. As expected,
the logrank test performs poorly in case A when distribution differences occur
early in time. For case B, when distribution differences are evident in the middle
of time, both the Gehan and logrank tests perform poorly. For case C, when
distribution differences occur late in time, the logrank test is clearly superior
and Gehan’s test performs very poorly. However, the tests based on .§ (a,b) and
S are not too much inferior to the logrank test and perform much better than
Gehan’s test. The S(a,b)-test has higher estimated power than the S-test in
cases A and C; but in case B, the S-test is better than the S(a,b)-test when the
censoring distribution is U(0,1).

Finally, it should be pointed out that among the four tests considered, tech-
nically speaking, only the S(a, b)-test is specifically designed to test the equality
of the survival distributions over an interval (a,b).

5. Examples

The proposed tests were applied to two data sets which were first analyzed
by Fleming et al. (1980). The data will not be presented here. Interested readers
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Figure 1. Survival distributions of time Figure 2. Survival distributions for the
to progression of disease for patients with control group and the group receiving
low and high grade ovarian carcinoma RoRx+5-FU

are referred to the paper by Fleming et al. (1980).

Example 1. The data of this example were collected in a Mayo Clinic study to
determine whether or not grade of disease was associated with time to progression
of disease. The first sample consists of times to progression of disease for 15
patients with low-grade ovarian cancer and has nine censored observations. The
second sample consists of times to progression of disease for 20 patients with
high-grade ovarian cancer and has four censored observations. Here F' is the
distribution of the low-grade group and G is that of the high-grade group.

Application of various tests to these data for testing the alternative F #
G yield the following results. M-K-S is the abbreviation of the modified
Kolmogorov-Smirnov test.

Table 4. p-values for Example 1

Test p-value
Gehan 0.134
Logrank 0.023
M-K-S 0.002
S 0.032

The result of the S test is compatible with that of the logrank and M-K-

S tests. S(Q(0.3),00) was also applied to compare F' and G over the interval
(Q(0.3),00). The p-value of this test is 0.04 and thus indicates significance at

- 0.051evel. ' N
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Example 2. The data of this example were collected in another Mayo Clinic
study to determine whether a group of patients treated with a combination of
radiation treatment (RoRx) and drug (5-FU) would survive significantly longer
than a control group. The treated group has 22 survival times with three cen-
sored observations. The control group has 25 survival times with no censored
observations. Figure 2 shows that the Kaplan-Meier estimators of the survival
distributions of the two samples cross at two places. Here F is the distribution
of the treated group, and G is that of the control group. F(£,) > G(€,) for
p<0.140rp>0.7 and F’(ép) < G(ép) for 0.14 < p < 0.7.
Application of various tests to this data yields the following results.

Table 5. p-values for Example 2

Test p-value
Gehan 0.127
Logrank 0.418
M-K-S 0.048
S 0.055

For the one-sided alternative F > G, the S test is almost significant at the
0.05 level while the Gehan and logrank tests are not significant even at the 0.1
level. 5(Q(0.14),Q(0.7)) was also applied to compare F and G over the interval
(Q(0.14),Q(0.7)). The p-value of this test is 0.036 and thus we may conclude
that the treated group has significantly (at 0.05 level) higher survival probability
than the control group over the interval (Q(0.14), Q(0.7)).

6. Conclusion

The simulation results indicate that the normal distribution approximates
the distribution of the proposed tests quite adequately. Also, the proposed tests
based on § compares favorably to the Gehan and logrank tests when the lifetime
distributions are Weibull and lognormal. However, based on the results in Table
3, apart from case C where distribution differences occur late in time, the tests
based on § and S(a,b) are clearly more powerful than the Gehan and logrank
tests. In case C, although the logrank test is the best test, the tests based on
S and S(a,b) are not too much inferior to the logrank test. The tests based on
S(a,b) can be used to test hypothesis concerning F and G over an interval (a, b).

The derivation of the test assumes neither the equality of the censoring dis-
tributions nor the proportionality of the hazard functions. Since the proposed
test is"based on a comparison of the Kaplan-Meier estimators ¥ and G, the con-
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clusion obtained from the proposed tests can be easily reinforced and explained
by comparing the graphs of F and G.
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