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S1. RJ-MCMC Algorithm

We follow the general framework by Green (1995) and Denison, Mallick, and Smith (1998)

and include three types of moves in the RJ-MCMC algorithm: birth step (add a wavelet), death

step (delete a wavelet), and update step (move a wavelet). Suppose the current model has K

wavelet elements, as in Green (1995), the probabilities for birth, death, and update steps are

chosen to be

pb = cmin{1, p(K + 1)/p(K)},

pd = cmin{1, p(K)/p(K + 1)},

pu = 1 − pb − pd,

where c < 0.5 is some constant and p(K) is the negative binomial prior distribution over K

p(k|s, q) =

 

s+ k − 1

k

!

qs(1 − q)K k = 0, 1, . . . (S1.1)

where s = αγ and q = βγ/(βγ + c(a0, a1, ζ)) with

c(a0, a1, ζ) =
1 − (a0/a1)

ζ−1

(ζ − 1)aζ−1
0

, if ζ 6= 1; log
a1

a0
, otherwise.

Denison et al. (1998) recommended using c = 0.4, leading to a larger proportion of birth and

death steps relative to update steps. We found that using c = 0.05, which leads to about

90% update steps, resulted in more efficient mixing of the Markov chain. Because we are in a

continuous dictionary, update steps actually lead to the creation of new dictionary elements by

local moves, but keep the model dimension fixed.

S1.1 Birth Step

In a birth step, we propose to add a new wavelet element (aK+1, bK+1, βK+1) from some

proposal distribution distribution q(a, b, β). Because of the local nature of wavelets, we utilize
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information in the residuals in proposing the location b of new wavelets. We construct a novel

proposal distribution for the location parameter b of the new wavelet function to be added,

which is a mixture of point masses on the data points with weights that depend on the current

residuals and uniform on [0, 1]. In particular, the proposal distribution for the location b in a

birth step at iteration t+ 1 is

q(bK+1) = π
n
X

i=1

δxi
(bK+1)vi + (1 − π), 0 < π < 1, (S1.2)

where

vi =
|Yi − f̂ (t)(xi)|

Pn

j=1 |Yj − f̂ (t)(xj)|

is proportional to the magnitude of the residual from the model fit at iteration t and

f̂ (t)(x) =

K(t)
X

k=0

β
(t)

λ
(t)
k

ψ
λ
(t)
k

(x) (S1.3)

is the estimate of f(x) using the current values of βλ and λ at iteration t. Since the prior

for b is also a mixture of point masses at data points and a uniform distribution, the proposal

distribution and prior distributions are absolutely continuous with respect to each other which

is a necessary condition for the transition kernel to be reversible.

For the remaining parameters, we propose the scale ak+1 from the prior distribution

p(a) ∝ a−ζ , a0 ≤ a ≤ a1 and ζ > 0. (S1.4)

and conditional on the location and scale, the coefficient βλ is proposed from the conditional

posterior distribution obtained under the Gaussian prior distribution. The proposal distribution

q(β | a, b) for the coefficient βK+1 is

βK+1 | a1:K+1, b1:K+1, β1:K ,Y ∼ N(β̂, σ̂2
β) (S1.5)

where

σ̂2
β =

"

1

ca−δ
+
ψ′

λK+1
ψ

λK+1

σ2

#

−1

, β̂ =
σ̂2

β

σ2
ψ

λK+1

′(Y − f̂),

and ψ
λK+1

is the vector of length n of the proposed wavelet evaluated at the observed data

and f̂ is the vector of the estimated function values given the current parameters. This inde-

pendent proposal distribution for β can improve the acceptance rate not only for normal prior

distributions (where it is the conditional posterior distribution), but also for heavy-tailed prior

distributions where the posterior for β does not have a closed-form density.

S1.2 Death Step

For the death step, we remove the kth wavelet (and associate parameters) with a probability
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inversely proportional to the current wavelet coefficients:

q(k | K) =
1/|βk |

PK

i=1(1/|βi|)
, (S1.6)

so that small magnitude coefficients are more likely to be removed.

S1.3. Update Step

For the update step, we randomly pick an index k to update from the uniform distribution

on {1, . . .K}. We propose a new scale ãk using a Gaussian random walk proposal centered at

the current value and with variance σ2
a. The proposal for the update step of the location b is

q(b̃k | bk) = δbk
(b̃k)uk + N(b̃k; bk, σ

2
b )(1 − uk) (S1.7)

where

uk =

(

1 if bk is a data point

0 otherwise.

If bk is at a data point xi then we do not change the location; this is necessary to ensure that the

proposal and prior distributions are absolutely continuous with respect to each other. Otherwise

we update the location using a Gaussian random walk step centered at the current location bk

with variance σ2
b . We set σ2

a = σ2
b = 0.001 in the examples, which led to approximately a

30-40% acceptance rate. We propose a new wavelet coefficient β̃k from the full conditional

distribution obtained under the normal prior distribution in (S1.5) using the proposed scale ãk

and location. b̃k. Through updating the index λ of a dictionary element ψλ we are able to

“smoothly” transition from one dictionary element to a new one.

S1.4. Fixed Dimensional Parameters

Updating σ2 is a straightforward Gibbs update via a conjugate gamma distribution,

1/σ2 ∼ G(n/2, SSE/2)

where SSE =
Pn

i=1(Yi − f̂(xi))
2 in the rate parameter of the gamma distribution.

S1.5. Acceptance Ratio

For each step, the acceptance ratio can be calculated by

LR × prior ratio × proposal ratio

where

LR =
N(Y; f̃(x), σ2I)

N(Y; f̂(x), σ2I)
(S1.8)

denotes the likelihood ratio and f̂(x) and f̃(x) denote the estimates for the current model and for

the proposed model, respectively. The prior distribution over K and the triplets {βk, ak, bk}
K
k=1,
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factorized as

p(K)
K
Y

k=1

p(ak, bk, βk).

Simple calculations reveal that the acceptance ratio is

LR × (K + 1) ×
p(aK+1, bK+1, βK+1)

q(aK+1, bK+1, βK+1)
×

1/|βK+1 |
PK+1

k=1 (1/|βk|)

for the birth step,

LR ×
1

K
×
q(ak, bk, βk)

p(βk, ak, bk)
×

"

1/|βK |
PK

k=1(1/|βk|)

#

−1

for the death step, and

LR ×
p(β̃k, ãk, b̃k)

p(βk, ak, bk)
×
q(βk | ak, bk)

q(β̃k | ak, bk)

for the update step, where q(β | a, b) is given in equation (S1.5).

The RJ-MCMC algorithm goes as follows: Start with K = 0. Repeat the following steps

until convergence and then repeat for an additional T iterations for inference:

1. Generate a Unif(0,1) random number u,

(a) If u < pb(K), perform the birth step.

(b) If pb(K) < u < pb(K) + pd(K), perform the death step.

(c) If u > pb(K) + pd(K), perform the update step.

2. Update σ2 by a Gibbs step:

1/σ2 ∼ G(n/2, SSE/2).

Although we use the null model in initialization for computational convenience, the al-

gorithm can have any other model as a starting point. In our studies, we found very little

difference in results due to starting models.

Standard convergence diagnostic methods, such as Gelman and Rubin (1992), do not apply

for assessing convergence of the joint posterior distribution since we using a trans-dimensional

sampler. Instead we look at K and the mean squared error, which have a coherent interpretation

throughout the model space (Brooks and Giudici, 2000). The trace plots and the Gelman-Rubin

shrink factor for K and mean squared error suggest that convergence usually occurs within

500,000 MCMC iterations.

S2. Illustration

Examples of the estimated functions in the high noise scenario are shown in Figure 1.

The estimates using the CWD appear to be slightly smoother than those of EBayes, although

we note that both methods appear to give good estimates. The CWD methods do appear

to capture more of the high frequency oscillations of the doppler function. In the high noise
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scenario, however, both methods miss the discontinuity in the heavisine function around x = 0.7

for this simulated example.
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Figure 1: Some examples for the estimated functions: True function (black), CWD fit
(red), EBayes (blue) and data points with SNR=3.
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