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PENALIZED LIKELTHOOD REGRESSION:
A BAYESIAN ANALYSIS
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Abstract: It was well established by Wahba (1978) that a smoothing spline procedure
is equivalent to a Bayesian procedure under a partially improper prior. Based on this
interpretation, statistical inference other than point estimation was made possible
for smoothing spline estimators of a Gaussian regression function (Wahba (1983)).
This article extends Wahba’s results to non-Gaussian regression problems via a
simple approximation known as Laplace’s method. The results make the Bayesian
inference tools developed for Gaussian models applicable to non-Gaussian models.
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1. Introduction

Smoothing spline technique is widely used as a powerful nonparametric re-
gression tool in data analysis. The method allows the estimator to take a flex-
ible form and seeks an appropriate balance between the goodness-of-fit and the
smoothness of the estimator via minimizing the sum of a standard goodness-of-fit
criterion and a roughness penalty. For Gaussian sampling likelihood with least
squares as the goodness-of-fit, the commonly used quadratic roughness penalty
was shown by Wahba (1978) to be equivalent to a partially improper Gaussian
prior in the sense that the smoothing spline estimator can be interpreted as the
mean of the corresponding Gaussian posterior. When the sampling likelihood is
non-Gaussian, a penalized log-likelihood criterion is commonly used in the esti-
mation (O’Sullivan et al.(1986), Gu (1990)). Thé purpose of this article is to
explore a Bayesian interpretation for the penalized likelihood smoothing spline
estimator of a non-Gaussian regression function. It is shown that under Wahba’s
prior, if one approximates the posterior via Laplace’s method in a certain way, the
smoothing spline estimator is the mean of the approximate posterior. The results
allow Wahba’s Bayesian confidence intervals (Wahba (1983), Nychka (1988)) and
other Bayesian inference tools be applied to non-Gaussian models.

“Tn Section 2, we extend Wahba’s posterior calculations to Gaussian sam-
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pling likelihood with nondiagonal correlation matrix and introduce notations.
Section 3 describes the approximation in the posterior analysis and gives the
main results. Section 4 discusses the computation of the posterior covariance,
which will be needed in constructing Bayesian confidence intervals. In parallel
to Wahba (1983) and Nychka (1988), a Monte-Carlo experiment is presented in
Section 5 to illustrate a certain “frequentist” property of Bayesian confidence
intervals.

2. Extensions of Wahba’s Results

We extend Wahba’s Gaussian posterior calculations (Wahba (1978, 1983,
1985)) to the case where the sampling errors are non i.i.d. We will develop the
results in a very general setup. A commonly used specialization is described in
Section 5. See Wahba (1990) for other useful specializations.

Suppose on domain 7 one observes y; = f(t;) + €, J = 1,...,n, where
ti € T,and (e1,...,€,)T = €~ N(0,0°W 1) with W (positive definite) known.
Writey = (v1,..-,¥2) T and t = (t1,... ,t»)T. The solution fw, to the problem

min(y — f(£)7W(y - £(£) + nA|PLfI?, £ EH (2.1)

is called a smoothing spline, where H is a Hilbert space of functions on 7 with
norm || -|| in which an evaluation is a continuous linear functional, H = Ho & H1,
P, is the projector onto H; and dim(Ho) = M < oo. A is the smoothing parame-
ter which controls the trade-off between the goodness-of-fit and the smoothness.
fw,» can be expressed as (Wahba (1990)) .

M n
fW,A(') = E¢U(')dv + Z R(°atj)cj = ¢T(')d + R(-,tT)c, (2'2)
- v=1 i=1
where the vector ¢T = (¢1,... ,énm) span Ho, R(:,-) has the reproducing prop-
erty (R(t,-), f) = f(t),Vf € H1,Vt € T and (-,-) is the inner product in H. By
substituting (2.2) in (2.1), one can solve

min(y — Qc — Sd)TW(y — Qc — §d) + nAcT Qc, (2.3)

where (Q); ; = (R(t,t7))i; = R(ti,t;) and (§)j, = (@7 ()i = ¢u(2;)-

In the following development, s or ¢t denotes an arbitrary point on the domain
T, s denotes a vector of arbitrary points, and t denotes the vector of the sampling
(design) points. Following Wahba (1978), we specify a prior for f, which is
the same as the distribution of the stochastic process fe(t) = Egl 0:0:(t) +
b/2Z(t), where 6 = (8y,... ,0m)T ~ N(0,£I), Z(t) is a Gaussian process on 7
independent of @ with EZ(t) = 0 and E(Z(s)Z(t)) = R(s,t). Let Y = fe(t) + €,
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n) = o2 /b, and p¢(s|y,b,0?) and Ve(s|y,b,0?) be the conditional mean and the
conditional covariance respectively of f¢(s) given Y = vy, b, and o?

Theorem 2.1. pioo(s|y,b,0%) = lim¢_ o pe(sly, b,02) = fwa(s) and
Veo(s|y, b,0%) = £lim Ve(sly, b, a?)

=b{[¢T(s) — R(s,t )M S)(STM 1 S) p(sT) — STM T R(t,s™)]
+ R(s,sT) - R(s,tT)YM1R(t,sT)},

where M = Q + nAW 1,

We note that the solution of (2.3) satisfies
QWQ +nrAQ@ QWS c) ([ QWy
STwQ STws )\d) ~ \STwy /)’

c=MI-S(STM'S) ' STM )y and d = (STM~15)7 8T M1y,

which leads to

Thus Theorem 2.1 immediately follows (2.6)-(2.9) of Wahba (1978). As £ — oo
the prior on @ tends to a uniform improper prior. The parameter  is essentially
introduced as a convenient device for handling this improper prior.

Defining the influence matrix A(A) satisfying y = A(\)y, it is easy to ver-
ify that A\) = I — nAW M~ — M715(STM™LS)™ 1.S’TM 1], On applying
Theorem 2.1 to s = t, we obtain Corollary 2.1.

Corollary 2.1. V. (t|y,b,0%) = c2ZAN)WL.
The proof of Corollary 2.1 follows tedious algebra.

Assuming a uniform improper prior for 6, the marginal likelihood of Y on
T M- -

Y (
M7S(STM1S)1STM 1)y}, Let W = GG7T be the Cholesky decomposition

of W,5=G7S,0 =GTQG, M = Q +n)l,and § = GTy. The quadratic form

remains the same when one replaces everything by the tilded version. Now let
S =FR= (F1, Fy) (}(2)1> be the QR-decomposition of 5', with R; nonsingu-
lar. The quadratic form becomes §T(M ™! = M~ 'F(FITMF)"'FTM~1)3.

By partitioning (FTMF)™! = (;T g), and using Ff F = (I,0), it can be
0] O

: T=\T Tzy
shewn that the quadratic form reduces to (F* ¥) (O D- BTA—IB) (F 9

parameters b and o can be shown to be proportional to exp
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Since (D — BTA™1B)™! is equal to the bottom right block of (FTMF)y™\) ! =
FTMF (Rao (1973), p.33), which is FTQF; + n)I, it follows that the likeli-

hood is proportional to exp{——}—zT(FTQFQ + nAI)~1z}), where z = FJ§. By

including the constant terms involving b and n), one gets exp{~ —zT(FzT OF, +
M

nA)"lz — logb — —logIF:,TQFg + nA|}, which is Wahba’s generalized
likelihood (Wahba (1985)). Proﬁhng on b=zl (FIQF, +nX)7'z/(n— M), the
profile likelihood of A is proportional to

\FTOF, + nA | 2 (2T (Ff QF, 4 nA) 7 2)~ (" =M%,
whose mode gives Wahba’s generalized maximum likelihood (GML) estimate of A.

3. Approximate Posterior Analysis

In thlS section, it is assumed that the sampling likelihood of y is proportional
1
to exp{——-—L(y|'n)} = exp{———Ly( )}, where Ly(-) is convex and completely

specified, n = f(t), and o? is a “dispersion” parameter possibly unknown. We
are interested in the solution fz » of the penalized log-likelihood problem

min Ly (f(8)) + (n/2MPf|*, feEM. (3.1)

See, e.g., O’Sullivan et al.(1986) and Gu (1990). The expression (2.2) for the
solution depends only on the penalty || P; f]|?, so it still applies here. By substi-
tuting (2.2) in (3.1), we solve '

min Ly (Qc + §d) + (n/2)Ac” Qc. (3.2)

-

Under the prior specified in Section 2, letting £ — oo, the joint likelihood of
y, m = f(t), f(s), and 6 given (b,0?) is p(nly)d(n|6)r(f(s)|n), where p(n|y)

exp{~ 5 Ly(m)}, d(nl6) o< exp{~z(n — 50)7Q(n = 56)}, and r(f(&)}m) is

Gaussmn with mean and covariance given in Theorem 2.1 with 0 = 0 and y = 7.
Integrating out 6 from §(n|@) yields

g(n) x exp{——— Q™ - Q15(5TQ1S)1STQ " )n}.

The posterior distribution of interest is 7(f(s)|y) < [ p(nly)e(m)r(f(s)n)dn.
To approximate this integral, we adopt Laplace’s method which is revisited in
recent Bayesian literature. See, e.g., Leonard (1982), Tierney and Kadane (1986),
and Leonard et al.(1989) for details about Laplace’s method. Here is how it
works 1n our setting. Expanding log[p(n|y)g(n)r(f(s)|n)] via Taylor series and -
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neglecting the cubic and higher order terms, one can approximate the integrand
by the exponent of the expansion, which is in the form of a Gaussian likelihood.
The integration of such an approximate integrand is immediate. In our case,
since g(n) and r(f(s)|n) are Gaussian, we only need to approximate p(nly).
Letting p(n]y) be such an approximation with the expansion centered at the

. 1 -
mode 7. of p(nly)q(n), one gets logp(nly) = —5—(n — (7. =W Tu))TW(n -
(ne — Wtu)) + C, where w = (0L/0n)ln., W = (6*L/0mdnT)|n., and C
is a constant independent of 1. We approximate the posterior 7( f(s)ly) via

#(f(s)ly) < [ B(nly)g(n)r(f(s)|n)dn.

Theorem 3.1. The approzimate posterior distribution #(f(s)|y) is Gaussian
with mean f1,\(s) and covariance given in Theorem 2.1, where the matriz W 1s
the Hessian defined above.

Proof. Technically, the approximate likelihood p(n|y) is identical to a Gaussian
sampling likelihood with covariance oW1 and observations Y = 7, — W luy;
hence, the mean and the covariance of #(f(s)|y) can be calculated via Theorem
2.1. When using Newton iteration to solve (3.2), it can be shown (Gu (1990))
that at the fixed point 7., the solution satisfies

("swe® ) ()

_ QW (Nus — W lu)
STWQ sTws )\ d

- (STW(n.,. - w—m)) !

where W and u are evaluated at 7... Hence, it suffices to verify that n, =-7...
By definition, 7. is the minimizer of '

Ly(n) + (/2207 (@7 = Q71 S(STQ ™')™ STQ ™).

Writing 7 = Qc + Sd with the constraint that § T¢ = 0, the problem reduces to
solving (3.2) with this constraint. Note that this constraint doesn’t change the
original problem since n = Q¢ + Sd is an overparameterization of the vector 7.
Finally, it is apparent that the minimizers ¢ and d of (3.2), although constraint-
free, always satisfy the above constraint (see Gu (1990)). This completes the
proof.

The standard application of Laplace’s method is to take the Taylor expan-
sion around the mode of the whole integrand, which should be the mode of
p(nly)g(n)r(f(s)In) rather than that of p(n|y)e(n). If the posterior 7(f(s)|y)
for certain s needs to be accurately approximated, the mode needs to be searched
for every fixed value of f(s), though n. could serve as a good starting guess.
However, such an approximation is no longer Gaussian since the mode and u, W
evaluated at the mode will all depend on f(s). Intuitively, the approximation of
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#(f(s)|y) to m(f(s)|y) should be relatively more accurate for lower dimensional
s and for f(s) closer to the mean of 7(f(s)|n.), because in such cases-the mode
shift should be smaller. Based on the approximate posterior distribution given
in Theorem 3.1, one may construct pointwise approximate Bayesian confidence
intervals or simultaneous confidence regions, etc., conditioned on parameters b
and o?. Via the same approximation, it is trivial to write down the approximate
marginal likelihood for (b, 0?) following the lines of Section 2.

Finally, a few words about the precision of the approximation are in order.
For given (b,0?), f(s) are the parameters of interest in Theorem 3.1. Since at
most one sample of the y;’s is “generated” according to a parameter component
f(8), which happens when s = t;, the asymptotic results in the literature are not
applicable in this circumstance. The precision of the approximation depends, I
believe, on the relative strengths of the non-Gaussian sampling likelihood and the
Gaussian prior. One can expect a better Gaussian approximation for a larger
nA. In general no 7(f(s)|y) is of special interest, and Theorem 3.1 is mainly
taken as a useful device for deriving other approximations, e.g., the Bayesian
confidence intervals, rather than as an accurate approximation for =(f(s)|y).
Nevertheless, fr »(t) is the posterior mode of n(f(t)|y), although the statement
is not true even for a subvector of t. When parameters b and o2 are unknown and
are of primary interest, which is the case in certain model selection problems,
however, the standard asymptotics in the literature are needed and are likely to
be applicable. We shall explore details in further study.

4. Computation

To apply the results derived in Sections 2 and 3, it is necessary to compute
the quantities involved. The calculation of fr  is discussed in Gu (1990) with
the smoothing parameter nA = o2 /b selected via the generalized cross validation
(GCV) method. In this section, we discuss the calculation of the posterior covari-
ance given in Theorem 2.1 assuming b and o2 are known. For the one-parameter
exponential family likelihood the dispersion parameter o? is known, and b could
be calculated from the GCV estimate of nA.

We rewrite

Voo (sly,b,0%)/b = R(s,s) + ¢T (s)(STM18) " ¢(sT)
~ oT(s)(STM18)1STM1R(¢,sT)
~ (@7 (s)STMT1S) T STM T R(¢,sT))T
— R(s, tT) (M~ = M71S(STM~18)" 18T M~ R(¢t,sT).

Using_the notations of Section 2, the calculation utilizes the Cholesky decom-
position W = GGT and the QR-decomposition § = FyR;. It can be shown
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that
(STM—ls)—l
—(5TM18)!
—R;V(FTOF + nA) — (FLQF)(FFQF: + nA) ™ (FfQR)IRTT

Since d = RJFT — (FFQFR)(FT QF, + nAI)"*Ffly, (see Gu (1989)), the
columns of (STM~15)~ 1<;b(.<sT) can be computed by passing the columns of
QFlR ¢(sT) through the standard procedure for computing d. ThlS could
be done with O(n?) extra flops for one dimensional s. Since ¢ = M-YI -
S(STM~185)"1STM ')y and d = (STM15)" ST My, other terms could be
calculated similarly. For s = t, it can be shown that AA)W~! = G~T[I -
AP (FTQF, + nAI)~ Ff)G~?, and the computation could be arranged accord-
ingly. To calculate all the dlagonal elements O(n>) flops are needed.

5. A Monte-Carlo Experiment

Based on Theorem 2.1 and Corollary 2.1 with W = I, Wahba (1983) con-
structed pointwise Bayesian confidence intervals on the design points and illus-
trated via simulations that the frequentist coverage of these intervals is rather
accurate “on average”. Nychka (1988) proved that the “average coverage prob-
ability” ACP(a) = (1/n) 37-; P(f(t;) € Ca(t;)) of the intervals is asymptoti-
cally “correct” in the sense that ACP(a) — a, where the t;’s are equally spaced
univariate design points and C,(t;)’s are the usual pointwise confidence intervals
at t; based on the posterior of Theorem 2.1 with W = I. It'is not clear if the
same result can be proved for more complex covariate structures and for sampling
structures other than i.i.d. Gaussian errors. In this section, we present a simple
Monte-Carlo experiment providing positive evidence that the average coverage of
the pointwise Bayesian confidence intervals based on the approximate posterior
of Theorem 3.1 is likely to be “correct”.

As a specialization of (3.1), consider the smoothing spline logistic regres-
sion on 7 = [0,1]. With independent Bernoulli data, 0! =1 and Ly(n) =
Z;‘ 1(yjm; —log(1 4 exp 7;)), where 7; is the logit at design point t;. 'H is often
taken as W2[0,1] with an inner product (f,g) = (J f)([ )+ (] DU 9+ fa),
where W2 contains functions with square mtegrable second derivatives. Ho =
{1,t — .5} with norm ([ f)? + ([ f)?, and H; is the complement of Ho in W7.
The roughness penalty is ||P, f]|> = [ f2. In this case M = 2, and ¢; and ¢; can
be taken as ko(t) = 1 and ky(t) = t — .5. R(t,s) = ka(t)ka(s) — k4(|t — s|), where
ko = (k¥ —1/12)/2 and kg = (ki — k}/2 + 7/240)/24. (k, = B, /v! are scaled
Bernoulli polynomials.) See, e.g., Wahba (1990), for details and other specxal-
izations. What really matters here is the roughness penalty (a semi norm) [ f2
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and its null space Hy. Assigning a different norm on Ho will result in a different
H, and a different R. However, || P; f||* always remains the same; so does fr .

In a Monte-Carlo experiment, Bernoulli responses y; were generated on t; =
(- .5)/100, 5 = 1,...,100, according to a “true” logit function

f(t) = 3[10°411 (1 — 1) + 10%3(1 - 1)'°) - 2.

100 replicates were generated. The minimizers of (3.1) (with the foregoing spe-
cialization) were computed using the algorithm of Gu (1990) with A minimizing
an appropriate GCV score. There were cases where the GCV score has a mini-
mum at A = 0 demanding an interpolation, hence a lower bound for n), 10~°, was
applied in the calculations. Pointwise 90% and 95% Bayesian confidence intervals
(symmetric in the logit scale) were computed, using fz,x(%;)’s as the means and
the diagonals of W=12(I — nAFy(FLFQF, + nAI)"*F¥)W~1/2 as the variances.
The mean average coverages were 89.05% and 93.76% respectively. Plotted in
Figure 5.1 are the “true” Bernoulli probability, the estimated Bernoulli proba-
bility from the first replicate, and the corresponding 90% pointwise confidence
intervals transformed into the probability scale with a “sampled” average cover-
age 87%. The data y;’s are also plotted in Figure 5.1. The pointwise coverages
out of the 100 replicates are plotted in Figure 5.2 where the magnitude of | f(t)|
is superimposed. It is rather clear that low coverage is associated with high
curvature, which also appears in the simulations of Wahba (1983) and Nychka
(1988); see their works for more discussions.
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Figure 5.1. Solid line is the “true” probability. Dashed line is an estimated probability.
Dotted lines connect bounds of pointwise 90% Bayesian confidence intervals. Stars
indicate y;’s.
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Figure 5.2. Stars are pointwise coverages of 90% intervals. Circles are pointwise cover-
ages of 95% intervals. Dotted lines are nominal values 90% and 95%. Dashed curve is
magnitude of ||.
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