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Abstract: SiZer (SIgnificant ZERo crossing of the derivatives) is a scale-space visu-

alization tool for statistical inferences. In this paper we improve global inference of

SiZer for time series, originally proposed by Rondonotti, Marron and Park (2007),

in two aspects. First, the estimation of the quantile in a confidence interval is

theoretically justified by advanced distribution theory. Second, an improved non-

parametric autocovariance function estimator is proposed using a differenced time

series. A numerical study is conducted to demonstrate the sample performance of

the proposed tool. In addition, asymptotic properties of SiZer for time series are

investigated.
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1. Introduction

SiZer (Chaudhuri and Marron (1999)) is a visualization method based on

nonparametric curve estimates. SiZer addresses the question of which features

observed in a smooth are really present, or represent an important underlying

structure, and not simply artifacts of the sampling noise. Thus, SiZer analysis

enables statistical inference for the discovery of meaningful structure within a

data set, while doing exploratory analysis.

SiZer is based on scale-space ideas from computer vision, see Lindeberg

(1994). Scale-space, in our context, is a family of kernel smooths indexed by

the scale, the smoothing parameter or bandwidth h. SiZer considers a wide

range of bandwidths, which avoids the classical problem of bandwidth selection.

The idea is that this approach uses all the information that is available in the

data at each given scale. Thus, the target of a SiZer analysis is shifted from

finding features in the true underlying curve to inferences about the smoothed

version of the underlying curve, i.e., the curve at the given level of resolution.

Other SiZer tools have been developed and they have proven to be very

useful in applications including Internet traffic data (Park, Hernández-Campos,

Marron and Smith (2005) and Park, Hernández Campos, Le, Marron, Park,

Pipiras, Smith, Smith, Trovero and Zhu (2006)), anomaly detection (Park,
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Marron and Rondonotti (2004) and Park, Godtliebsen, Taqqu, Stoev and Marron

(2007a)), jump detection (Kim and Marron (2006)), economics data (Chaud-

huri and Marron (1999)), outlier identification (Hannig and Lee (2006)), func-

tional Magnetic Resonance Imaging data (Park, Lazar, Ahn and Sornborger

(2007b)), wavelets (Park et al. (2007a)), and comparison of regression curves

(Park and Kang (2008)). Hannig and Marron (2006) proposed an improved in-

ference version of SiZer to reduce unexpected features in the SiZer map.

Recently, Bayesian versions of SiZer have been proposed as an approach to

Baysian multiscale smoothing. These include Godtliebsen and Øig̊ard (2005),

Erästö and Holmström (2005) and Øig̊ard, Rue and Godtliebsen (2006). They

assume the underlying distribution and prior model for the parameters, then

combine the two to get the posterior distribution. This simplifies mathematical

derivations and also makes fast computation possible. The inference is based on

finite difference quotients or derivatives that depend on the selected prior model

for the underlying curve.

As pointed out by Chaudhuri and Marron (1999), statistical inference uti-

lizing SiZer makes heavy use of the assumption of independent errors. This as-

sumption is inappropriate in time series contexts. For dependent data significant

features appear in the original SiZer due to the presence of dependence. Depen-

dent SiZer, proposed by Park, Marron and Rondonotti (2004), extends SiZer to

time series data. It uses a true autocovariance function of an assumed model and

conducts a goodness of fit test. By doing so, one can see how different the behav-

ior of the data is from that of the assumed model. Rondonotti, Marron and Park

(2007) proposed SiZer for time series using an estimated autocovariance function.

The focus of this paper is on SiZer for time series. For SiZer to fulfill its

potential to flag significant trends in time series, its underlying confidence in-

tervals must be adjusted to properly account for the correlation structure of the

data. This adjustment is not straightforward when the correlation structure is

unknown because of the identifiability problem between trend and dependence ar-

tifacts. Rondonotti, Marron and Park (2007) addressed this issue and proposed

an approach via a visualization that displays a range of trade-offs.

While the original SiZer for time series is useful, there is still room for im-

provement. The estimation of the quantile in a confidence interval relies on a

heuristic idea rather than on theory, and the estimation of an autocovariance

function is not accurate in some situations. Moreover, theoretical properties of

the proposed method are not provided. This paper aims to remedy these prob-

lems in a moderately correlated time series. We propose to estimate the quantile

by extreme value theory, and the autocovariance function based on differenced

time series. In addition, weak convergence of the empirical scale-space surface to

its theoretical counterpart is established under appropriate regularity conditions.
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This paper is organized as follows. Section 2 reviews the original SiZer

for time series proposed by Rondonotti, Marron and Park (2007). In Section

3, the estimation of the quantile and the autocovariance function is proposed.

A simulation study and data analysis are provided in Section 4. In Section 5,

asymptotic properties of SiZer for time series are investigated.

2. SiZer for Time Series

Given the time series data {(i, Yi), i = 1, . . . , n}, the regression setting is

Yi = f(i) + ǫi, i = 1, . . . , n, (2.1)

where f is assumed to be a smooth function and the error is assumed to be a zero

mean weakly stationary process, i.e., E(ǫi) = 0, V (ǫi) = σ2, for all i = 1, . . . , n,

and Cov(ǫi, ǫj) = γ(|i − j|) for all i, j = 1, . . . , n.

In the local linear fit (see Fan and Gijbels (1996)), f(i) is approximated by

a Taylor expansion of order 1 for i in the neighborhood of i0. The problem to be

solved is then

min
β

n
∑

i=1

[

Yi − (β0 + β1(i − i0))
]2

Kh(i − i0), (2.2)

where β = (β0 β1)
T , h is the bandwidth controlling the size of the local neigh-

borhood, and Kh(·) = K(·/h)/h, where K is the Gaussian kernel function. By

Taylor expansion β0 = f(i0) and β1 = f ′(i0), so the solution to this problem

gives estimates of the regression function and its first derivative at i0. More

specifically,

β̂ = (XT WX)−1XT WY

where Y = (Y1, . . . , Yn)T , the design matrix of the local linear fit at i0 is

X =













1 (1 − i0)

1 (2 − i0)

...
...

1 (n − i0)













,

and W = diag{Kh(i − i0)}.
For correlated data, the variance of the local polynomial estimator is

V (β̂|X) = (XT WX)−1(XT ΣX)(XT WX)−1, (2.3)

where, for the assumed correlation structure, Σ is the kernel weighted covariance

matrix of the errors with generic element

σij = γ(|i − j|)Kh(i − i0)Kh(j − i0). (2.4)
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Rondonotti, Marron and Park (2007) proposed an estimate of the variance

in (2.3) with estimated γ in (2.4), the sample autocovariance function of the

observed residuals from a pilot bandwidth, hp. A small hp assumes independent

or weakly correlated errors, and a large one corresponds to strongly correlated

errors. They consider h and hp separately, which means that in the dependent

case, another dimension needs to be added to the SiZer plot. Thus, a series of

SiZer plots, indexed by the pilot bandwidth hp, represent the different trade-offs

available between trend and dependence.

SiZer inference is based on confidence intervals for the derivative of the

smoothed underlying function. These are of the form

f̂ ′
h(i) ± q(h) × ŝd(f̂ ′

h(i)), (2.5)

where q(h) is an appropriate quantile depending on h. Rondonotti, Marron and

Park (2007) suggested the use of quantile

q(h) = Φ−1
(1 + (1 − α)1/l(h)

2

)

,

where Φ is the cumulative distribution function of the standard normal, α is a

significance level, and l(h) reflects the number of independent blocks at the scale

h.

In order to motivate our work, we consider an example of SiZer plots, as

shown in Figure 1. We generated MA(1) time series with a signal f(i) =

sin(6πi/n) where n = 100. The generated data are shown in the first plot above

on the left (the continuous line shows f(i), the deterministic part of the simulated

time series), while the next graphic on the right is the family plot. The family

of smooths was constructed by considering a very wide range of bandwidths in

the log scale and, in particular, the number of curves was taken to be eleven.

We used eleven bandwidths as hp for estimating γ in (2.4), showing the complete

SiZer maps for them all is too long and inefficient. Thus, only four bandwidths

were chosen by a simple measure of Indicator of the Residual component (IR),

defined as

IR(hp) =

∑n
i=1 ǫ̂2

hp,i

maxhp

∑n
i=1 ǫ̂2

hp,i

,

where the ǫ̂hp,i’s are residuals obtained from the pilot bandwidth hp. Further

right of the top in Figure 1 is the bar diagram using this information, and in

this case the second, fourth, fifth, and sixth bandwidths were selected. For more

details on this choice, see Rondonotti, Marron and Park (2007). The series of

plots in the second and third rows represent, respectively, the local linear fits

and the residuals corresponding to the selected bandwidths.
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Figure 1. Original SiZer for time series: Sine plus MA(1).

SiZer extends the usefulness of the family plot by visually displaying the

statistical significance of features over both location x and scale h. Inference is

based on confidence intervals in (2.5) for the derivative of the underlying function.

The graphical device is a color map, reflecting statistical significance of the slope

at (x, h) locations in scale-space. At each (x, h) location, the curve is significantly

increasing (decreasing) if the confidence interval is above (below) 0, so that map

location is colored black (white). If the confidence interval contains 0, the curve at

the level of resolution h and at the point x does not have a statistically significant

slope, so intermediate gray is used. Finally, if there is not enough information in

the data set at this scale space (x, h) location, then no conclusion is drawn, and

darker gray is used to indicate that the data are too sparse.

The four plots at the bottom of Figure 1 are the SiZer maps using each γ

estimated from the selected bandwidths. The first SiZer map (corresponding to

hp(2)) shows significant features along the sine curve. Note that as we move

to the other SiZer maps (i.e., hp(4), hp(5), and hp(6)), an increasing amount of

correlation appears in the error component, so that fewer features are significant

at every level of resolution. Also, at the fine levels of resolution of the third and
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Figure 2. Original SiZer for time series: MA(1).

fourth maps, there is less perceived useful information in the data, or more data

sparsity, and more bottom lines of the SiZer plots are shaded darker gray. Since

MA(1) is weakly correlated, it is reasonable to interpret the first or second SiZer

map.

A deeper look creates some concerns. While SiZer maps flag the sine trend

reasonably well, some spurious features are flagged as significant in the first SiZer

map. For example, the global downward trend is flagged as significant since the

white color appears at large resolutions. Since this is not a deterministic trend,

but instead created by MA(1), it should be colored as intermediate gray. The

SiZer map for hp(4) does not have these spurious features but shows fewer features

than expected. Furthermore, some areas are colored darker gray and no decision

is made. The map for hp(3) would be appropriate in this example, but it is not

selected by the IR statistic.

The problem becomes clearer when we remove the sine curve from the time

series. Figure 2 shows SiZer plots for MA(1) only. Since no trend is added to

MA(1), true SiZer maps would show only intermediate gray at all pilot band-

widths. However, the four SiZer maps show some serious significant features.
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The first two SiZer maps, which correspond to weakly correlated errors, flag

many features as significant. This motivates us to improve SiZer inference in the

following section.

3. Improved Inference for Time Series Data

3.1. Quantile estimation

In this section we extend the result of Hannig and Marron (2006) to the

time series context. We omit most of the technical details as the derivations are

similar.

SiZer uses the local linear smoother defined by (2.2). To color the pixels,

SiZer checks whether the estimate of the first derivative

β̂1 = −c−1

[ n
∑

i=1

Kh(x − Xi)

][ n
∑

i=1

(x − Xi)Kh(x − Xi)Yi

]

+c−1

[ n
∑

i=1

(x − Xi)Kh(x − Xi)

][ n
∑

i=1

Kh(x − Xi)Yi

]

, (3.1)

c =

[ n
∑

i=1

Kh(x−Xi)

][ n
∑

i=1

(x−Xi)
2Kh(x−Xi)

]

−
[ n

∑

i=1

(x−Xi)Kh(x−Xi)

]2

,

is significantly different from 0. In the particular case of fixed design regression,

the design points Xi satisfy Xi = i∆, where ∆ > 0 is the distance between

design points. If x is away from the boundary, it follows from the symmetry of

the kernel that
n

∑

i=1

(x − Xi)Kh(x − Xi) ≈ 0.

This means that the second term in (3.1) disappears.

Let ∆̃ denote the distance between the pixels of the SiZer map and p = ∆̃/∆

denote the number of data points per SiZer column. For simplicity of notation,

we can assume that p is a positive integer. Let g be the number of pixels in

each row, and T1, . . . , Tg denote the test statistics of a row in the SiZer map.

Then Tj is proportional to the estimate of the first derivative β̂1 calculated for

x = j∆̃ = jp∆. In particular, Tj ≈
∑n

q=1 W h
jp−qYq. The exact form of the W h

jp−q

is given in the first term of (3.1). For our purpose it suffices to realize that W h
jp−q

is proportional to −(jp− q)Kh/∆(jp− q). Thus the weights W h
q are proportional

to the derivative of the Gaussian kernel with standard deviation h/∆.

If the null hypothesis of no signal is true, then the Yi’s are identically dis-

tributed Gaussian random variables with mean zero and covariance E(YiYj) =

γ(i − j). We assume that γ is an even function.
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If the Yi’s are not Gaussian but have two finite moments, and the covari-

ance γ decays fast enough, the linear approximation of Tj greatly simplifies the

distribution theory, because for h/∆ large enough the Cramèr-Wold device and

the Lindeberg-Feller Central Limit Theorem (see for example Durrett (2005))

give an approximate Gaussian distribution with mean 0 (under the SiZer null

hypothesis) and variance 1, by appropriate scaling.

The full joint distribution of T1, . . . , Tg also depends on the correlation be-

tween them. This correlation is approximated by

ρj−i = corr(Ti, Tj) =

∑

q

∑

r W h
ip−qW

h
jp−rγ(q − r)

∑

q

∑

r W h
q W h

r γ(q − r)

≈
∫∫

(ip − x)Kh/∆(ip − x)(jp − y)Kh/∆(ip − y)γ(x − y)dxdy
∫∫

xKh/∆(x)yKh/∆(y)γ(x − y)dxdy

=

∫

γ(r)
∫

(ip − r − y)Kh/∆(ip − r − y)(jp − y)Kh/∆(ip − y)dydr
∫

γ(r)
∫

(r + y)Kh/∆(r + y)(y)Kh/∆(y)dydr

=

∫

γ(r)e−[(i−j)∆̃−r∆]2/(4h2){1 − ([(i − j)∆̃ − r∆]2)/(2h2)}dr
∫

γ(r)e−r2∆2/(4h2)[1 − (r2∆2)/(2h2)]dr
,

where the second line follows by replacing the sums by integral approximations,

and the last step follows by observing that p∆ = ∆̃.

To find an asymptotic distribution of the maximum we use the method of

Hsing, Husler and Riess (1996) that is based on the observation that for a de-

pendent stationary, mean zero, variance one Gaussian process it is often numer-

ically better to approximate P [max(T1, . . . , Tg) ≤ x] by Φ(x)θg where θ < 1,

than by quantities based on the limiting Gumbel distribution. This is due to

the extremely slow rate of convergence of the maximum to the limiting Gumbel

distribution.

Since we are dealing with a stationary Gaussian sequence, direct computation

of the limit as g → ∞ would lead to θ = 1 (Berman (1964)). In order to get θ < 1,

they need the correlation ρj to increase to 1 with g for each fixed j. To achieve

this, Hsing, Husler and Riess (1996) embed the series in a triangular array T̂j,g,

where rows are indexed by g. For each fixed g, the random variables T̂j,g, j =

1, 2, . . . comprise a mean zero, variance one, stationary Gaussian series with j-step

correlations ρj,g satisfying log(g)(1 − ρj,g) → δj as g → ∞, for all j, where δj ∈
(0,∞]. They take ϑ = P [V/2+

√
δkHk ≤ δk for all k ≥ 1], where V is a standard

exponential random variable and Hk is a mean zero Gaussian process independent

of V that satisfies E(HiHj) = (δi + δj − δ|i−j|)/(2
√

δiδj). The authors then

claim that, under certain technical conditions on ρj,g, the distribution function

P [max(T̂1,g, . . . , T̂g,g) ≤ x] could be approximated by Φ(x)ϑg. The parameter ϑ

has been called the “cluster index”.
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In the particular case of SiZer, it is reasonable to assume that under the

null hypothesis the T1, . . . , Tg are Gaussian with mean 0 and variance 1, and j

step correlation ρj . A natural way to embed our SiZer row into a triangular

array compatible with Hsing, Husler and Riess (1996) is to assume that ∆̃/h =

C/
√

log g. In order to keep the presence of the correlation between observations

we assume that γg(i) = r(i∆/h), where r is a suitable function. Then, we

calculate

ρk,g =

∫

r(s)e−(Ck/
√

log g−s)2/4{1 − ((Ck/
√

log g − s)2/2)}ds
∫

r(s)e−s2/4{1 − (s2/2)}ds
.

Since r(·) is an even function we get by the Dominated Convergence Theorem

that

lim
g→∞

log(g)(1 − ρk,g) = k2 C2
∫

r(s)e−s2/4[(12 − 12s2 + s4)/16]ds
∫

r(s)e−s2/4{1 − (s2/2)}ds
.

Therefore, just as in Hannig and Marron (2006), we conclude that in the case of

SiZer P [max1≤i≤g Ti ≤ x] ≈ Φ(x)θg, where the cluster index θ = 2Φ(
√

Iγ log g ×
∆̃/h) − 1, and

Iγ =

∫

γ(sh/∆)e−s2/4[(12 − 12s2 + s4)/16]ds
∫

γ(sh/∆)e−s2/4{1 − (s2/2)}ds
.

Finally,

q(h) = Φ−1

(

(

1 − α

2

)1/(θg)
)

.

Figures 3 (a) and (b) show SiZer maps using the new quantile proposed

above. Figure 3 (a) corresponds to Figure 1 and shows only SiZer maps to save

space. The first SiZer map shows the sine curve trend, and fewer spurious features

appear throughout all the SiZer maps compared to the ones in Figure 1. Figure 3

(b) corresponds to Figure 2. Again many spurious features disappear, but there

still remain some significant features that are not supposed to show up in the

map.

This simulation confirms that the proposed quantile works better, but that

there is still room for improvement.

3.2. Autocovariance function estimation

This section explains why there are unexpected features in the SiZer maps

in Section 3.1, and proposes a new autocovariance estimator to fix this problem

when a time series has moderate correlations. Since the proposed estimator does

not require a pilot bandwidth, there is no need to select bandwidths for display.
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(a) Sine plus MA(1) (b) MA(1)
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Figure 3. SiZer plots using the proposed quantile.

The original SiZer for time series uses residuals to estimate an autocovariance

function. The residuals can be written as

ǫ̂i = Yi − f̂hp
(i) = Yi −

1

n

n
∑

k=1

wn(hp, i, k)Yk =

n
∑

k=1

bikYk,

where wn(hp, i, k)/n is the weight in a local linear estimate of f with the pilot

bandwidth hp, bii = 1 − wn(hp, i, i)/n, and bik = −wn(hp, i, k) for i 6= k. Then

γ∗(|i − j|) = Cov(ǫ̂i, ǫ̂j) = Cov

( n
∑

k=1

bikYk,

n
∑

l=1

bjlYl

)

=

n
∑

k=1

n
∑

l=1

bikbjlγ(|k − l|).

Thus, the autocovariance estimate γ∗ from the residuals is not the original γ,

which is responsible for the spurious features in Figure 3. Therefore, we need to

either do a proper adjustment for γ∗ or find a reliable estimate of the covariance

function of the residuals.

Recall that in our model (2.1), ǫi is a mean zero stationary process with a

autocovariance function γ(|i − j|) = E(ǫiǫj). Since we do not observe the ǫi, we

need to estimate the autocovariance function from the Yi. Particular care has to

be taken to remove the effects of the smooth mean on the estimation as much as

possible, since smooth biases could introduce a spurious long range dependence

in the estimated covariance function.

To address this issue we do not estimate the covariance from the residuals

ǫ̂i. Instead we estimate the covariance structure directly from a (possibly several

times) differenced time series. One of the advantages of this approach is that the

estimator of the covariance no longer depends on the bandwidth.
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Let ei be the differenced time series, i.e., e = Ay where A = (ai,k) is the
difference matrix, e.g.,

A =















−1 1 0 0 · · · 0 0

0 − 1 1 0 · · · 0 0

0 0 − 1 1 · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · − 1 1















if the first difference is used. A simple calculation shows for all i, j

Cov (ei, ej) =
n

∑

k=1

ai,kaj,kγ(0) +
n−1
∑

k=1

(ai,kaj,k+1 + ai,k+1aj,k)γ(1)

+ · · · + (ai,1aj,n + ai,naj,1)γ(n − 1).

From this we can set

eiej =

n
∑

k=1

ai,kaj,kγ(0) +

n−1
∑

k=1

(ai,kaj,k+1 + ai,k+1aj,k)γ(1)

+ · · · + (ai,1aj,n + ai,naj,1)γ(n − 1) + δij .

We assume that the regression function is smooth enough so that E(δij) ≈ 0.
Thus we have n2 equations and n variables. Estimating γ by minimizing

∑

i,j

(

eiej −
n

∑

k=1

ai,kaj,kγ(0) −
n−1
∑

k=1

(ai,kaj,k+1 + ai,k+1aj,k)γ(1)

− · · · − (ai,1aj,n + ai,naj,1)γ(n − 1)

)2

(3.2)

fails because the least square problem in (3.2) does not lead to a unique solution.
We therefore need to regularize the problem. First, since γ(0) ≥ |γ(i)| for

each i, we consider only such solutions. Additionally we regularize the least
square problem by introducing the penalty λ

∑n−1
i=1 iγ(i)2. The weight i is moti-

vated by the belief that the covariance γ(i) should be decaying as i increases. It
has a similar effect as using the n denominator instead of n− j in the estimator
n−1

∑n−j
i=1 ǫ̂iǫ̂i+j of γ(j).

This leads to the constrained ridge regression

arg min
γ∈R

{

∑

i,j

(

eiej −
n

∑

k=1

ai,kaj,kγ(0) −
n−1
∑

k=1

(ai,kaj,k+1 + ai,k+1aj,k)γ(1)

− · · · − (ai,1aj,n + ai,naj,1)γ(n − 1)

)2

+ λ

n−1
∑

i=1

iγ(i)2

}

,
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(a) N(0, 1): Original (b) N(0, 1): Proposed
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(c) MA(1): Original (d) MA(1): Proposed
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(e) MA(5): Original (f) MA(5): Proposed
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Figure 4. Comparison of estimated autocorrelation functions for N(0, 1),
MA(1), and MA(5): original (with eleven pilot bandwidths) versus proposed.

where R = {γ : γ(0) ≥ |γ(i)|, i = 1, . . . , n − 1}. We implement this mini-

mization using the MATLAB function lsqlin; this uses methods of quadratic

programming to find the minimum.

We have investigated several choices of λ and found that λ = 1 works well as

long as the time series is weakly to moderately dependent. An extensive study of
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(a) Sine plus MA(1) (b) MA(1)
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Figure 5. SiZer plots using the proposed quantile and autocovariance func-

tion estimate.

the statistical properties of the proposed estimator and its possible modifications

goes beyond the scope of this paper, and we suggest this as future work. In

particular it would be interesting to allow for either a LASSO-type L1 penalty or

different weights, e.g., iα to better match the decay of the covariance function.

Figure 4 compares the estimates of autocorrelation functions using the origi-

nal and the proposed estimators for N(0, 1), MA(1), and MA(5). For the original

method, eleven different pilot bandwidths are used. For N(0, 1), the original es-

timate has a small deviation from the 95% confidence interval of no correlation.

On the contrary, the proposed estimate stays within the confidence interval and

looks more stable. For MA(1) and MA(5), the original estimate has a deeper

deviation as the degree of dependency increases, but the proposed once again

stays within the interval and looks very stable in both examples.

Figures 5 shows SiZer maps using the proposed autocovariance function es-

timate and the quantile introduced in Section 3.1. Figure 5 (a) is the SiZer

plot corresponding to Figure 1. Note that there is only one SiZer plot since the

proposed method does not rely on pilot bandwidths. This is a big advantage

because we neither need to interpret several SiZer maps at the same time nor

to select some bandwidths we should look at. The SiZer map clearly shows the

sine curve trend and no spurious features appear compared to the ones in Figure

1. Figure 5 (b) corresponds to Figure 2. At first glance the data seem to have

a nonlinear trend according to the family plot, but this was created by MA(1)

dependence structure. The proposed SiZer is able to recognize it and shows only

intermediate gray, which an ideal SiZer map would do. Needless to say spurious

features disappear compared to the ones in Figure 2.

This simulation demonstrates that the proposed estimation of the autoco-

variance function can remove unexpected features for MA(1).
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(a) Original (b) Proposed
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Figure 6. SiZer plots for time series: N(0, 1).

4. Numerical Study

4.1. Simulated data

In this section, we extend our simulation of Section 3 to other error struc-
tures. To save space we exclude the family plots for the original method.

We generated n = 100 observations with zero mean function (f = 0) and
N(0, 1) error. Figure 6 draws the corresponding SiZer maps. An ideal SiZer
map would show no significant features since there is no trend in this time series.
Similar to MA(1), the original SiZer maps in (a) show many false significant
features. On the other hand, the proposed method in (b), using both the new
quantile and the autocovariance function estimate, removes spurious features and
shows no significant ones.

Figure 7 compares SiZer maps for N(0, 1) with the sine curve added. The
original SiZer in (a) captures the sine curve well by displaying white (decreasing)
and black (increasing) in the first SiZer map. Since the data were generated from
N(0, 1), the first SiZer map would be informative in this case. However, it would
be hard to choose the right pilot bandwidth in practice since their covariance
structures are unknown in advance. The proposed method offers only one SiZer
map in Figure 7 (b), and it also catches the sine curve well.

Although we assume a time series to be weakly correlated, the improved SiZer
works reasonably well for some strongly correlated time series such as AR(1) with
coefficient 0.9 (the result is not reported to save space). However, it does not
work well for fractional Gaussian noise with large Hurst parameters. We propose
a thorough study of the proposed autocovariance estimator as future work.

4.2. Examples

We look at the Deaths data set and the Chocolate data set that were ana-
lyzed in Rondonotti, Marron and Park (2007) The Deaths data set contains the
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(a) Original (b) Proposed
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Figure 7. SiZer for time series: Sine plus N(0, 1).
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Figure 8. SiZer for time series for (a) the Deaths data set (b) the Chocolate

data set.

monthly number of accidental deaths in the US from 1973 to 1978 (in thousands),

and the Chocolate data set contains the monthly production of chocolate in Aus-

tralia from July of 1957 to October of 1990 (in kilotonnes). Both data sets come

with the software companion to Brockwell and Davis (1996). Figure 8 shows the

proposed SiZer plots for time series for these data. The dots in Figure 8 show the

number of accidental deaths and the Chocolate production after deseasonalising

and linearly detrending the original time series.

For the Deaths data (Figure 8 (a)), the only feature that appears to be sig-

nificant at most of the levels of resolution is the valley around the third year

of observation. This is a similar result to that of Rondonotti, Marron and Park

(2007), but we can see the same improvement observed in Section 4.1: some

spurious features disappear. Also, the darker gray area has been reduced.

Rondonotti, Marron and Park (2007) found a significant increase near i = 20 for

smaller bandwidths in the first SiZer map, but it is not flagged as significant in
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Figure 8 (a).

The SiZer plots for the Chocolate data are depicted in Figure 8 (b). The

significant feature is the major minimum around i = 250 (which corresponds

to the year 1978); this matches the strongest feature of the SiZer plots in

Rondonotti, Marron and Park (2007). They also concluded that many peaks

and valleys were significant for the smallest values of the bandwidth, but they

are not flagged as significant in Figure 8 (b).

5. Asymptotic Results

In this section, we study statistical convergence of the difference between

the empirical and the theoretical scale space surfaces (f̂h(x) and Ef̂h(x)),

which provides theoretical justification of SiZer for time series in scale space.

Chaudhuri and Marron (2000) addressed this issue based on independent obser-

vations, and we extend it to correlated data. The first theorem provides the

weak convergence of the empirical scale space surfaces and their derivatives to

their theoretical counterparts. The second theorem states the behavior of the

difference between the empirical and the theoretical scale space surfaces under

the supremum norm, and the uniform convergence of the empirical version to the

theoretical one.

Let I and H be compact subintervals of [0,∞) and (0,∞), respectively, and

let f̂h(x) =
∑n

i=1 Yiwn(h, x, i)/n. We need the following set of assumptions.

(A.1) The errors (ǫ1, ǫ2, · · · ) in (2.1) are stationary, φ-mixing with φ satisfying
∑∞

i=1 φ(i)1/2 < ∞. (See for example Doukhan (1994) for a definition of φ

mixing.)

(A.2) E{|ǫi|2+ρ} < ∞ for some ρ > 0.

(A.3) For integer m ≥ 0, as n → ∞,

n−1

[ n
∑

i=1

n
∑

j=1

γ(|j − i|)∂
mwn(h1, x1, i)

∂xm
1

∂mwn(h2, x2, j)

∂xm
2

]

converges to a covariance function cov(h1, x1, h2, x2) for all (h1, x1) and

(h2, x2) ∈ H × I.

(A.4) n−(1+ρ/2){max1≤i≤n |(∂mwn(h, x, i))/(∂xm)|ρ}∑n
i=1{(∂mwn(h, x, i))/(∂xm)

}2 → 0 for all (h, x) ∈ H × I.

(A.5) [(∂m+2wn(h, x, i))/(∂h∂xm+1)] [(∂m+2wn(h, x, j))/(∂h∂xm+1)] is uni-

formly dominated by a positive finite number M .

(A.6)

∂m+1wn(h, x, i)

∂xm+1

∂m+1wn(h, x, j)

∂xm+1
,

∂m+1wn(h, x, i)

∂h∂xm

∂m+1wn(h, x, j)

∂h∂xm
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and
∂m+1wn(h, x, i)

∂xm+1

∂m+1wn(h, x, j)

∂h∂xm

are uniformly dominated by a positive finite number M∗.

Theorem 1. Suppose that (A.1)−(A.5) are satisfied, and take

Un(h, x) = n1/2

[

∂mf̂h(x)

∂xm
− ∂mE{f̂h(x)}

∂xm

]

, (h, x) ∈ H × I.

As n → ∞, Un(h, x) converges to Gaussian process on H × I with zero mean and

covariance function cov(h1, x1, h2, x2).

Proof. It is enough to show that all the finite dimensional distribution of the

process converges weakly to the normal distribution and the process satisfies a

tightness condition.

Fix (h1, x1), (h2, x2), . . . , (hk, xk) ∈ H×I and (t1, . . . , tk) ∈ (−∞,∞). Define

Zn = n1/2
k

∑

i=1

ti

[

∂mf̂hi
(xi)

∂xi
m

− ∂mE{f̂hi
(xi)}

∂xi
m

]

= n−1/2
n

∑

j=1

ǫj

k
∑

i=1

ti
∂mwn(hi, xi, j)

∂xm
i

.

Then E(Zn) = 0 and

V ar(Zn) =
1

n

k
∑

i=1

k
∑

j=1

titj

[ n
∑

l=1

n
∑

p=1

γ(|p − l|)∂
mwn(hi, xi, l)

∂xm
i

∂mwn(hj , xj , p)

∂xm
j

]

−→
k

∑

i=1

k
∑

j=1

titjcov(hi, xi, hj , xj) (5.1)

as n → ∞, by assumption (A.3).

Assumptions (A.2) and (A.4) imply that Lyapunov’s and hence Lindeberg’s

condition holds for the terms in Zn. This and assumption (A.1) verify the condi-

tions of the main theorem in Utev (1990), allowing us to conclude that Zn con-

verges in distribution to a normal random variable with variance given by (5.1).

By the Cramèr-Wold device, the limiting distribution of Un(hi, xi) (i = 1, . . . , k)

is the multivariate normal distribution with zero mean and cov(hi, xi, hj , xj) as

the (i, j)th entry of the limiting variance-covariance matrix.

We now proceed to the issue of tightness. Fix h1 < h2 in H and x1 < x2 in

I. Then, by Bickel and Wichura (1971), the second moment of increment of Un
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is

Egn{Un(h2, x2) − Un(h2, x1) − Un(h1, x2) + Un(h1, x1)}2

=
1

n

n
∑

i=1

n
∑

j=1

γ(|j − i|)DiDj, (5.2)

where

Di =
∂mwn(h2, x2, i)

∂xm
2

− ∂mwn(h2, x1, i)

∂xm
1

− ∂mwn(h1, x2, i)

∂xm
2

+
∂mwn(h1, x1, i)

∂xm
1

.

Then, by the assumption (A.5), (5.2) is bounded by

C1(x2 − x1)
2(h2 − h1)

2 1

n

n
∑

i=1

n
∑

j=1

γ(|i − j|),

which is again bounded by C2(x2 − x1)
2(h2 − h1)

2, since conditions (A.1) and

(A.2) imply that supn n−1
∑n

i=1

∑n
j=1 γ|i − j| < ∞, c.f., Doukhan (1994, p.45).

Then the tightness property of the sequence of processes

n1/2

[

∂mf̂h(x)

∂xm
− ∂mE{f̂h(x)}

∂xm

]

on H × I is implied by the Theorem 3 in Bickel and Wichura (1971). Together

with the finite dimensional convergence property, this implies that the theorem

holds.

Theorem 2. Suppose that (A.1)−(A.6) are satisfied. As n → ∞,

sup
x∈I,h∈H

n1/2

∣

∣

∣

∣

∂mf̂h(x)

∂xm
− ∂mE{f̂h(x)}

∂xm

∣

∣

∣

∣

converges weakly to a random variable that has the same distribution as that

of sup
x∈I,h∈H

|Z(h, x)|, where Z(h, x) is a Gaussian process with zero mean and

covariance function cov(h1, x1, h2, x2) so that

P{Z(h, x) is continuous for all (h, x) ∈ H × I} = 1,

and consequently P{supx∈I,h∈H |Z(h, x)| < ∞} = 1.

Proof. Denote D⋆
i by

D⋆
i =

∂mwn(h2, x2, i)

∂xm
2

− ∂mwn(h1, x1, i)

∂xm
1

.
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Then, just as in Chaudhuri and Marron (2000),

E{Un(h2, x2) − Un(h1, x1)}2 =
1

n

n
∑

i=1

n
∑

j=1

γ(|j − i|)D⋆
i D

⋆
j

≤ C3{(h2 − h1)
2 + (x2 − x1)

2}.

Define the pseudo metric d by d{(h2, x2), (h1, x1)}=[E{Z(h2, x2)−Z(h1, x1)}2]1/2.

The rest of the proof can be done by the same way as in Chaudhuri and Marron

(2000).
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