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FROM ANIMAL TRAPPING TO TYPE-TOKEN
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Abstract: Let V. be the number of word types in a text of n words. If the arrival
of the ith word type is governed by a Poisson process with rate \;, we show that
the growth rate of the series T); determines the asymptotic behavior of V,,. Specific
conditions are given for V, — oo, its rate of divergence, as well as its asymptotic
rate of convergence to a distribution. The cases that A, = n~?, p > 1 and A, =
a™, 0 < a < 1, are fully discussed, and they agree with two well known classical
“species-area models. Finally, for certain finite vocabulary cases, a correction factor
is introduced.

Key words and phrases: Linguistics, Poisson process, regular variation, slow varia-
tion, species-area.

1. Introduction

Let V,, be the number of different word types in a text that contains n words.
In statistical linguistics, V;, is called a type-token relation (Herdan (1960)), and
it is one of the more interesting problems that concerns both linguists and statis-
ticians. In terms of stochastic abundance models, V,, can be interpreted as the
number of different species that have been found up to time 7, or within a geo-
graphical area n, see Engen (1978). The function V, also has other names in the
literature: it is called the rarefaction curve in ecology (Tipper (1979), Walton
(1986)), although the appropriateness of rare function as a model for ecological
processes is controversial (Lewin (1983)). For small n, the distribution of V, is
derived by Emigh (1983) for the multinomial case, and by Walton (1986) for the
hypergeometrical case. In this paper, we are more concerned with the behavior of
V,, for large values of n. Traditionally, V,, is either obtained via empirical studies
(Yule (1944), Guiraud (1959), also see Gani (1985) for additional references) or
through theoretically based models (Brainerd (1982), Gani (1985), Daley, Gani
and Ratkowsky (1988), Sichel (1986)). Except for Sichel’s work, which tries to
fit a probability distribution to the observed data of V,,, almost all theoretical
models considered so far are based on homogeneous Markov chains with suitable
transition probabilities. Brainerd (1982) made an excellent attempt to link the
type-token approach, which often uses stochastic processes as a modeling device;
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and the species-area problem, which is often based on a more static probability
model. By choosing a suitable Markov transition probability, Brainerd succeeded
in establishing two classical species-area models: the Gleason (1922) model, and
the Arrhenius (1921) model.

A basic assumption for the stochastic processes approach is that the process
{Va,n > 1} is Markov. On the other hand, the static species-area model assumes
a multinomial distribution. These two assumptions are inconsistent (McNeil
(1973)). We are more inclined to adopt the basic view of Herdan (1966, p.15):
that the relative frequencies of symbols appear to be a common characteristic of
linguistic forms; i.e., the multinomial framework. To fully utilize this structure
we shall introduce a time variable ¢, go one step further and use the basic species-
trapping framework of Fisher, Corbet and Williams (1943) in which each word
type appears in accordance with a Poisson process with rate A;. In this paper
we approach the type-token problem directly from Fisher’s framework and, for
the most part, discuss the behavior of V,, for large values of n.

Our major findings can be summarized by saying that the asymptotic behav-
ior of V,, depends largely on the tail behavior of the series Y A,. For arbitrary
A = (A1, A2,...), it is possible to roughly estimate E(V,) or Var(V,,). For certain
specific A, it is possible to derive E(V,,), Var(V,) or the distribution of V, as a
function of n. Two important cases deserve special mention. If A, = n™P, p > 1,
we obtain, for some finite C; and Cj,

E(V,) = Cy - n*P(1 4 0(1)),

Var(Vn) = C'2 . nl/P(l + 0(1)) (11)

and also conclude that V,,, properly hormalized, is asymptotically normal. If
An=a", 0 < a<1,then

Vo = Cs-logn + 0,(1), (1.2)

for some constant C3, and there is no need to normalize V, to obtain an asymp-
totic distribution. Explicit values of Cj, C, and C; can be found. The normal
case has been treated by McNeil (1973) in a different way. Relation (1.2) appears
to be new. '

These two examples enable us, to a large extent, to classify the type-token
curves according to the rate of convergence of A,. First, there is no linear rate
although it can be arbitrarily approached. If A\, | 0 polynomially with degree p,
then V,, is Op(nl/”), p > 1; furthermore, V,, is asymptotically normal. If A,, | 0
geometrically or faster, then V,, = O(logn) + O,(1); and the distribution of the
Op(1) term can be explicitly found in the sense that we can find all its moments.

2.- Fisher’s Model ‘ -
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We shall, for ease of presentation, adopt Fisher’s species-trapping description
as our basic model. There are infinitely (but countably) many species, and the
arrival of the ith one is governed by a Poisson process X;(t) with rate A;. The
number of different species discovered in the time period (0,t) is given by the
simple formula

o0
V(t) = EI[Xj(t)le'
i=1

These Poisson processes are assumed mutually independent. This framework is
also adopted by McNeil (1973) to estimate the vocabulary of an author, and by
Efron and Thisted (1976) to study how many words Shakespeare knew. The
Poisson assumption is not essential for most of the results that follow. Since we
shall be mainly interested in the asymptotic behavior of V(¢), particularly when t
is large, we shall make the assumption that Y A; < oo and A; > 0 for all . Note
that this is a sensible assumption since if 3 A; = oo, we would be observing
infinitely many arrivals in any finite interval (0,¢). We shall make a point in
noting that, by conditioning the Poisson processes on their arrival epochs only,
we obtain the classical multinomial framework. It is easy to see that if A\; > 0
for all ¢, then E[V(t)] — oc. In fact, the condition that A; > 0 infinitely often is
necessary and sufficient for V(t) — oo a.s. The proof is omitted.

A basic issue underlying the type-token problem is whether we assume that
the vocabulary size is finite. While the finite assumption is realistic, never-
theless the infinite vocabulary assumption does provide an easier mathematical
framework. The first two theorems below imply that if we are to discover any
non-trivial properties of V'(¢) at all and at the same time keep the true parameter
A fixed, it is necessary to assume A; > 0 infinitely often. Some authors bypass
this issue. For example, McNeil (1973) assumes a finite vocabulary initially, and
later lets the vocabulary size tend to co. He has to assume a special form of
An (McNeil (1973), Eq.(4.2)). Efron and Thisted (1976) allow a possibly infinite
vocabulary, but pay the price by finding only the lower bound for Shakespeare’s
vocabulary size.

To study the asymptotic behavior of V(¢), we shall be mostly interested
in the rate at which V(t) — co. This depends on the structure of the sequence
A = (A1, Az,...); we shall write V(¢, ) to emphasis its dependence when needed.
The next result is simple but useful; we shall omit the proof.

Theorem 1. If A < p in the sense that A; < p; for all i, then V(t,A) S V(t,pn)
for all t.

iS'trictly speaking, V(t,) implibitly depends on a sequence of Poisson pro-
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cesses and the expression that V(t,A) < V(t,p) is unjustified. But for each
sequence of Poisson processes X ;(t) with rate A;, there exists a Poisson sequence
Y;(t) with rate p; such that X;(t) < Y;(t). It is in this sense that the above

theorem is interpreted.
Corollary. If X < p, then E[(V(t,A)] < E[V(t,p)]

For certain , it is possible to determine the rate at which V(t, ) diverges.
Theorem 3 below provides a useful basis for comparison to determine the rate of

V(t,n)-
3. The Expected Number of Types

In Section 2 we have given a necessary and sufficient condition for V(t) — o0
a.s. This condition is independent of the growth rate of 3° A;. In this section,
we shall study the behavior of E[V(t, )], and try to determine, at least for large
values of ¢, the approximate form of E[V (2, A)]. A salient feature of our approach
is that it tries to link a particular convergent series S An with the form of the
type-token relationship. We shall assume )\, | 0. For the moment it is assumed
A, > 0 for all n.

Let XA = (A1,A2,...), An > 0 for all n. Let hp = An{>ig Ansi} ! be the
hazard sequence with respect to A. Let 1 and n be related by t - A, = 1. The
next theorem specifies the rates of divergence of E[V(t, )] in terms of n or Ay L

Theorem 2. For each t define n(t) by A;(lt) <t< )\;(lt)ﬂ. Assume A, | 0.
(i) If nh, — 0, then .

(ehn(t))'1 < E[V(t,\)] £ (hn(t))—l(l + 0(1)).

-

(ii) If nhy is bounded away from 0, then there ezists a finite constant C such
that

n(t)(1 — e7') < E[V(t,A)] £ Cn(2).

Proof. For t of the form t = 1/A, write

n o0

EV(t,A) = z (1—e /) + Z (1— e dnti/An), (3.1)

=1 =1

The first term is at most n whereas by using the inequality 1—e~% < z, the second
term is bounded by (1/An) Zf__n_‘_l X; = h;'. The desired inequalities then
follgw easily. For general ¢ the theorem also holds since EV(t,\) is continuous
and monotone in t. ' -
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We shall show that the actual order is O(n) for many interesting convergent
series; but the order h7! is also attainable.

Ezample 8.1. If A\, = n~P, p > 1, then for 1 < n,

)x,' 1\~P
= (3)
so the first term of (3.1) is Y1, fp(i/n) where fy(z) =1 - exp{—z~P}. For
i>1,
)‘n+i _ 1\ P
A (1 + n)

and the second term of (3.1)is 35, fp(1+/n). From (3.1), by using a Riemann
sum approximation, we obtain for the sequence A, = n7?,

MV@AM:n.Awﬁ@th+oun
= t1/7. C1(p){1 + o(1)}, (3.2)

say. This is the case where the order O(n) is attained. We remark that this
relation is the classical species-area model of Arrhenius (1921). Herdan (1966,
p.75) also indicated that this relation has been observed for many linguistic cases.
Later, we shall show that Ci(p) = T'((p — 1)/p)-

Since p > 1 is required to ensure the convergence of ) n~P, we see that if
there are infinitely many word types, the type-token relation cannot be of the
order O(t) or greater.

Ezample 8.2. Let A, = n~*(logn)~2. Then ) A, converges, but barely. For this
A, h(n) ~ (nlogn)~!. By part (i) of Theorem 4 below, E[V(t,\)] = O(nlogn)
= O(hz1).

The two examples above exhibit the case where ) A; converges “slowly”.
Together they show that the type-token curve cannot be linear although it can
be approached arbitrarily close from below. The next example is for the case
that A\, | 0 geometrically.

Ezample 3.3. I A\, = a®, 0 < a < 1, we can derive the type-token curve
somewhat differently. The basic idea is still (3.1), but for the geometric case
Ai/An = @' Apgi/An = a'. Hence (3.1) reduces to

BV = Y (1-exp{-a~}) + 3 (1 - exp{-a'})
=0 =1

= n — An(a) + B(e),



194 MIN-TE CHAO

where

n-1 ) 00 ‘

An(a) =Y exp{-a~'}, B(a)=) [1-exp{-a’}].

=0 . ) i=1

Note that since 0 < a < 1, both Ap(a) and B(a) are finite. Hence if A, = o,
E[V(t,A)] = —logt/loga — A(a) + B(a) + o(1) (3.3)
where
A(a) = lim An(a).

Note that (3.3) represents another well-known classical case: The Gleason (1922)
species-area model.

In the following we shall give a simple method from which the type-token
curve for various A can be found. The idea is based on Theorem 3 below and
the concept of regular variation (see Feller (1968, p.269) for the definition). It is
possible to find Ci(p) explicitly in Example 3.1. First consider the function

: [V(t,\)] = Z,\ e~ Nt
which, on using the same technique as in Example 3.1, can be shown to be
n [ e expl-e"")de = k(o - /).
Hence

d
t— E[V(t,)] _Te-1)/p) _ P
EV ({5, V)] PCi(p)

say. But since E[V(t,\)] ~ C1(p)t}/?, it is of regular variation with exponent
1/p. By a result of von Mises (see Resnick (1987, p.21)), p = 1/p so Ci(p) =
I'((» - 1)/p)-

Theorem 3. Assume for certain A = (A1, Aq,...),

E[(V(t,A)] = g(t)(1 + o(1))

for some regularly varying function g with exponent p. If p = (u1,p2,...) is
another sequence of constants such that pu, /A, — v > 0, then

o E[V(t,u)] = g(rt)(1 + o(1)).
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Proof. For € > 0, let ng be chosen so that
(= O < pin < (F+ N
if n > ng. Then

EV(t,p) = Z(l-—exp{ pit}) + Z (1 — exp{—pit})

t=no+1

< 2(1 — exp{—pit}) + Z (1 —exp{—(r + €)A:})

i=no+1
= _Z[exp{—(r + €)M} — exp{—pit}] + Z(l — exp{~(r + €)Ait}).

On letting ¢t — oo, the first summation tends to 0 and the second summation is
of the form g((r + €)t)(1 + o(1)). Since g varies regularly with exponent p > 0,

g((r + €)t) = g(rt) - (1 + ;)p ) ﬂ%ﬁ)ﬁ

= g(rt)- (14 5)"- (14 o(1).

A similar argument establishes the lower bound as g(rt)(1 — (¢/7))?(1 + o(1)).
Since € is arbitrary, this completes the proof.

4. The Variances

Theorem 5 below not only provides an easy vehicle to calculate the expected
V(%,), but also enables us to compute other moments. In this section we shall

provide a general formula together with a few examples to illustrate the point.
Write

Mz

Var[V(t,A)] = ) exp{—Xit}(1 — exp{—A;t})

-
Il
-

N

[exp{—Ait} — exp{—2A;t}]

1

-
!

.t”/)g

[(1 — exp{-2Ait}) — (1 — exp{-Ait})]
= E[V(2t A)] - E[V(t,A)]. (4.1)

We see that for the case A, = n™P, p > 1, (4.1) reduces to (21/7 — 1)t1/PCy (p)(1+
0(1)) and C; of (1.1) is (2}/P — 1)Cy(p). Whereas if A\, = o™, (4.1) becomes
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—log?2/loga + o(1). Hence Cj of (1.2) is —(log «)~!. This implies that for the

geometric case
V(t,\) = —logt/loga+ Op(1). (4.2)

The basic idea exhibited in (4.1) can be exploited further to find a general
formula for all cumulants of V(¢,A). Let I be a Bernoulli random variable b(1;p),
and let 7 be its kth cumulant. Then 73 = p and 72 = p(1 — p). In general, 7y is
a degree k polynomial in p, and also a degree k polynomial in ¢ (= 1-p). Write

Tk = ak0+ak1q+"'+akqu- (4-3)

The values of these coefficients can be explicitly found. A rather tedious, but
nevertheless straightforward, calculation shows that

-1
aki = ZZ —1)HHim gk 17‘(7‘-{-1)( )( 1). (4.4)
r=1 j=0
It can be shown that for k > 1, axp = 0 and
" apytakg -+ ake=0. . (4.5)

Replacing ¢ by exp{—A;t} in (4.3) and summing over i, we obtain the kth
cumulant, 7, of V(¢,A). Hence for k > 1,

P

i=1

™M=

ak; exp{—Ait}
1

J

NI

[-—akj(l - eXp{—Aitj}) + a'kj]

x>,
It

==Y ar; EV(jt,A). (4.6)

i=1

For the special case that A, = o™, we may use (3.3) to find all cumulants of
V(t,A) as t — oo. The final result is, for k > 1

7k = (axa log2 + axslog3 + - - - + axx logk)/log a + o(1). (4.7)

Finally, we remark here that it is easier to find the factorial cumulants of V
(Kendall and Stuart (1977, p.77)).

5. Asymptotic Distribution of V.(t)
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We have seen in Section 4 that if A\, | 0 geometrically, then the limit of
Var[V(t,\)] is finite. In this case, we do not need a normalizing rate for V(t,X)
in order to obtain an asymptotic distribution. For other cases, e.g., A, = n™P, the
variance of V(t, A) tends to co. In this section, we show that if Var[V(¢,A)] — oo,
then it is possible to properly normalize V(t, A) to obtain a weak limit.

Write, as in (2.1),t = A;! and

n o0
V(N =Y Ixmen + 9 lixewmzy = V14 V2,
=1

=1
say. Let §! = Var(Vy), S = Var(V,), and let S, = 5., + 5.

Theorem 4. If S, — oo then

SaE(V(t,A) - EV(t,A)) =< MO, 1).

Proof. If S, — oo, either S/ — oo or §) — oo or both. If 5], — oo then
Vi is a row-independent sum of indicator random variables and the Lindeberg
condition (e.g. Chow and Teicher (1978, p.290)) holds. If 5] — oo, V; is also
asymptotically normal by the same reason. Note that V; and V, are independent,
and if S/, — oo faster than S}, then

STAV(E,N) - EIV(LA)) ~ S7 (Vi - E[).
The other two cases are similar and the theorem is proved.

McNeil (1973) establishes a similar result, using several assumptions. Theo-
rem, 4 is more transparent and, in view of the Feller-Lindeberg condition, requires
only the minimum assumption that 5, — oo.

To close this section, we provide a condition on A, under which S,, — oo.
The idea comes from the case where A, = a™ for some a € (0,1). It turns out
that the geometrical rate plays an important role.

Theorem 5. If Var[V(t)] < C < oo for all t, then there ezists a € (0,1) such
that A, < a™ for all n sufficiently large.

Proof. Let f(t) = E[V(t)]. Then, by (4.1),
Var[V(t)] = E[V(2t)] — E[V(t)]
- f(2t)- f() < C
for all t. By induction,

—

f(2%) — f(t) < kC.
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Letting 2¥ = z and t = 1, we have, for all z,
f(z) < f(1)+ C1logz < Caylogz (5.1)

where C;, C; are constants. Now we have

f(t) > zn: [1-e /] > (1 =-e)n (5.2)

i=1
By (5.1) and (5.2), there exists a constant C3 such that
n < Cilogt = —Cslog Ay
Hence )\, < a™ where o = exp{—1/C3} < 1. This completes the proof.

“Theorem 5 implies that if ), is not bounded above geometrically, then 5, —
oo and by Theorem 4, the central limit theorem holds for V(¢). It would be nice
to show that if A, < a” then §,. < oo. However, despite its simplicity, we are
unable to establish this result.

6. The Finite Vocabulary Case

We have so far considered only the case where A, > 0 for all n; i.e., the
infinite vocabulary case. If A, = 0 for all n > N, then the limit of V(¢) is
trivial (see Brainerd (1982, p.788)). Hence it is the intermediate case that we
shall be interested in: that where both ¢t and N are large but neither is infinite.
Therefore, we shall be more concerned with the order of magnitude of E[V(t)].

To fix ideas we shall only consider the case that A, = n7P, n=1,2,... ,N;
A, =0, n > N. Admittedly, this is one of the cases that enables us to compute
some of the relevant quantities. But we are hoping that this will provide a basis
for comparison between the finite and infinite vocabulary cases.

Following Example 3.1, we first note that the o(1) term of (3.2) is O(1/n),
where n and t are related by tA,, = 1. We then follow the proof of Theorem 1,
where the only change we need to make is to replace oo in (3.1) by N —n to
reflect the restriction that A\; = 0 for 7 > N. To avoid notational confusion, A, in
(3.1) is best replaced by the quantity n~?, which is independent of the sequence
A. Then (3.2) becomes

EV(t,A)] =n- /ON/n fo(@)dz {1 + o(%)} (6.1)

where n = t1/P. On comparing (3.2) with (6.1), we see that the only difference is_
the ﬁmte-voca,bulary correction N/n. As a simple check, we may let ¢ — oo (or
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n — oo) in (6.1) and find its limit. By the L’Hépital rule, it is easy to see that
the limit of E[V(¢,\)] is N, as it should. Let g(t,N) denote the right-hand-side
of (6.1). By (4.1), we have

Var[V(t,A)] = {g(2t,N) — g(t, N)} - {1+ O(t"/7)}. (6.2)

We remark here that when N < oo, there is no need to restrict p > 1. Hence
(6.2) includes Zipf’s case (p = 1).

The case where A\, = a™ for n < N only can be dealt with similarly, but
more simply. Following the development of Example 3.3, it follows that,ifn < N,

E[V(t,\)] = n — An(a) + Bx-n(a) (6.3)

where

Anle) = 3 expf—a™)

N-n

By-n(a) = 3 [1-exp{-a'}],

=1
and n and t are related by t - @™ = 1; whereas if n > N,

n-—-1

EV(t,A\)]=N- > exp{-a’}. (6.4)

j=n—-N

Combining (6.3) and (6.4) yields
E[V(t,A)] = min{n, N} + O(1).

Hence, by (4.1),
Var[V(t,A)] = O(1).

This holds true even if N = oo. Note that for the case N < co we do not need
the restriction o < 1.

If @ = 1, then both (6.3) and (6.4) reduce to
E[V(t,\)=N(1-e?)

but this derivation is wrong because for @ = 1,t = 1/a™ = 1 cannot tend to co.
We need to go back to (3.1) and find

N
- EV(@EA)] =) (1-e)=N1-e™). -

t=1
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7. Conclusion

It has been shown that if we take Fisher’s animal trapping setup the species
area (or type token) curve can be “derived” from the structure of the arrival
rates. In certain special cases specific functional forms can be found. The basic
connection between A\, and EV(t) is Tauberian in nature, and the argument 1s
elementary and no differential equation is needed.
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