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Abstract: There is vast literature on M-estimation of linear regression parameters.
Most of the papers deal with special cases by choosing particular discrepancy func-
tions to be minimized or particular estimating equations. A few discuss general
results, but prove results under heavy assumptions which seem to exclude impor-
tant special cases. In this paper, a general theory of M-estimation is developed
using a convex discrepancy function under what appear to be a necessary set of
assumptions to develop a satisfactory asymptotic theory. Detailed proofs are given
for establishing the asymptotic normality of the distribution of M-estimates and the
results are applied to several particular cases. Appropriate criteria are developed
for tests of hypotheses concerning regression parameters. The problem is discussed
in the multivariate situation which includes the univariate case.
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1. Introduction

-

Consider a general p-variate regression model
K:X:,B-*—E“ i=1"°°9n (11)

where E; are iid p-vectors, X; are m X p given matrices. (When we consider the
univariate case of the model (1.1) with p = 1, we write lower case letters y;, z;
and e; in the place of ¥;, X; and E;.) It may be noted that the model (1.1) is
more general than the usual multivariate Gauss-Markoff linear model

Yi=Bzi+ E, i=1,...,n (1.2)

where B is a p X a matrix of parameters and z; is an a X 1 vector of concomitant
(or design) variables. Note that (1.2) can be written in the form (1.1) defining
B = vecB and X =1 ® zi.

. For the model with p =1, Huber (1964, 1973) introduced what is called an
M-estimate of § defined as any value of § minimizing -
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> p(y: — 2iB) (1.3)
i=1

for a suitable choice of the function p, or any value 8 satisfying the estimating
equation

> ¥(yi — zif)zi = 0 (1.4)
=1

for a suitable choice of the % function. A natural method of obtaining the
estimating equation (1.4) is by taking the derivative of (1.3) with respect to S
when p is continuously differentiable and equating it to the null vector. However,
in general one can use any suitably chosen function 9 and set up the equations
(1.4).

There is considerable literature devoted to the asymptotic theory of M-
estimation under some assumptions on the p and ¢ functions. Reference may
be made to papers by Huber (1964, 1973, 1981, 1987), Relles (1968), Jureckova
(1971), Jackel (1972), Bickel (1975), Heiler and Willers (1988) and others. The
particular case of p(z) = |z| has been extensively studied. See, for instance,
papers by Bassett and Koenker (1978), Amemiya (1982), Bloomfield and Steiger
(1983), Dupacova (1987), Bai, Chen, Wu and Zhao (1990), Bai, Rao and Yin
(1990) and Bai, Chen, Miao and Rao (1990). Most of the papers cited above
discuss particular choices of p and 1, or general p and 1 under some restrictive
conditions which do not cover important special cases. ;

In this paper we attempt to provide a general theory of M-eétimation, defin-
ing an M-estimate of § in the model (1.1) as any value of 3 minimizing

> (Y - X1B) (1.5)
i=1

for any convez function p, under what we believe to be a minimal set of conditions
on X; and the random error E;. It is well known that an M-estimate so defined
exists although it may not be unique. Our results are true for any choice of such
an estimate. We are aware that it is more satisfying to consider an expression of
the type

n _ , n
;p(z 1/2(y; — X,.ﬂ)) + EloglE' (1.6)

introducing a scale parameter matrix ¥, for minimization and also to extend the
results to non-convex functions. We hope to consider these problems in future
communications. In particular, we note that our method can be easily extended
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to any p function which is a difference of two convex functions. This covers most
of the p functions considered by earlier writers.

In a recent paper, Koenker and Portnoy (1990) consider a discrepancy func-
tion of the type: p(z1,...,2p) = pu(z1) + -+ + pu(z,) Where p, is a univariate
convex function. In our discussion, we consider a general convex function of p
variables.

In Section 2, we state the main theorems in the multivariate case and the
basic assumptions under which they are proved. In Section 3, a more general form
of the multivariate regression model is introduced and more general theorems are
established from which those stated in Section 2 are deduced as special cases.

We use the following notations in the discussion of Sections 2 and 3

X1,...,X, denote m X p matrices,

B denotes an m-vector of regression coefficients,

Y1,...,Y, are vector response measurements corresponding to the values
Xl Yty -X'n.a

p is a convex function of p variables,

1 is a choice of a derivative of p, a p X p matrix-valued function,

E,,... ,E, are the components of error.

In Section 4, we give a further discussion of the problem of testing of hy-
potheses and in Sections 5 and 6, we consider some examples.

2. Statements of Main Theorems and Assumptions
We consider the linear model (1.1)
- Yi=X{+E;, i=12,...,n, (2.1)

where X! is the transpose of X;, and the problem of estimating 8 by minimizing
n

> p(Yi - X1B). (2.2)
i=1

Let f, be any value which minimizes (2.2) and By be the true value of 3.
(To simplify the notation we drop the suffix » and represent By, simply by 8. ) We
develop the asymptotic theory (as n — 00) concerning B and tests of hypotheses
on fBy. The following assumptions are made.

(M3). p(Z) is a convex function of p variables.

Let 9(Z) be any choice of the subgradient of p(Z) and denote by D the set_
of dlscontmulty points of 1, which is the same for all choices of 1.
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(M3). The common distribution function F of E; satisfies F(D) = 0.

This condition is imposed to provide unique values for certain functionals
of 1 which appear in the discussion, and it automatically holds when p is differ-
entiable. (For instance if p(z) = |z|™, r > 1, the condition does not impose any
restriction on F.) ‘

(Ma). E[Y(E1 + C)) = AC +o(||C}) as |ICl|—0 (2:3)

where C is a p-vector, A > 0 is a p X p constant matrix and Il - || denotes the
Euclidean norm of matrices or vectors.

It is easy to see that if (M3) holds for one choice of ¥, then it holds for all
choices of ¥ with the same constant matrix A. This follows from the assumption

(Ma).

(My). 9(C) = E|[%(E1 + C) — (B’ (24)

exists for all sufficiently small ||C||, and g is continuous at C = 0.

(Ms). E[$(E1)¥'(E1)] = B > 0. (2.5)

(Mg). Sp = X1X{+---+ XnX,, is nonsingular for n 2 no (some value of n) and
d: = pax tr[X!S-1X;]) >0 as n— . (2.6)

The most recent results on M-estimation relevant to our discussion are due
to Yohai and Maronna (1979) and Basawa and Koul (1988). Before stating our
results, we may point out some differences between the assumptions made by
these authors and ours.

Yohai and Maronna (1979) adopt the definition of an M-estimate as a solu-
tion of an estimating equation

> (i - zif)zi =0 (2.7)
=1

and make assumptions on 1. Our conditions on ¢ defined as a chosen subgradient
of p may look similar to those of Yohai and Maronna, but the most noticeable
differences are their (A;), (Az) in the place of our (M;) and (M2) and their
extra condition, the second part of their (Cy), which has no counterpart in ours.
Further, their condition (A;) seems to exclude estimating equations obtained by
equating the derivative of

) |
—- Zlyi-— z;Bl”, p>2 -
1=1
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to zero, and hence their theory does not cover the L,-norm estimates for p > 2.

In our case, an M-estimate obtained by minimizing (2.2) always exists and
has the stated properties. Yohai and Maronna have not given a formal proof of
the existence of a solution of (2.7) under their conditions. Of course, continuity
of 1 would ensure the existence of a solution, but no specific assumption is made
about continuity of 1 in their paper. We do not use these additional conditions,
and in this sense our results seem to be more general.

On the other hand, Basawa and Koul adopt our definition (2.2) of an M-
estimate; and their main assumptions for the regression problem (their Example
7) appear to be somewhat closer to ours. However, they do not provide details
of the proofs but state that some extra smoothness conditions are necessary to
prove their results, such as strict convexity of p, existence of bounded second
derivative of 1 or existence of a bounded density function for the distribution of
E;, and nondecreasing behavior and right continuity of 1. We do not need these
conditions. They have not stated any assumption similar to our (My), which we
think is necessary.

Now, we state our main results for the multivariate regression model based
on the definition (2.2) for M-estimation.

Theorem 2.1. Under the assumptions (M;)—(Mg), for any fized ¢ > 0,
sp | lo(Yi - XIB) - p(Yi = Xifo) + (8 — Bo) Xit(Y — X1fo)]
T2/ (B~ Bo)l<e i=1 .

- .;.(,3 — Bo) Kn(B - ﬂo)‘ — 0 in proba'bility

(2.8)

where By is the true value for the model (2.1), and
T, =Y X:BX|, Kn.=)» XAX]. (2.9)

i=1 i=1

For notational simplicity, in the sequel, we drop the suffix n from T,, and K,,.

Theorem 2.2. Under the assumptions (M1)—(Ms),
B — Bo in probability. (2.10)

Theorem 2.3. Under the assumptions (M;)—(Mg), we have for any ¢ > 0

sup ET"I/ZXiW(Yi - X{B) — (Y: — XiBo))
|T¥/2(B—Bo)ILc’ =1 (2.11)

— + T'l/zf((ﬂ -~ Bo)| — 0 in probability. .
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Theorem 2.4. Under the assumptions (My)-(Ms),

T-Y2K(B - B) 2 N(0,1,). (2.12)

Now, consider testing the hypothesis Ho : H'3 = v where H is an m X ¢
matrix of rank g. Let § denote the solution of

mln Ep(Y X!B) (2.13)

and B be the solution for the unrestricted minimum.

Theorem 2.5. Under the assumptions (M;)-(Ms):
| Sl (i X16)~ p(Yim X1B))~ 51Q' 3 Xet( E)I?| — 0 im probability, (2.14)
i=1 i=1

and
(H'B—y)(H' K TE H) ™M (H'H-7)3x, (2.15)

where () is an m X q matriz such that
QQ'=K'HH'K'H)'H'K™!
and xg denotes a chi-square random variable with g degrees of freedom.

Theorems 2.1 — 2.5 are established by first proving the results for a more
general model

-

Yin = X/, Bn+ Ein, i=1,...,n (2.16)
under the assumptions (M;)-(Ms), with (Mg) modified as

(Mg). EXmBX' I, and d?= Joax | Xin/* = 0 in probability.

The results for the original model (1.1) are obtained by making the transforma-
tion

Yin =Y, Eim=E; Xu=T'X;, f.=TY%8 (2.17)
Since B > 0, it is not difficult to prove that (Mg) implies (Mg) after the trans-
formation (2.17).

NotéI. The test statistic



M-ESTIMATION OF MULTIVARIATE LINEAR REGRESSION 243
n n
S oY - XiB) =Y p(Yi - XiB)
=1 1=1

has the same asymptotic distribution as that of 27|Q’ 37, Xiv(e;)|?, which,
in general, is a mixture of chi-squares.

Note 2. No doubt, it would be of greater interest to consider a non-convex
discrepancy function p. That would seem to require much stronger conditions.
However, we note that if p can be written as the difference of two convex func-
tions, each satisfying our conditions (see for instance the papers by Bickel (1975)
and Ruppert and Carroll (1980)), then it is easy to see that our Theorem 2.1 is
still true while other theorems remain valid by choosing 8 as some minimizer of
the function in (1.5), instead of the one which provides a global minimum.

3. Proofs of the Main Theorems

As discussed in Section 2, we need only to prove the theorems for the gen-
eralized model (2.16) with the Condition (Ms) replaced by (Mg). In this case,
T = I,. To obtain the results for the original model (1.1), we need only to replace
B by TY/2j3, where B is the M-estimate of § in the model (1.1).

In the proofs that follow, we work with the general model (2.16) but drop
the suffix n for convenience of notation and write g for 3,, B for S, and without
loss of generality assume that the true value of 8, = B0 = 0.

We need the following lemma:

Lemma 1. Under the assumptions (M;)—(M3), we have

-

Elp(Ex + C) - p(Ey)] = %C"AC +o(CI?) as C—0.  (3.1)

Proof. Suppose C is a small p-vector. For any k > 1, it follows from the
convexity of p

C' i —1)C . - , .
(5 ) (3 ) o[ 522) s So( 0 ).

Taking expectation, using (Mj), summing over ¢ = 1,... ,k, and then letting
k — oo, we get (3.1).

3.1. Proof of Theorem 2.1

. Under the additional assumptions made at the beginning of this section,.
(2.8) reduces to
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sup | Y [p(Ei - XiB) — p(Ei) + B' Xiy(E:)]
WBli<e” j=1 (3.1.1)

- %ﬁ'ffﬁ‘ — 0 in probability as n — o

where K in (3.1.1) stands for T-V/2KT~/? with K as in (2.9). To prove (3.1.1),
one needs only to prove that for any subsequence {n'} of all positive integers,
there exists a subsequence {n"'} of the sequence {n'} such that

"

"Sﬁlﬁg E[p(Et—X:ﬂ)—p(E,)+ﬂ'X,¢(E,)]—%,B'Kﬁ — 0 a.s. as n' - .
¢ =1

(3.1.2)
At first, by Condition (M§) and the facts that A > 0 and B > 0, there is a
subsequence {n(3)} of {n'} such that

K->K’>0 as n® - co. (3.1.3)
For each fixed §, we have
Ip(Ei — XiB) — p(E:) + B'Xiyp(E:)| < | XiB 19(E: — Xi8) — w(E:)|

by the convexity of the function p. Thus, by the condition max;<i<n || X8| — 0,
we have (denoting V for variance)

V[ 3 (o(B: -~ Xi) — p(E:) + B Xib(E:)

< ) E|(E: - XI8) - H(E)|I1XI6]1> — 0.
=1
Thus,

Z;lp(E,- — X!8) - p(E:) + B' Xiv(E;) (5.14)

— E(p(E; — X|B) — p(E;))] — 0 in probability.
But by Lemma 1 and (3.1.3)

(3

; E(p(E; — X;B) - p(Ei)) = %ﬁ’K% +o(1). (3.1.5)

Substituting (3.1.5) into (3.1.4), we get
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a(®

E; — X!8) = p(E:) + B' X (E;
;[p( B) - p(E:) + B'X:(E:)] 516)

- %5'1&’0,@ — 0 in probability as n®) — co.

By a diagonal technique, for any given countable dense set of 3 in R™, one can
choose a subsequence {n"} of {n(®} such that

1
n

1
3 [p(E,- ~ X18) = p(E:) + B Xp(E)] —» 5B KB, as. (3.1.7)
i=1
asn — 00, for each 8 in the countable set. Since

nll

Z [p(E,' - X!B) — p(E;) + B'X;9(E;)] is convex in

=1

and also % B'K°3 is continuous and convex in 8, by Theorem 10.8 of Rockafellar
(1970, p.90), we obtain

1"

oup Sle(E: - X16) = plE:) + B X:b(E)] - 56'K°8| ~ 0 as.
€7 4=1

This implies (3.1.2) and the proof of Theorem 2.1 is complete.
3.2. Proof of Theorem 2.2

The conclusion (2.10) of Theorem 2.2 is obviously implied by the following
result for the generalized model (2.16)

P8l > ¢n) = 0, as n— oo, (3.2.1)

for any sequence {c,} such that ¢, — oo. .
By (3.1.1), one can easily choose a sequence of {c],} such that ¢/, — oo,
¢, < ¢ and

n

[p(E: ~ X18) = p(E) + B X(E:)) ~ 368'K6| = 0 in probability.

sup
lBli<en " 521
(3.2.2)

When ||B]| = cl,, we have

= 5B KB > SMABT (L), (3.23)
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where A\(A) denotes the smallest eigenvalue of A.

On the other hand,

Y Xip(Ei) = Op(1);
i=1
hence
B' Y Xit(Ei) = Op(cy)-

Then, (3.2.2)-(3.2.4) imply that

( 1o f Z[P(E — XiB) - p(E:)] < 0) -0, as n oo,

which, together with the convexity of p, implies that

(mf ZpE Xﬁ)<Zp(E))-—->0 as m — 0o.

iBli2e,

By the definition of 3, we have

P8l > ) =0, as n— 0.
Note that c;, < c,, which completes the proof of (3.2.1).
3.3. Proof of Theorem 2.3

(2.11) is equivalent to

sup ZX (Ei = X{B) - (E:)]

— 0, in probability,
iBl<e " i1

for the generalized model (2.16).

(3.2.4)

(33.1)

Using the technique as in the proof of Theorem 2.1, one needs only to prove
(3.3.1) for the subsequence {n(®} with K (noting that K depends on =) re-
placed by K° (independent of n(®). Then (3.3.1) is a consequence of (3.1.2) and

Theorem 2.5.7 of Rockafellar (1970, p.248).
3.4. Proof of Theorem 2.4

For the model (2.16), (2.12) is equivalent to

— KEBZN(0,1,).

(3.4.1)
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Let
B=K1Y Xip(E). (3.4.2)
i=1
Noting that
KB-2N(0,1,), (3.4.3)

(3.4.1) follows, if we can prove that
B -3 — 0 in probability. (3.4.4)

Take 6§ > 0. By (3.1.1) and the definition of 3, we have
S Io(E: - X{B) ~ p(E)) + %E'Kﬂ .0, in probability, (3.4.5)
i=1
and for some sequence {c,} with ¢, — o0,

- 1
sup | S [p(E: - X1B) — p(E:)) + KB - -ﬁ'Kﬂl — 0 in probability.
I8l <ents | 2

(3.4.6)
(3.4.5) and (3.4.6) imply that

sup | Slo(Ei=X16)~p(Bi= X{B))- 5(8-B)K(§—F)| = 0 in probability
|8-8ll=6 " i=1

- _ (3.4.7)
Note that when ||§ - 8| = 6,

(B-B)K(B—-B)>AAB™1)8. (3.4.8)
By (3.4.7) and (3.4.8) and the convexity of p, we get
P(|6 - B > 6) — 0. (3.4.9)
This completes the proof of Theorem 2.4.
3.5. Proof of Theorem 2.5

(3.4.4) and (3.4.5) give for the model (2.16)

- A=K Xip(Ei) + 0p(1). (3.5.1)
i=1
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By (3.2.1) and (3.2.2) (taking ¢, = c,), we have

n

S 0o(B: - X!B) — p(B)) = — 5| KV ixiw(&)llz to,1).  (352)

=1
Without loss of generality, we can assume that H'H = I,;. Let G : mx(m—gq)
be such that
GG=1I,_, GH=0

(with two extreme cases where we define H =0, G=1, if¢g=0and H =
I,, G=0if p=gq). Then

HB=0< g=0G.

Let 4 be the value of y which minimizes Y1 P(E; — X[GY). Then the
M-estimate 3 of 8 under the null hypothesis H'S = 0 satisfies 8 = G¥. Since ¥
is the M-estimate of the model

similar to (3.5.2), we have

> lp(B: = X1B) - p(E:)] = _%” Jrenile .ZX”ME")”? +o,(1), (3.53)

where

K.=G'KG =) G'X,AX{G.
i=1

Thus,-

n

S o(Ei - Xif) - o~ X = 3@ S x| +on), 359

=1

where @ is an m X ¢ matrix such that

QQ'=K!'-G(G'KG)'¢G 355
= K'HH'K-'H)'H'K™L. (3:55)
By (3.5.1), one gets

BH(H'K*H) 7 H' X2 (3.5.6)

Now, we have already proved Theorem 2.5 for the generalized model (2.16). To
get the results for the original model (1.1), one needs only to replace H, Q,
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K, X; (for model (2.16)) by Ta'/*H, 1., TSV K. T7M* and T2 X,
respectively.

4. Further Discussion on Test of Hypothesis

Let MN,, denote an m-dimensional normal vector with iid standard normal
components. Then by (2.14), the test statistic Y_;—;[p(Yi — X!8) - p(Y; — X!8)]
is asymptotically distributed as AN/ [TY2K-H(H'K-1H)7'H'K~'T'?|N,,,
which is generally a weighted chi-square distribution, involving the nuisance pa-
rameters A and B. Intuitively, the matrix B can be estimated by

B = 23 1Y - XIBwY: - XIB)-

n

i=1

If 4 is continuously differentiable and its derivatives denoted by { (a p X p matrix
function), then A can be estimated by

i ISy xig
A=~ ;E(Yz X;B8).
Generally, A can be estimated by
Ay = 5 SN XIB 4 her) Wi = XIB 4 hep)l(er )
nh s 1 $ 1) t 1 P 1 P ’

where e; - - - e, are linearly independent p-vectors and h = h, — 0, dy, [hn — 0.

In the present parer, we shall not discuss the consistency of the estimates
of matrices A and B: The main purpose of this section is to figure out some
alternative approaches to eliminate the nuisance parameters for some special
cases.

4.1. A and B are proportional and one is known

Suppose that B is known and A = aB, for an unknown constant a > 0.
Then, by (2.14), we have

n

> le(Yi - XiB) - p(Yi - X1B)]

=~} [ Zn: X,-¢(E,-)} "TVH(H'T H) T H'T [ i X,-w(E,-)] + 0,(1).
i=1 =1

On the other hand, by (3.5.1)



250 Z.D. BAI, C. RADHAKRISHNA RAO AND Y. Wu
n
B=a TP Xip(Ei) + 0p(1);
i=1

hence, (note that we use the original model (1.1) here)
(H'f~7)(H'T H) (H'B - )

=g [ix;w(Ei)] TUH(E'T H) T H' T [ix,-zp(&)] 1+ 0,(1).

=1

Therefore,
{ S oo(¥i - XiB) — p(¥i = XIBN} ICH' = 2 (BT )™ (H'B = )
=1

i=1

4.2. Univariate case

For distinguishing from the multivariate case, we rewrite A = X and B = o?
and use lower cases to denote corresponding variables. In such a case, we suggest
the following procedure.

Consider an extended linear model

vi=z.8+Zv+e, 1=1,...,n ' (4.2.1)

where Z; are s-vectors satisfying the conditions

-

Z'X =0, 72'7 = I, dn = max |Z;| - 0 (4.2.2)
1<i<n
with Z=(Zy:...:2Z,) and X =(zy:...:2,). Let (8%,7") be a solution of

- 23— Z),
min ;p(y ziB — Ziv)
By Theorem 2.5, under the model (1.1),
-— = A * * D
22072 “[p(yi — iB) — plyi — ©iB" = Zir")]— X
i=1

and is asymptotically independent of 20072 30 [p(y: — z'8) — p(y;i — z'B)] by _
(3.5.4) and (4.2.2), whether the hypothesis H is true or not. Then we have:
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Theorem 4.1. For the model (1.1), under the assumptions (U;)-(Us)

sSilpyi—2iB) —plyi =B 2 p
¢ Yoy lo(yi — 2iB) — p(yi — 216" — Ziy*)]

where F(q,s) denotes the F distribution with ¢ and s degrees of freedom and
(U1)-(Us) correspond to (M1)-(Mg) with p = 1.

5. Some Examples: Univariate Case

We consider some well known special cases to show how our results can
be applied to a variety of situations. Some of these cases have been discussed
previously by a number of authors. (See, for example, papers on M-estimation
by Huber (1973), Relles (1968) and others.)

5.1. Least squares estimation (LSE)
In this case
p(z) =22, P(z)=2z, A=2, o’ =0l =V(e
giving the result
S/ (B = Bo)—>N (0,03 In),
where S, = >, X; X
5.2. Least distances estimation (LDE)

In this case

p() = ||, ¥(z) = signz.

If F has density around zero and F'(0) = f(0) > 0, then A = 2f(0) and 0% = 1
leading to the result

SY2(B — Bo)2-N(0,[2£(0)] 2 Lm).

5.3. Mixed LS and LD estimation

Many authors considered the case

122, if|z] < ¢

p@)={2

clz| - 12, if]z] > ¢

wheTe ¢ > 0 is a fixed constant. Then, we have
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{ T, if|z] <e¢
o) = csignx. ifjz|>c¢
and
c c
A= / dF(z), o* =c* = | (¢* —z?)dF(z) (5.3.1)
giving

SY2(f - o) N(0,07/X%)

with o? and X asin (5.3.1). It may be verified that as ¢ — 0, (67 /X?) — 1/4f%(0),
provided f(0) as defined in the Example 4.2 exists.

5.4. Lp-norm

If p(z) = |z|P, p > 1, then ¥(z) = p|z|P~! sign z and

A= [ #p- Dlel"dF (@), o* = [Pl VaF()
giving
S12(5 - ﬂo)gN(O,ag/)?),
5.5. Differentiable ¢

In this case
A:/W@mnnﬂﬂ=/w@mn@
giving
S¥* (6 - Bo)—=>N (0,0% [)%).
6. Some Examples: Multivariate Case

6.1. LDE in the multivariate case

If we choose p(z) = (Z:c?)lﬂ, where =’ = (z1,... ,2,), then

_fz/lz|, fz#0
2p(z)"{o, if o = 0;

¥(z) = { Ti_l(l'l%) ifz#0
0, ifz =0.
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Hence ,
A= E[l_Ell_l(I - %)], (6.1.1)
B= E<|%1E—|2i> (6.1.2)

Using A a{nd B as determined above, we can write down the asymptotic distri-
bution of 3. The results (6.1.1) and (6.1.2) are reported in Bai, Chen, Miao and
Rao (1990).

6.2. Joint distribution of the component medians

In this case X; = I, and the component medians are obtained by choosing

p(z) = leil, where z' = (z1,... ,2p).
Then
Y(z) = (signzy,...,signz,)’
and
A = diag(2£i(0),... ,2£,(0))
where f;(0) is the density of the marginal distribution of y; the i-th component

of the p-vector variable Y at the median value. The matrix B = (b;;) where
{ 1, ifi = 3
bij = e ;
4[P{y; <0, y; <0} - 1], if7 # j.

These results are reported in Babu and Rao (1988).
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