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Abstract: We extend the grouping scheme introduced by Wu (1989) and construct
a class of saturated asymmetrical orthogonal arrays of the type OA(s*,s™(s™)™),
where s is a prime power and r is any positive integer. The method is generalized to
construct OA(s*, s™(s™1)™1 ++(s™)"*) for any prime power s, any positive integer
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1. Introduction

In this paper we exploit and further expand the method of grouping (Wu

(1989)) to construct some general classes of asymmetrical orthogonal arrays.

An asymmetrical (or mixed-level) orthogonal array OA(N, sk1 gk ---35",2) of

strength two is an N X k matrix, k = 3.1 ki, ¢ > 1, in which k; columns have
s; symbols such that for any two columns each possible combination of symbols
appears equally often (Rao (1973)). In the language of factorial designs, these k;
columns are k; factors each with s; levels. When g = 1, itis called a (symmetrical)
orthogonal array. Since we only consider saturated arrays, i.e. those with N—1 =
> ¥ ki(si — 1), the arrays have strength two. For simplicity we use the notation
OA(N, sk ---35") for the rest of the paper.

To explain the grouping method, let us consider an important special case.
If in an OA(N, 2N‘1) we can find three columns {vy,vs,v; + v2}, where v; + v,
is the sum (mod 2) of v; and v, (in factorial designs v; + v, represents the
interaction between v; and v;), we can replace these three 2-level columns by a
4-level column according to the rule

0 0

0 1

- (1.1)
1

It is known (Addelman (1962)) that this 4-level column is orthogonal (in the sense_

defined above) to the remaining 2-level columns in the OA(N,2N~1). By repeat-
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ing this replacement for other sets of columns of the form {v;,v;,v; + v2}, we
can construct OA(N,2™4™), m+3n = N —1. When the OA(N,2N-1) N = 2,
is the saturated 2-level fractional factorial design with 2% — 1 factors, its columns
can be grouped into a maximum number of sets of the form {v;, vy, 0, + vs}.
Then by using the replacement rule, a complete class of O A(2%,2™4™) can be
constructed (Wu (1989)).

Wu’s grouping scheme has, however, two restrictions. First, it only solves
the problem for the 2™4™ designs. Second, even for N = 2%, k odd, the grouping
scheme requires the construction of two particular permutations of {1,... ,N}
and therefore does not render a simple construction of the arrays. The main
purpose of this paper is to develop general and simple methods for constructing
more general classes of asymmetrical orthogonal arrays. In Section 3, by expand-
ing on Wu’s idea, we develop a general grouping scheme and use it to construct
OA(s*,s™(s™)") for any prime power s and integer 7. An illustration of the con-
struction method is given in Section 2. A detailed description of the construc-
tion steps and some examples are given in Section 4. In Section 5 we discuss
the question of whether the number of the s"-level factors in OA(s*,s™(s™)")
can be further increased. The method is extended in Section 6 to construct
OA(sF,s™(s™)™ ... (s™)™), for any prime power s and positive integer r;, and
some combinations of m and n;. Some discussion on the related work by Pu
(1989) and Hedayat, Pu and Stufken (1990) is given near the end of Section 6.

Although some of the arrays can be constructed by using other methods such
as Pu (1989), J. C. Wang and Wu (1991) and Hedayat et al. (1990), the present
approach enjoys some advantages. First, the grouping method makes it easier
to study the aliasing patterns of main effects and interactions in asymmetrical
arrays. For an elaboration of this point, see Section 3 of Wu (1989). Second, it
is quite simple. The construction steps employ some elementary algebraic tools.

The results obtained in this paper have theoretical implications for combi-
natorial design theory as well as some practical applications. Most of the new
arrays constructed in the paper are of very large size, thus making them much
less useful in the design of physical experiments. Since orthogonal arrays are
used in a great variety of scientific investigations (see the review article by He-
dayat and Wallis (1978)), these new arrays are potentially useful in situations in
which the run size can be large. For example, they can be used to draw balanced
pseudoreplicates for inference from stratified survey samples (Wu (1991)), where
each stratum is treated as a “factor” and the number of units per stratum as
“factor levels”. The run size being the total number of pseudoreplicates can be
quite large, say, up to 400, if computational cost is not an issue.

2. An Illustrative Example
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We illustrate the general construction method of Section 3 by constructing
the OA(32,2™4™) with m+3n = 31 and n < 9 from the O A(32,2%!) via a group-
ing scheme. Let z1,2,,73, 24,25, be five independent columns of the 0 A(32, 231),
In the language of experimental degign, these five columns form a full factorial
design with 32 runs and five factors each at two levels. Then the 31 columns of
the OA(32,2%!) can be represented as Ei a;z;, where a; = 0 or 1 (mod 2). For
simplicity, each column is represented by the vector (ai,a»,as,a4,as). The 31
vectors for the columns are given in I;, I3 and K, in Table 1. The 24 vectors
in I, consist of (a;,a2,a3,a4,as5) with a; = 1 or a; = 1. The three vectors in I}
consist of (0,0,a3,as,0) with a3 = 1 or a4 = 1 and the four remaining vectors in
K, consist of (0,0,a3,a4,1) with a3 =1 or a4 = 1 and (0,0,0,0,1).

Table 1. A grouping scheme for the 31 columns in the OA(32, 231)

{ (1,1,0,06,1) (1,0,1,1,0) (0,1,1,1,1) }
{ (1)1,07111) (1,0,1,0,1) (0,1,1,1,0) }
{ (1,1,1,1,1) (1,0,0,1,0) (0,1,1,0,1) }
I : { (1,1,1,0,1) (1,0,0,0,1) (0,1,1,0,0) }
{ (1,1,1,0,0) (1,0,1,1,1) (0,1,0,1,1) }
{ (1,1,1,1,0) (1,0,1,0,0) (0,1,0,1,0) }
{ (1,1,0,1,0) (1,0,0,1,1) (0,1,0,0,1) }
{ (1,1,0,0,0) (1,0,0,0,0) (0,1,0,0,0) }
I: { (0,0,1,1,0) (0,0,1,0,0) (0,0,0,1,0) }

" As discussed in Section 1, any three columns in the 0 A(32,2%) whose vector
representations vy, vy and vz satisfy v3 = v; + v, (mod 2) can be replaced by
a 4-level column (see (1.1)) without affecting the orthogonality property. By
repeating this for n sets of columns of the form {v;,vs,v; + v2}, we get the
OA(32,2™4"™). So the construction amounts to grouping the vectors in Table 1
into as many triplets of vectors {v;,v2,v; + v2} as possible. The three vectors in
I; form one such triplet. The 24 vectors in I; are grouped into eight such triplets
in Table 1 by using the following method. (A general version will be described
in Section 3.) We can represent (ai,az) in any v € I; as ¢1(1,0) + ¢c2(0,1) with
(e1,¢2) = (1,1), (1,0) or (0,1). The remaining (a3, a4,as) components of the
three vectors in any triplet can be represented as a(G + I), aG, a with

0 0 1
G={1 0 0
o011
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and I the 3 x 3 identity matrix. Therefore, the three vectors in any triplet can
be represented as {v; + vy,v,v2} with v; = (1,0,aG) and v, = (0,1,a). Since
both G and G + I are nonsingular, the method partitions the 24 vectors into
eight mutually exclusive triplets {v; + v2,v1,v2}. No such grouping is possible
for the vectors in K. In fact it is known (Wu (1989)) that nine is the maximum
for n in this case and therefore the grouping scheme cannot be further improved.

3. Construction of OA(sk,sm(sr)") from OA(sk,s(’k‘l)/(s’l))

Let OA(s*,s%) be a saturated orthogonal array, s a prime power, L =
(s* = 1)/(s = 1), and 2z1,... ,z; be its k independent columns. Then all its
columns can be represented as Zf=1 a;z;, where a; is an element of the finite
field GF(s) of s elements. For simplicity, each column is represented by the k-
vector v = (ay,. .. ,ax), where the first nonzero q; is assumed to be 1, the identity
element of GF(s). Consider any set of 14+s+---+s""! = (s"—=1)/(s—~1) columns
whose vector representations can be written as

r—1
Hr,kz{ Zciwi : w; are independent k-vectors and c; satisfy (3.2)}, (3.1)

=0
where

“c; € GF(s), at least one c; is nonzero and the nonzero ¢; (3.2)
with the largest 7 is set to be 1.” '

Similar to (1.1), we can replace these (s"—1)/(s—1) columns, each of s levels, by
an s"-level column which represents the s” level combinations of wy,... Wr_1,
and still retain orthogonality. By repeating this for other sets of columns satis-
fying (3.1), we can obtain OA(s*,s™t"), t = s” with n the number of such sets.
Therefore the construction depends on finding a method to group the columns
of the OA(s¥, sL) into sets of columns of the form (3.1).

For k = rq, we do not need any elaborate method of construction. Since
N =s* =19,1 = s7, we have OA(N,t(N-1)/(t=1)) By reversing the replacement
rule, we can replace any s"-level column by (s” — 1)/(s — 1) s-level columns. By
doing this repeatedly, we obtain OA(s*,s™t") for any m and n with m(s—1)+
n(s" — 1) = sk - 1.

For the rest of this section we concentrate on the development of a grouping
method for general k and the largest possible n. We first partition all the columns
of OA(s*,s") into mutually exclusive sets as follows. Let H, be as defined in _
(3.1) with k (in the k-vector) replaced by v, Hp4, be similarly defined with both
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r and k replaced by p + 7, and 0, be the r-vector of zeros. Define

I = {(u,8r41,... ,0x) : u € Hy, a; € GF(s)},

Ij = {(0(j-1yr, U, Gjrt1,-- - ,0x) 1 u € Hry a; € GF(s)}
for2<;<g-1, (3.3)

I; = {(0(g-1)s,u,0,) : u € H,},

Kq = {(0(g—1)r>u) 1 u € Hpy J\I.

It is clear that all the L columns in OA(sk,sL) can be partitioned into I; U---U
I41UIUK, for p > 0,and LU---UI,_,UI, for p = 0, where Iy = {(0(g—1)r,u) :
u € H,}.

Since the (s" — 1)/(s — 1) vectors in I; are of the form (3.1), they can be
grouped into an s”-level column as shown before. For each of the I;’s, 1 < j <
g — 1, we will find a method to partition its vectors into mutually exclusive sets
of (s —1)/(s — 1) vectors of the form (3.1).

Starting with I, suppose that we can find 7 —1 (k—r) X (k- r) matrices G;,

t=1,...,7 — 1 whose elements are in GF(s), such that the following matrices
r—-1
ZciGi for all ¢; € GF(s) and satisfying (3.2), (34)
0

where Go =1 the 1dent1ty matrix, are nonsingular. By rewriting the (s"™—1)/(s-1)
vectors u in H, as Eo c;u;, where u; are 1ndependent r-vectors and ¢; satlsfy
(3.2), the (s" — 1)/(s — 1) vectors (3o~ ' eiui,a >0 ¢Gi) for any given a =
(@r41,... ,ak) satisfy (3.1) because they can be rewritten as E;—l c,-(u,-,aG,-).
By repeating this for other choices of a, we can partition the (s"—1)(s—1)"1s¥= "
vectors in I; into s*~7 mutually exclusive sets of vectors of the form (3.1) because
of the condition (3.4).

Similarly, for I, if we can find r — 1 (k — 27) x (k — 2r) matrices satisfying
conditions similar to (3.4), then using the same approach we can partition all the
vectors in I, into s¥~2" mutually exclusive sets of vectors of the form (3.1). The
same procedure can be applied to I3,...,[,-1. It is, however, inapplicable to
K,. Since K, has s"(s? — 1)/(s — 1) columns, this method will allow us to group
(sk —s™P 45" —1)(s—1)"! columns in OA(s*,sT) into (s¥ —s™P)/(s"—1)+1
columns, each of s levels.

The impossibility of getting another (s” — 1)/(s — 1) columns of the form
(3.1) from K, can be proved as follows. The vectors in

KU Iy = {(0(g-1)r,u) : u € Hpir},

by Ygnoring their first (¢ — 1)r "components of zeros, form an OA(sP*",
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s"”r“l)/("l)). If the statement above were true, by using replacement, we
could get two orthogonal s™-level columns within this array. That is, we could
get an OA(sP*7,(s7)?), which does not exist because p < r implies that sP*7 is

not a multiple of s27. :
Through this analysis,we have demonstrated the construction of OA(sk ,s™tm)

t = s” for general m and n if we can find r — 1 (k—Jj7) x (k- jr) matrices G; to
satisfy (3.4) for any j < ¢—1. Since k—jr = rq+p—jr = (¢—j)r+p > r and the
identity matrix I, which is Gy in (3.4), is obviously nonsingular, we can restate
(3.4) as the existence and construction of r — 1 £ x £ matrices Gi,...,Gr1, for
any £ > r, such that the s + s + --- 4+ s™1 matrices

i-1
Gj + ZC_,’,‘G;‘ + Con (35)
i=1
are nonsingular for j = 1,... ,7 — 1, where cji and the elements of G; are from

GF(s).

An explicit solution to (3.5) is given in the following theorem.

Theorem 1. For any prime power s and any positive integers r and £ with
£ > r, we can construct an £ x £ matriz G over GF(s) such that all the matrices

J-1
G% + ZCJ','GZ + ¢jol, (3.6)

=1
for j=1,...,7r =1, cji € GF(s), are nonsingular.
Proof. The proof is based on the three lemmas given at the end of this section.

From Lemma 2, for any positive integer £, we can take an irreducible
polynomial of degree £ over GF(s), say f(z) = zf + A\z%1 — M\pzf~2 4+ ... 4
(=1)*72A¢124+(-1)*~1 A, and the corresponding irreducible matrix G, in (3.11)
such that f(z) = det(Gy + zI). Let ay,... ,a; be the characteristic roots of G,.
Then by Lemma 3 we have

¥4
IG? + ilG;_l + ct e + iu—lGl + zuII = ng(aj)’ (37)
j=1

where g,(z) = 2% + 4,2V oo 4 i1z + 1y, iy,... iy € GF(s). By Lemma 1,
i, ..., are distinct and F(ay,... ,a;) with F = GF(s) is a finite algebraic

exteftsion of GF(s). Over F(ay,...,a;) we have gu(aj) # 0,5 =1,...,¢ for
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any u < r < £ and hence

4

ng(aj) # 0. (3.8)

=1

Since the orders of the polynomials in (3.6) do not exceed r — 1, we conclude
from (3.8) that the matrices in (3.6) are nonsingular, thus completing the proof.

From this proof it is clear that the crucial step in the construction is the
irreducible matrix G, from (3.11). Since £ can be quite large, we can use the
following technique to reduce the work of construction. For £ > 2r, write £ =
rqq+p=1r(q1—1)+(r+p)withgs —1>1and 0 < p < r. Let G, and Gr4,
be 7 X r and (7 + p) X (7 + p) matrices respectively satisfying (3.6). Then define
the £ X £ matrix

G, = { diag(G,,...,G,), ifp=0,

3.9
diag(Gr,... ,Gr,Grsp), ifp>0, (39)

where G, repeats for ¢; times if p = 0, and ¢; — 1 times if p > 0. It is clear
that G¢ in (3.9) satisfies (3.6) since G and G4, both satisfy (3.6). Noting that
the orders of G, and G,4, do not exceed 2r, we will construct G, and G4,
according to (3.11) and then use (3.9) to build up the larger matrix G, for any
£ > 2r. This idea of using smaller matrices to build up a bigger matrix (and
hence a bigger design) is implicit in Wu (1989, proof of Theorem 2).

Using the grouping scheme given at the beginning of this section, we obtain
from Theorem 1 the result that, for any prime power s and any positive integer
r, starting from the saturated orthogonal array OA(s*,s%), we can construct
asymmetrical orthogonal arrays of the type OA(s*,s™(s")"). This is stated
precisely in the following theorem.

Theorem 2. For any prime power s and arbitrary positive integers v and k,
wherek = rq+p,¢>1,and0<p < r—1, via the grouping scheme in this section,
we can construct asymmetrical orthogonal arrays of the type O A(s*,s™(s™)"), for
any integers m and n satisfying

r. k
m(s—1)+ n(sk 1)r+ s ,1 (3.10)
and n=1,2,...,(s"=s""P)/(s" = 1)+ 1.
This result was also obtained by Pu (1989) and Hedayat et al. (1990) using
different methods. See Section 6 for more information.
"Let F be a field. A field K is said to be an extension of F'if F is a subfield
of X7 We use F(S) to denote the minimum field which includes S and F. If §
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is a finite set, say, § = {a1,...,a,}, then we denote F(S) by F(ay,...,an).
From the theory of finite fields, an extension field K of F is a linear space over
F'. If the dimension of the space is finite, then we say that the extension is finite.
Usually, F[z] denotes the polynomial ring in z over F. A number « is said to be
algebraic if there is a polynomial f(z) € F[z] such that f(a) = 0. An extension
field K of F is said to be algebraic if every element in K is algebraic over F'.

Lemma 1. Let F = GF(s) and f(z) be an irreducible polynomial in Flz] of
degree n. Let ay,... ,a, be the roots of f(z). Then
(i) a1,...,a, are distinct,
(ii) F(ai,...,as) is a finite algebraic eztension of F,
(iii) for any polynomial g(z) with degree less than n over F, we have g9(a;) #0,
t=1,...,n and hence g(a;)---g(a,) # 0.

Lemma 2. For any prime power s and positive integer {, there exist an irre-
ducible polynomial in F|z] of degree £, say f(z) = ¢+ Mzt — Aozt2 4 ... +
(=1) 2z + (=1)¢-1),, and the associated £ x £ matriz over GF(s)

0 0 ...0 X
1 0 ...0 Apy
Ge=| ... , (3.11)
00 ...0 X
00 ...1 X

whose lower left submatriz is the (£ — 1) x (£ — 1) identity matriz, such that
det(G, + zI) = f(z).

We call G, an irreducible matriz if f(z) = det(G, + zI) is irreducible.

Lemma 3. Let G be an £ x £ matriz over GF(s), and a1, ... ,a, be its charac-
teristic roots. Then, for any positive integer u, the determinant

¢
|G +41G* ™V 4 4 iy G+ i) = ng(aj),
i=1

where gu(z) = z¥ + 012% 7 + - 4 iy 12 + 4y, and 11,... 1y € GF(s).

These lemmas can be readily proved by consulting any standard textbook on
modern algebra, e.g., McCarthy (1976, pp. 1-27), Rotman (1984, pp. 160-170),
and Lidl and Niederreiter (1983, pp. 50-51).

4. Cémstruction Procedure and Examples
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Based on the grouping scheme in Section 3, the construction of the matri-

ces G in the proof of Theorem 1, Lemma 2 and (3.9), we can summarize the
construction of the OA(s*, s™(s")") in Theorem 2 in the following steps.

(i)

(ii)

Letk=rq+p,0<p<r.

Use vectors v = (aj,...,ax) to represent all the columns in a saturated
orthogonal array OA(s*,s’) and partition them into I, ... s Ig-1,1; and
K, if p> 0, and into I,... ,I;—; and I, if p = 0.

Find the irreducible polynomials in Fz] (F = GF(s)):

e
fe(z) = 2 + S (=102, A € GF(s)
i=1
withf=rif p=0and { = r and r + pif p > 0, from tables, for example, in
Lidl and Niederreiter (1983), pp. 553-566, Tables C-F. From f(z), obtain
the irreducible matrices G, = [P, A7], where

0 0 ... 0
1 0 ... 0

P= , Ae= (A0 a9,
0 0 ... 1

(iii) For k—ur = (g—u—1)r+(r+p),u = 1,... ,q—1, define the (k—ur)x(k—ur)

matrix

G B { diag(G,,...,G,) if p =.0,
*7U7\ diag(Gry ..., GryGryyp) ifp >0,

where G, repeats ¢ — u times if p= 0 and ¢ — v — 1 times if p > 0.

(iv) We first consider the case of p > 0. Group the (s" — 1)(s — 1)~! vectors

(v)

in I; into one s"-level column. For each I;, 1 < j < ¢ - 1, partition its
(8" = 1)(s — 1)~ s¥~4" vectors into s*¥~I" mutually exclusive groups of (s" —
1)(s — 1)1 vectors so that each group of vectors can be replaced by an s'-
level column. The s¥~37 groups are defined by 37, ¢i(0(j-1)r> uis aGy_;,),
where ¢; satisfy (3.2), u; are r independent r-vectors that generate H, in
(3.1), Gi_;, is the ith power of Gi—;, given in (iii), G}_,, = I and a =
(@jr41,- .. ,ak) with a; € GF(s). For a fixed a, the group has (s" — 1)(s —
1)~1 vectors as c; varies. The s¥~97 groups are obtained as a varies over
GF(s). For p =0, we apply the same grouping method to I, ... yIq—1 and
I,.

By replacing n groups obtained in (iv) with n s"-level columns and keeping

cthe remaining columns of s levels, we obtain OA(s*,s™(s")") for any n <

—

(sF = s™P)(s" - 1)1 4 1.
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A crucial step in the procedure is the construction of the matrices G,. Since
P within Gy is fixed, G, is determined by the vector A,. Noting that £ = r and
r 4+ p in step (iii) and 0 < p < 7 — 1, we give values of A, for selected values of ¢
and s at the end of the section.

We now illustrate the steps with the construction of OA(64,2™8"). Here

k=6,s=2and r=3.

(i) We have ¢ = 2,
I = {(u,a) : u can be any of uj, uy, u; + ug, uz, Uy + uz, Uz + us,
and uy + ug + us, where u; = (1,0,0), v, = (0,1,0), uz = (0,0,1), and
a = (a4,as,a¢) with a; = 0 or 1}, and
I, = {(0,0,0,u) : u defined in I }.

(ii) Since p = 0, we only need to consider £ = 3, the third degree irreducible
polynomial over GF(2), fs(z) = z° + z? + 1 and the corresponding vector
Az = (1,0,1).

(iii) We have k —r = 3 and

Gs =

[ i ]
—_—O O
— O

(iv) The 56 vectors in I; can be partitioned into eight groups, each of 7 vectors
of the form E?:o ci(ui,aG}), where ¢; = 0 or 1 and at least one 1, and
Gy=1 v

(v) The eight groups in I; and the one group in I, can give at most nine 8-level
columns, from which we can construct OA(64,2™8"), n <9, Tn + m = 63.

- Table 2. A\, vectors for various values of s and £.

s £ A[ s ¢ >\I
2 2 (1,1) 7 2 (4,1)
3 (1,0,1) 3 (1,0,1)
4 (1,0,0,1)
5 (1,1,0,1,1) 8 2 (1,1)
6 (1,0,0,0,0,1) 3 (A4,0,1)
7 (1,0,0,0,0,0,1) 4 (A,1,0,1)
8 (1,1,0,0,0,0,1,1) 5 (A4,0,1,0,1)
9 (1,0,0,0,0,0,0,0,1)
9 2 (4]
3 2 (1,1) 3 (A4,01)
3 (2,0,1)
4 (1,0,0,1) . 11 2 (4,1)
5 (2,2,0,0,1) 3 (2,0,1)
6 (1,1,0,0,0,1)
= 7 (2,2,0,1,0,0,1) - 132 (8,1)
8 (1,1,0,0,1,1,0,1) 3 (2,0,1)
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=]

(2,2,0,0,1,2,0,0,1)

2 |
(4,1) 3 (7,
(1,0,1)
(1,4,0,1) 192 (1
(4,0,0,0,1) 3 (1

(4,1)
(1,0,1)
(1,0,0,1)
(4,0,0,0,1)

T QLN G W N

Note: For s = 4, A = w, where w? + w + 1 is an irreducible polynomial over GF(2),
and GF(22) ={0,1,w,w+ 1}. For s = 8, A = w, where w® + w + 1 is an irreducible
polynomial over GF(2), and GF(23) ={0,1,w, w?, w+1, w4+ 1w 4w, v +w+ 1}.
For s = 9, A = w, where w” 41 is an irreducible polynomial over GF(3), and GF(32) =
{0,1,2,w,w+1,w+2,2w, 2w + 1, 2w + 2}.

5. Upper Bounds on the Number of s"-level Columns

The arrays OA(s*,s™(s")") given in Theorem 2 have at most B; = (s* —
s™P)/(s" — 1) + 1 columns of s” levels, where k = gr + p, 0 < p < 7. When
p=0, By = (s = 1)/(s” — 1) attains the maximum possible value for n because
it exhausts all the degrees of freedom. When p > 1, for this B; value, m =
(s"tP—s")/(s—1),i.e., there are still (s"t? —s")/(s—1) columns of s levels, which
according to our method cannot be grouped into additional s™-level columns (see
the discussion between (3.4) and (3.5)). A natural question to be discussed in
this section is whether B; can be further increased.

By ignoring the s-level columns in these arrays, we can apply the Bose-Bush
(1952) bound on n to the arrays OA(s*,(s")"). Using their notation, we rewrite
the arrays as OA(At?,t") where t = s™, A = s*727. Since A — 1 is not divisible
by t — 1, the Bose-Bush bound on n is

-g-1=2

-1, (5.1)
where |8]is the integer part of 6,
0= {11+ 457(" — 1= (" - D)? = [267 = 2(sP — 1) - 1))
= [% + s7(s" — s”)]l/2 - <sr - sP + %),

—1)in 6 is the remainder on dividing A—1 by s" -1, and the second equality
in (5 1) holds because s? — 1 is the remainder on dividing s* — 1 by s” — 1. Since
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B, is an upper bound on n, we have By — B; > 0, where

"'+P__3P
B-Bi=-"2 g2

s”

=P -24(s"-P)-Y=s"-2-}4

where ¢ = [ + s7(s" — sP)]1/2 = 1. By writingd = B, — By = s" — 2 — |, we
have s" — 2 — d = }{, or equivalently,

sT—2-d<p<s —1-d.

That is, d is the smallest nonnegative integer satisfying s — 2 — d < 1, which is
equivalent to

N NI ST

which can be further reduced to
ST(3+2d—sP)>d* +3d+2=(d+1)(d+2).
Therefore d is the smallest nonnegative integer satisfying
3+2d—-sP>s7T(d+1)(d+2). (5.2)

In particular, the B; value attains the Bose-Bush upper bound B, iff 3 — s? >
287", which holds iff p = 1 and s = 2. These results are summarized in the
following theorem.

Theorem 3. Assume k =rq+p, 0 < p< r. Let d = By — By be the difference
between the Bose-Bush upper bound B, given in (5.1) on n for any O A(s*,(s™)™)
and By = (s¥F — s™*P)/(s" — 1) + 1, the mazimum number of s"-level columns in
the QA(s*,s™(s7)") constructed by the grouping scheme. Then d is the smallest
nonnegative integer satisfying (5.2). In particular, By cannot be further increased
when p=1 and s = 2.

Except for p =1 and s = 2, B; < B;. So an important unresolved question
is whether the Bose-Bush bound can be made sharper for this class of problems
or the construction method can be improved to increase the value of B;. Since
the Bose-Bush bound was developed for symmetrical arrays, we think it can be
improved for asymmetrical arrays such as those considered in the paper.

To conclude this section, we give, in Table 3, values of s, p and r for which
d = By — By < 5. We illustrate the calculation on d = 1. From (5.2), we have_
5— sP > 6s~", which is satisfied by Hp=1s=3,r>22,(i)p=1, s = 4,
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r>2,and (iii) p=2,s =2,r > 3. The case p =1 and s = 2 is ruled out
because it has already satisfied (5.2) for d = 0. Another interesting caseis p = 3
and s = 2. For r > 5,d = 3 because 9 — 23 = 1 > 20(277). For r = 4, d takes
the larger value 4 because 11 — 2% > 30(27).

Table 3. Values of s, p, r for selected values of d = By — Bj.
In the column for r, > 2 means r > 2.

d s p r
60 2 1 2>2
1 3 1 22
1 4 1 22
1 2 2 >3
2 5 1 22
2 6 1 22
3 7T 1 22
3 8 1 >2
3 2 3 25
4 9 1 22
4 10 1 22
4 3 2 23
4 2 3 4
5 11 1 >2
5 12 1 >2

6. Extension to the Construction of OA(s*,s™(s™ )™ --- (s™)™)

By generalizing the construction method of Section 3 to allow r to vary
with the set I;, we can construct more general orthogonal arrays of the type
OA(sk,s™(s™)™ ... (s™)™).

Extend the definition of I; in (3.3) by allowing the dimension of its u vector
to be rj, 7 = 1,...,t, where r;(> 2) are not necessarily distinct. Define R; =
>-7_,ri. Following the method of Section 3, we know that if k — R; > r;j, the
(s7 — 1)(s — 1)~1s¥=Fi vectors in I; can be partitioned into s¥~F mutually
exclusive sets of vectors of the form (3.1) (with 7 replaced by r;), from which we
obtain s¥*~Ri columns, each of s™ levels. If K — R; < r;, by drawing analogy to
I; in (3.3), we define

I_; = {(OR,'._:mu’Ok—Rj) u € H"'j}'

The (s™ — 1)(s — 1)7* vectors in I’ satisfy (3.1) and can be replaced by an s7i-
level column. In constructing the grouping scheme for /;, we use the matrices
~constructed in Theorem 1. We can repeat this procedure for j = 1,...,t with

E§'=1 r; < k. Since r; > 2, we may terminate the procedure when Z;=1 T =
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k — 1 or k. The constructed arrays have properties summarized in the following
theorem.

Theorem 4. For any prime powér s, any positive integer k and any r; > 2 (not
necessarily distinct) satisfying Z;=1 r; < k, we can construct
OA(sk,s™(s™ )" ... (s™)™), where

t

1) m(s—1)+ Y ni(s¥ —1)=s"-1,
i=1

_ j

(i) nj < s if k=) m>7y,

= (6.1)

nj <1 if k=) ri<rj
1=1

Remark. The condition (i) comes from matching the degrees of freedom. The
condition (ii) is apparent from the construction method.

Proof. We only need to prove that the constructed arrays are orthogonal with
strength two. Suppose that L, is an s™-level column and L; is an s™-level column
in any constructed array. Here we allow r; = r;, 7; = lor r; = 1. Let S; and §;
be the sets of columns in O A(s*, s¥) that are grouped to get L; and respectively
L;. Since the vectors in S; (and resp. in §;) and the zero vector form a linear
subspace over GF(s) and S; and §; are disjoint, it is easy to show that any r;
linearly independent vectors in S; and r; linearly independent vectors in S; are
jointly linearly independent in the linear space generated by S; and S;. Therefore
any level combination of the r; + r; vectors appears equally often, which implies
that £; and L; are orthogonal to each other.

Note that in the construction method of Section 3, the set I, (which con-
tributes only one s”-level column) is defined at the end because r; are constant
and the condition k — jr > r is only violated for the largest possible j. Such is
not true for general r;. For example, if a very large r; occurs for an intermediate
value of j, the condition k — Y J r; > r; may be violated and as a result only one
s™ -level column is obtained. Therefore we may assign the r; value at a large j or
to satisfy k — }:i r; < r; if only few s7i-level columns are desired. The flezibility
in the choice of r; is indeed a major advantage of the proposed construction
method, which will be elaborated in the following.

By choosing 7; in any order, we obtain a very rich collection of asymmetrical
orthogonal arrays OA(s*,s™(s™)™ ... (s™)"). For example, if it is desired to
have more s"-level columns for a given r, we can set 7y = 12 = -+ = 1. = T;
then the number of s"-level columns can be as large as s*~7 + .- 4+ sk—¢" =
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(s — sk=e)(s" — 1)71. In general the r;’s do not have to be monotone. One
can choose r; for some prescribed values of n; by following the formulas in (6.1)
for n;. If they are chosen to satisfy r, < r, < --- < 7, then more columns with
smaller numbers of levels are obtained.

The method can be further enchanced by the use of the reverse replacement
method. As illustrated in the following example, the construction in Theorem 4
imposes some restrictions on the combinations of r; and n;. This is due to the
nature of grouping which replaces s-level columns by s”-level columns, 7 > 1,
but not vice versa. By reversing the procedure with s”-level columns replaced
by columns with fewer levels, e.g., 16 replaced by 4° or 4% - 2°) we can obtain
richer collections of asymmetrical arrays. See, for example, the arrays in (vii) of
the example at the end of this section.

We now compare our work with those of Pu (1989) and Hedayat et al. (1990).
Pu’s approach uses tools from finite projective geometry while Hedayat et al. use
combinatorial techniques such as difference matrix and resolvability. The latter
can handle the construction of arrays with 2s* runs, which are not covered by
our approach. On the other hand, our grouping approach allows the aliasings
between main effects and interactions to be easily studied, which is important
for statistical analysis. Furthermore, the arrays constructed in Theorem 4 do
not have the restrictive condition such as r;;1 being a multiple of r; which is
assumed in both of their papers. Of course this does not preclude the possibility
that an improved version of Hedayat et al. can dispense with this condition.
Although Pu’s approach is different from ours, some of the mathematical steps
are equivalent. For example, our (3.6), (3.9) and (3.11) have'analogous results
in Pu (1989, Sections 2.4 and 3.3). Since Pu’s procedure can be viewed as a
grouping scheme, with some additional work it can allow the aliasing structure
to be studied as our approach does.

We conclude this section by illustrating the construction steps and use of
the reverse replacement method with the construction of some 64-run arrays.
(i)  OA(28,2™ -4™), ny <21, m+3n; <63.

(ii) OA(25,2™.8m), ng <9, m+7n; <63.
(iii) OA(2%,2™-32), m < 32.

(iv) OA(25,2™-4™ .16), n; < 16, m+ 3n; < 48.
(v) OA(2%,2™-4™ .8), n; <16, m+3n; < 56.
(vi) OA(2%,2™-4.8"2), n, <8, m+ 7n; < 60.

Construction of the arrays in (ii) is explained in detail in Section 4. Those
for (i) and (iii) are obtained by taking r; = ro = 73 = 2 and respectively r; = 5.
For the arrays in (iv), we take r; = 2and 7, = 4. There are 3x 2672 = 3x 16 = 48
vectors in Iy which can be partitioned into 16 groups, giving n; < 16. The 15
vectors in I; can be grouped into a 16-level column. For the arrays in (v), we
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take 71 = 2 and r; = 3. As in (iv), the 48 vectors in I; can be partitioned into
16 groups. The seven vectors in I} can be grouped into an 8-level column. For
the arrays in (vi), we reverse the order by taking 7, = 3 and r, = 2. In I;, there
are 7 X 28~3 = 56 vectors which can be partitioned into 8 groups, giving ny < 8.
The three vectors in Ij can be grouped into a 4-level column.

Note that none of these arrays can accommodate 4™ -8"2 with both n; and
ny 2 2. This problem can be alleviated by the use of the reverse replacement
rule, that is, to replace an 8-level column in the arrays in (vi) by 4 - 24. By
repeating this for z 8-level columns, we obtain from (vi) the following arrays,
(vii) OA(28,2mH47 . 4o+1 .8n2-2) < £ <y < 8, m+ Tny < 60.
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