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UNIFORM CONVERGENCE OF PROBABILITY
MEASURES ON CLASSES OF FUNCTIONS

P. J. Bickel® and P. W. Millar(?)

University of California, Berkeley

Abstract: Let P,, P be probabilities, and F, F* be collections of real functions.
Simple conditions are derived under which the simple convergence of f f(z)Pa(dz) to

f f(z)P(dz) for every fin F” implies uniform convergence over F : sup;¢p | f f(z)Pa

(dz) — f f(z)P(dz)| converges to 0. Several examples are discussed, some historical
and some new.
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of probabilities, Pélya class, Pélya’s theorem, Glivenko-Cantelli theorem, dual Lip-
schitz norm, bracketing, Vapnik-Cervonenkis class, convex sets, uniformity class,
delta-tight.

0. Foreword

Let P be a probability on a metric space X endowed with an appropriate
sigma field. Let F be a fixed collection of real functions on X such that|f(z)} <
cop < oo for all f in F. Let F* be an auxiliary collection of functions. Both F

and F* may depend on P. We consider the question: under what conditions on
F and P does

(0.1) /f(z)Pn(da:) — /f(z)P(da:) for every f € F*
imply
(0.2) sup{| /f(a:)Pn(d:c)— /f(.'c)P(da:)l fe F} -0

for every sequence of probability measures {Pn} satisfying (0.1)? For reasons
given in Section 1, we call such a class F a Pélya class for P.
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(2) Research partially supported by NSA MDA904-88-C-3068
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Uniformity results of this sort have a long history; they are also a useful
part of the tool kit of every asymptotic statistician. Some specific applications
are discussed in Section 1.

In this paper we give two simple conditions for F to be a Pélya class for
P (see, Section 2). llustrations of the use of these criteria appear in Section 4,
where we give simple proofs of uniform convergence in a number of examples,
including a recent theorem of Beran, LeCam and Millar. (In some of these
examples, X is not separable, but the P, are é-tight, so that the support of
limiting measures is separable.)

1. Background

The utility of these uniformity results resides in the possibility of deducing
from a simple pointwise convergence of measures, (plus possibly a smoothness
condition) a far stronger form of convergence. We first introduce a standard
notation before proceeding to the illustrations.

If P is a probability on X, define P f to be the expected value of f under P:

(1.1) Pf= /f(o:)P(dz) = P(f).
If X is the real line, define

P(t) = P{(~o0,1]}

(1.2) P(t-) = P{(~c0,1)}.

Using this notation we see that F is a Pélya class for P if

(1.3) P.f - Pf VfeF*
implies
(1.4) sup{|P.f - Pf|: fe F} = 0.

This compact notation, which emphasizes the interpretation of P as a linear
functional, has been used for decades in functional analysis and in general Markov

theory. Recently it has been extensively used in the literature on empirical
processes.

A. Historical examples

(A.1) Pélya’s theorem (1920). Let P,, P be probabilities on the line. Suppose
(i) there is a dense set D on the line such that

Pﬂ(t)_)P(t)a tED
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(ii) P(t) is continuous as a function of t.
Then Pélya showed (Math. Zeitschr. Vol. 8, Satz I, 1920) that

sup | Pr(t) — P(t)| — 0.
teRL

This result is the earliest theorem that we know, of our general framework. Here
F* consists of indicators of intervals (—o00,t],t € D while F consists of indicators
of intervals (—o0,t],t € R. Thus continuity, plus pointwise convergence in a
“small” set of points, is sufficient to imply uniform convergence over a “larger”
collection of points.

It is from this seminal theorem that we introduce the term “Pdlya class”.

(A.2) Dual Lipschitz Norm. Let P,, P be probabilities on, say, a separable
metric space X with metric d. Let F* consist of all bounded, uniformly contin-
uous, real functions on X. Let F denote the collection of functions f satisfying
(i) sup; |f(z)| < <o

(i) sup{|f(=) — f(y)|/d(z,y)} < co.

A standard weak convergence result then asserts that

if Pof - Pf VfeF* then sup|P.f— Pf|— 0;
feF

i.e., weak convergence implies convergence in the dual Lipschitz norm. If X = RF,
then the class F* may be replaced by a smaller class whose linear span is dense
in the sup norm on F*, e.g. the exponentials exp{itz}, t € R*. The relevance
of this particular form of uniform convergence to the theory of robust statistical
inference was emphasized by Huber (1981). See also (B.3) below.

(A.3) The Billingsley-Topsoe theorem (1967). Let X be a separable metric
space and assume

(i) Pnf — Pf

for every bounded uniformly continuous function f. Building on work of Ranga
Rao (1962) and others, they showed that a collection F is a Pdlya class iff

lelfgsgp Plz:wy(z,e) > 6] =0
for all é > 0, where wy(A), the oscillation of f on A, is defined by

wy(A4) = sup{|f(z) - f(¥)| : 2,y € A}

and

wy(,€) = wy(B(z : ¢))
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where B(z : €) is the € ball about z. This result gives an elegant solution to
the problem (when X is separable). However, the conditions given are not easy
to check. Indeed, the desired uniform convergence is replaced by a secondary
uniformity problem which is often harder than the original. Possibly because
of these considerations, this fascinating result appears to have been only rarely
applied.

B. Statistical examples

Statistical application of the type of result described in (1.3), (1.4) often
involves replacing {P,} there by a sequence of random measures and even P
itself by a random measure. It turns out that in some asymptotic arguments,
these random measures can be replaced by non random measures, via judicious
use of available almost sure convergence results, such as Wichura (1970). In such
cases one may then apply the basic uniformity theorems for ordinary measures.

(B.1) Glivenko-Cantelli theorem. Let X, X3,... be independent, 1dent1cally
distributed real random variables having common distribution P. Let P, be the

empirical measure of this sample. The law of large numbers implies at once that,
for each t,

P,(t) - P(t) as.

The Glivenko-Cantelli theorem, of course, asserts that the above simple result
can be parlayed into uniform convergence;

sup | P, (t) — P(t)| = 0 as.
t

The result is reminiscent of Pélyas, but without the cont1nu1ty assumption —
this being finessed by the particular random sequence {P }.

(B.2) The BLMV theorem. This result is discussed in Section 4; here we
just describe quickly its statistical meaning. Let 13", @n be random measures on
an abstract, not necessarily separable, metric space. Under suitable hypotheses,
the result concludes that if P f- Q f converges to zero (in probability) for
bounded, continuous (and appropriately measurable) functions f, that then the
convergence to zero holds in the dual Lipschitz norm (c.f. (B.2) above). In a
number of statistical applications, Cjn is a random measure based on an estimate
of a parameter in a particular statistical model, while ﬁn is the empirical measure
constructed from an appropriate bootstrap sample. The result is therefore an
abstract underpinning for the common procedure of estimating, by bootstrap
methods, the sampling distribution of a particular statistic. Concrete illustration
of its use may be found in Beran and Millar (1987), for example.
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(B.3) Consistent estimation of parameters in stationary ergodic pro-
cesses. Suppose Xi,...,Xp,... is a real stationary ergodic process with dis-
tribution P. Let ﬁnj be the empirical joint distribution of {X;4x,1 < k < j},
1 £ ¢ < n. By the ergodic theorem ﬁnj(f) — Pj(f) a.s., where P; is the distri-
bution of (Xy,...,X;), and this convergence holds for every bounded uniformly
continuous function f on R’/. By a familiar argument, one may take the a.s.
exceptional set independent of f. Then one can employ (A.2) to deduce a.s.
uniform convergence on the set F given in (A.2). From this one can then eas-
ily deduce consistency properties and qualitative robustness for “robust serial
correlations” and similar parameters (cf., Papantoni-Kazakos and Gray (1979)).

2. Conditions for F to be a Pélya class for P

To ease the exposition we shall take F* = F in what follows. The general
case simply requires that F* satisfy the specified conditions. The uniformity
conclusion holds for F.

(i) Bracketing. As usual, fL and fU bracket fif fL < f < fU.

Given F*, let, Hg(¢, P) = inf{m : There exist f& < ffii<i<m
(2.1)  all belonging to F* such that P(f¥ — f¥) < eand Vf € F

there exists i(f) such that fF, f¥ bracket f}.

Proposition 2.1. F is a Pélya class if

Hp(e,P) < 0o for all e > 0.

Proof. Using bracketing note that

(2.2) |Pa(f) = PO < |Pa(fE ) = Pulfhp))
+1Pa(fiiy)) — PUL)I+ 1P ) = P(S)]

where f1,..., fm achieve the inf in (2.1) and m = Hpg(¢, P). Therefore,
(2.3) sup IPu(f) = P(f)I £ mgXIPn(fo) - P(f7)|
+ 2m‘ax|Pn(f,-L) ~ P(fH)) + 2¢ > 2¢ as n — .
The proposition follows since € > 0 is arbitrary.

(ii) Metric related criteria
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Proposition 2.2. Assume there is a metric d on F such that

(2.4) F is d compact.

(2.5) Ifd(fn,f) — O then P,f, — Pf and Pf, — Pf.

Then supscp |Prf — Pf| — 0.

Proof. Suppose the conclusion fails. Then there is § > 0 and f, such that
| Prt fur — P fri| > 6 for a sequence n'.

Since F is compact, there is a subsequence { fn»} of {fns} such that d( fn, f)—0
for some f. Because of (2.5) and the triangle inequality, this is a contradiction:

anufnu — anul S anuf,nu —_ Pfl + |anll et Pfl — 0-

Two extensions of this criterion are useful. We say F, is an € approzimating
class to F for P if Vf € F there exist f. € F, such that |P,(f. — f)l < e
|P(fe — f)| < ¢, whenever P,f — Pf forall f € F.

Remark 2.1. If

(2.6) {P.} are tight

a simple € approximating class is given by Fx_, where
Fx ={fIx: feF}

for K compact (I denoting the indicator of K), and

PiK)>1- = alln,P(K,)>1- <.
Co Co

Evidently, if F has for each € > 0 an approximating class F. which satisfies
the conditions of either Proposition 2.1 or 2.2 and

Pof —» Pf VfeF e>0,

then F is a Pdlya class.
It is also convenient to have a closely related nonmetric criterion.

Proposition 2.3. Let (2.6) hold and F,_ be as above. Suppose that for every

sequence {fn}, fn € Fk, there erists a subsequence {fa} and f € Fk, such that
whenever z,» — z in K, it follows that

(2.7) fa(@n) = f(2), f(zn) — f(z)
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except for x € N such that P[N] = 0. Then F is a Pdlya class.

Proof. It is enough to consider F = Fp,. Since K, is separable, by the Dudley-
Skorokhod-Wichura theorem there exist measurable X,, X : [0,1] - K. where
[0,1] is endowed with the uniform distribution such that the distribution of X,
is P,, and that of X is P and

Xn(w) = X(w) for all w.

Suppose the proposition is false. Then there exist f, € F, |P,f, — P(fn)| > ¢,
all n. If f,/ is the subsequence converging to f which is assumed to exist, then,

far (X (w)) = f(X(w))
f(Xn(w)) = f(X(w))

except on {w : X(w) € N}. But, by hypothesis that set has measure 0. By
dominated convergence,

Pnlfnl —)Pf
Pof— Pf

and we have a contradiction.

Note: The above argument shows that this proposition, with F = Fg_, is a
special case of Proposition 2.2, if d there is taken to be the metric of convergence
in P probability.

3. Stability Properties of Pélya Classes

Let G be a compact subset of C[—cg, co]*, the continuous bounded functions
on [—cg,¢o]* endowed with the sup norm.

Proposition 3.1. Let Fg = {9(f1,..-,fk): f1,.--, /i € F,g € G}, and F, P
satisfy the conditions of Proposition 2.2. Then Fq is a Pélya class.

Proof. Metrize F¢ by,

k
dg1(frs-- o fi)s G2(ffse s FE)) = S dlfir £7) + llgr = g2l

i=1
Apply Proposition 2.2.

Special cases:
Algebraic stability: Let k be an integer, k = kok;.
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k1

Let g(z) = Za;ﬂ;;lzij
i=1

where z = {z;;} 1<:<k;, 1<j<ko

and |a;| < M,1 < i < k. More generally by taking G = {9 = arn,..n
k

e :ri 2 0,% ri = m and |ar,,. n| € M < oo forall r1,... 7t} we

i=1
obtain the result that the set Fg of all polynomials of degrees m in k variables
fi,..., fx with bounded coefficients is a Pélya class whenever F, P satisfy the
conditions of Proposition 2.2.

Lattice operations:
The Pélya property is similarly inherited if Fg = {1 ® f2 : fi,f; € F}
where ® is max or min.

These operations can clearly be iterated a finite number of times. In par-
ticular, note that the Pélya property is preserved under a finite number of field
operations.

4. Applications

Throughout this section we assume
(4.1) P,=>P

Example 4.1. Sufficiency of the Billingsley-Topsoe conditions. (This is a para-
phrase of their argument.) Let {A.} be a partition of X into sets of diameter < ¢
which are continuity sets of P. Then F, = {f = Yo ckla, tlek] < co}is a Pélya
class. To see this note that, by Proposition 2.1, F,,, = {f= EZ;I ckla, tlek| <
co} is a Pélya class. Further, since 2y Pa(4j) — > =1 P(A;) for any v > 0,
there exists m(y) such that e m(yy+1 Pn(4) < 7, > iem(xy+1 P(45) < 7 for
all n. Evidently F,,(,)c is a v approximating class to F, and the claim follows.
Now, if f € F, there exist f. € F, such that

Polf—fl<é+co Z{Pn(Am) cwp(Am) > 6}
<6+ ol Pa( D 1(wp(Ar) > 8)14,)
= P() " 1(wy(Ak) > 6)14,)| + Ple : wy(z,€) > 8).
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Hence,
sup |P.f-PfIS(1+ Co)sgp |Pof — Pl

+ 6 + sup Pz : ws(z,€) > §].
F

Since § is arbitrary and F, is a Pdlya class the result follows.

Example 4.2. Convez sets in Euclidean space. This example was first treated
by Ranga Rao (1962). Take X = RP and let C = { convex sets on X}. Let d
denote the Hausdorff metric on C.

Let Cy denote a subcollection of elements of C. Let K5 denote the cube in
R? centered at the origin, sides parallel to the axes, and having edges of length
[1/6]. Let Cg s denote the closure (for the metric d) of the collection of sets
Co N Ks. Assume

(4.2) Every set in Cg 5 is a P-continuity set for all § > 0.

Proposition 4.1. Let F denote the collection of indicator functions of sets in
Co. Assume (4.1) and (4.2): Then F is a Polya class.

Proof. Cg; is, for each §, compact for the Hausdorff metric by Blaschke’s
theorem (Blaschke (1916) §18). It is easy to see that d(C,,C) — 0 (in the
Hausdorff metric d) implies that 1¢_ (z) — l¢(z) except possibly for z € 0C.
Conditions (2.4) and (2.5) therefore apply to F5 = {1¢ : C € Cj s} which then
is a Pélya class by Proposition 2.2. Now apply Proposition 2.3.

Remark 4.1. It is essential to put the P-continuity hypothesis on Cg ; rather
than just on CoNK5. If Cy consists of proper ellipses in R?, then Cp,5 will contain
straight lines, and so (4.2) has to be verified over a strictly larger collection than
Co N K.

Remark 4.2. Let Cy satisfy the conditions of Proposition 4.1. Then, by Propo-
sition 3.1, the class of sets obtained by finite field operations on Cg, will be a
Pélya class. This result therefore covers the usual simple statistical operations
on Euclidean spaces.

Remark 4.3. Suppose Cy = C. The hypotheses of Proposition 4.1 will then
be satisfied provided P has a density with respect to Lebesgue measure. The
collection C is, of course, not a Vapnik-Cervonenkis class.

Example 4.3. Cylinder sets. Let B be an infinite dimensional Banach space.
The generalization of Example 4.2 to B will fail in general. Indeed, if Cy is the
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collection of half-spaces in B, then Cy is, in general, not a Pélya class. This
fact can be deduced, for example, from well-known necessary conditions for the
general Glivenko-Cantelli theorem. On the other hand, certain interesting results
are still possible.

Let B* denote the dual of B; for m € B* and z € B, let (m,z) = m(z)
denote the usual duality relationship. For an integer p > 1,1let K = K s, denote
a fixed cube in R?, as described in the previous example. Let

C® denote the restriction to K of a collection of convex sets,

possibly perturbed by finite field operations (cf. Remark 4.2).

Put the Hausdorff metric d on C®; then C*® is precompact. For convenience we
assume C° is already compact; this entails no loss.
Let D* denote a subset of B*. Assume that

(4.3) D* is weak star compact.
For p > 1 chosen above, define A, a collection of sets A ¢ B by;
(4.4) A€eAiff A= {z € B:((my,z),...,(m,,z)) € C}
where m; € D*, 1 <i<p, C € Ce. Assume, for the collection A:
(4.5) Each A € A is a P-continuity set.
Proposition 4.2. Let F denote the collection of indicator functions of sets in
A. Assume (4.1), (4.2), (4.3), (4.5). Then F is a Pélya class.

Proof. Since P, => P it is enough (by applying Remark 2.1 and Proposition
2.3) to replace B by a compact K which is necessarily separable. Now if A «——
(Casmia,... ,my4) with an obvious notation let

y4
d(14,18) = du(Ca,Cpg) + Zdw(miA,miB)

i=1
when dy is the Hausdorff metric and dy metrizes the weak topology induced by
K on B* for which D* is also necessarily compact. Apply Proposition 2.2.

Illustration 4.1. Half-spaces. Fix D* above as a weak * compact subset of
B*. Let C* consist of the sets {[a,b]:a € R,b€ R,—¢c < a < b < ¢} for some
fixed positive c. Then A is defined to consist of the sets

{z € B-(m,z) € [a,b),m € D*,[a,b] € C}.
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This gives a collection of “strips” for which the Pélya property holds.
A fancier collection—consisting e.g. of “wedges”—can then be obtained by
the finite field operations.

Illustration 4.2. Convergence on C[0,1]. In this example X = C[0,1] = B,
and there are processes X,, X such that X, is C[0,1] valued, and X, = X.
Statistical interest would focus on the special case that X is Brownian motion
or Brownian Bridge. Here the dual of B consists of finite signed measures on
[0,1]; thus take, for illustrative purposes, D* = { all measures p,, where p, is
unit mass at ¢,0 < ¢ < 1}. This set is weak star compact. For the collection C*
of convex sets in R!, let us take the intervals [—s, s], s > 0; this collection is not
restricted to a compact K of R (as specified in Theorem 4.2), but thanks to the
properties of the sup norm, this inconvenience does not matter. Proposition 4.2
therefore implies, for the special choices of D*, C¢, that:

(46) sup |P{X()] € u} - PX()] < w}| —0.

Since the unit ball in B* is * compact, and since this ball consists of signed

measures g such that |||l < 1 (|| | = variation norm), the result (4.6) extends
to
@n)  sw 1P( [ Xu(ou@n] < w) -~ P [ X(Ouanl < ) — 0.

ufl<

weR*t

Extensions of Illustration 4.2. The result continues to hold if D[0, 1] replaces
C[0,1], as long as X € C[0,1]. One can also get a similar result if the norm is
the p ess sup norm on bounded functions as long as p is absolutely continuous
with respect to P.

Simple variants of Example 4.2. Again take X = B, a Banach space. The
cylinder set classes worked in Example 4.2 because they could be neatly
parametrized by a compact set. Obviously, other sets can be so indexed.

Illustration 4.3. Let B(c,r) = {z € B : |z — ¢| < r} be the ball in B, centered
at ¢ € B, and having radius r. Let F consist of all 3(c,r) such that (a) r < rg
and (b) ¢ belongs to a (norm) compact set N in B. Then (subject to the usual
continuity-set conditions), F is a Pdlya class. 'This class can be augmented by
finite field operations. The addition of classes such as those in Example 4.2
should be particularly interesting.

Illustration 4.4. This example illustrates the fact that the collection of sets
need not be indexed by a compact set. Let B, denote the unit ball in B, an
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infinite dimensional Banach space. Then there are balls B(z;,1/4) which are
disjoint and which are entirely within B; (see Millar (1988), for example). These
balls are indexed by {z;}, and obviously the set {z;,1 < i < 0o} is not compact.
Nevertheless, the Pélya property continues to hold for {B(z;,1/4),1 < i}.

Example 4.4. A theorem of Beran, LeCam, Millar, Varadarajan. Example
4.1 was derived as an application of Proposition 2.1. All others, so far, were
applications of Propositions 2.2, 2.3 but could have been derived, sometimes
under stronger conditions, from Proposition 2.1. We conclude with an application
of a slight extension of Proposition 2.1 which gives directly and fairly simply the
following recent result of Beran, Le Cam, Millar (1987) generalizing a result of
Varadarajan (1958).

Theorem. Let {P,} be a sequence of probability measures on a metric space D
which is § tight. That is, Ve > 0, there ezists K compact, 6, | 0, P,(K°%) > 1—¢,
Vn, where K® = {z : d(z,K) < 6}. Let P, be the empirical distribution of {Xni},
1 <1< jn iid. random variables drawn from Py,

jfl
Pa(A) = ;.1—2 1a(Xne)-
" oi=1
Let F = {f :||fllsL < Co} where ||f|lpL = sup, ,{|f(z) - f(y)|/d(z,y)} and
Co is fized say, Cp = 1. Then,

(4.8) sup |P, f — P.f| = 0 in Pi* probability.
fEF

Remark 4.4. We can interpret (4.8) as
(4.9) p( Py, P,) — 0 in P probability

where p is the BL metric metrizing weak convergence. A further straightforward
extension motivated by bootstrap applications is given by Beran et al. Indeed,
let P, itself be random, say P,(-) is a map from a probability space (R2,a,P)
to Lo(F) endowed with the o field induced by the open balls in L. (F) and
suppose that, '

P[{P,} is 6 tight] = 1.
Then (4.9) can be extended to

(4.10) p(ﬁn,Pn) — 0 in P probability.




UNIFORM CONVERGENCE OF PROBABILITY MEASURES 13

Statement (4.10) can be deduced from the theorem by using the Skorokhod-
Dudley-Wichura a.s. convergence theorem.

Proof of (4.8).

Step 1. To show sup;ep |ﬁnf — P, f| — 0 it suffices to show
sup |Puf - Pof| =0
FEF,

where F,, = Fgs.. This follows from é tightness since

(a) Po(K%*)>1—¢
1
jn€1/4 )

(b) Po{P.(K%)<1-é/1} <
Part (b) is shown by noting that jnﬁn(K‘s") is binomial B(jn,pn) where p, =
P,(K*%*), and then using Chebychev.

Step 2. Note that Fx is compact by Arzela-Ascoli. Then, F,, = Fgs, is brack-
eted within é,, (see below) because of the form of the BL norm.

More precisely, fix 6, and f € Fgs.. Let fi,..., fr, be a §,-grid on Fg
(where the metric is the sup norm). If f € F,, = Fgs, then there is ¢ such that

xyﬂﬂ—ﬁuﬂ<%-
If z € K%, then there exists, 2’ € K with d(z,z') < §,. Thus
(4.11) |7(z) = f(z")] < d(z",) < bn since ||f]lpL < 1.
This implies _
f(z) < f(2") + én < fi(z') + 265 < fi(2) + 365

by (4.11) and f; being BL.
Thusif fy,..., fk, is a 6,-grid for F,, in sup norm, f; £ 36, brackets Fs_within
On.

Step 3. Let G, denote the collection of functions that bracket F,, = Fgs, — a
finite set given in Step 2. Since P, is §-tight, every subsequence has a weakly
convergent subsequence, so we can assume WLOG that

P,— P

i.e. sup|P,f — Pf| — 0.
!
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Thus it suffices to show by the argument of Proposition 2.1, that

sup |P,f — Pf|0.
feG,

Step 4. Lemma 4.1. Let {X7,t € I},{Xy,t € I} be real stochastic processes,
where I is countable. Suppose the fidis (finite dimensional distributions) of X™
converge to those of X. Then there ezist {X} t € I}, {X¢,t € I} with the same
fidis as X,,, X defined on [0,1] endowed with Lebesgue measure such that

XMw) — Xe(w) forallt € T
ezcept for w in a set of Lebesque measure 0.

Proof. X™ = {X[',t € I} is R’ valued (with the topology of co-ordinatewise
convergence). R is then a separable, complete metric space.
The fidi convergence implies X™ = X as elements of R!. Apply Skorokhod.

Step 5. Apply the lemma to the stochastic process
"= P,(t)= P(t), t€ I =G = UnGn.
The fidis converge here, so by Lemma 4.1 we can assume by Skorokhod that Yw
P.(w,f)-~Pf 20 Viea.

Evidently, we may, without loss of generality, take the G, nested. Then if
bm(e) £ §» Gm(e) is an € approximating class to G for the sequence {P,(w,-)}, P.
By Proposition 2.3 we can conclude that

sup |P(w, ) = P(f)] = 0 ace. w

and hence that (4.12) holds. The theorem follows.
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