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Abstract: We present a Bayesian approach for nonparametric function estimation

based on a continuous wavelet dictionary, where the unknown function is mod-

eled by a random sum of wavelet functions at arbitrary locations and scales. By

avoiding the dyadic constraints for orthonormal wavelet bases, the continuous over-

complete wavelet dictionary has greater flexibility to adapt to the structure of the

data, and may lead to sparser representations. The price for this flexibility is the

computational challenge of searching over an infinite number of potential dictionary

elements. We develop a novel reversible jump Markov chain Monte Carlo algorithm

which utilizes local features in the proposal distributions to improve computational

efficiency, and which leads to better mixing of the Markov chain. Performance

comparison in terms of sparsity and mean squared error is carried out on standard

wavelet test functions. Results on a non-equally spaced example show that our

method compares favorably to methods using interpolation or imputation.
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1. Introduction

Suppose we have observed data Y = {Y1, . . . , Yn} at points x1, . . . , xn ∈ [0, 1]
of some unknown function f(x)

Yi = f(xi) + εi, εi
i.i.d.∼ N(0, σ2), (1.1)

measured with independent and identically distributed (i.i.d.) Gaussian noise. A
standard approach in nonparametric function estimation is to expand f with re-
spect to an orthonormal basis, such as Fourier, Hermite, Legendre or wavelet, and
then to estimate the corresponding coefficients of the basis elements. Wavelets,
as a popular choice of orthonormal bases, are widely used in nonparametric func-
tion estimation and signal processing (Mallat (1989) and Donoho and Johnstone
(1998)). Each wavelet is ideally suited to represent certain signal characteristics,
so that just a few basis elements are needed to describe these features, lead-
ing to a sparse representation of the signal. Given a wavelet function ψ(x), if
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ψjk(x) ≡ 2j/2ψ(2jx − k), j, k ∈ Z, then the ψjk’s form an orthonormal basis for
L2 functions and any L2 function may be represented as

f(x) =
∑
j,k

θjkψjk(x) (1.2)

with coefficients {θjk}j∈Z,k∈Z (Vidakovic (1999, Sec. 3.5.2)). For equally-spaced
locations x1, . . ., xn, the coefficients θjk may be computed efficiently via the
so-called Cascade algorithm (Mallat (1989)).

As the structure of the function f is unknown in practice, it is desirable to
have a representation with adaptive sparsity. Recently, overcomplete (or redun-
dant) representations have drawn considerable attention in the signal processing
community due to their flexibility, adaptation and robustness (Chen, Donoho
and Saunders (1998), Coifman, Meyer and Wickerhauser (1992), Lewicki and
Sejnowski (1998), Donoho and Elad (2003), Wolfe, Godsill and Ng (2004) and
Donoho, Elad and Temlyakov (2006)). Examples of overcomplete dictionaries in-
clude translation-invariant wavelet transforms (Dutilleux (1989) and Nason and
Silverman (1995)), frames (Wolfe et al. (2004) and Kovačević and Chebira (2007))
and wavelet packets (Coifman and Meyer (1990)).

Due to the redundancy of overcomplete dictionaries, there is no unique solu-
tion to the representation problem. Efficient algorithms, such as matching pursuit
(Mallat and Zhang (1993)), the best orthogonal basis (Coifman and Wickerhauser
(1992)), and basis pursuit (Chen et al. (1998)), are greedy algorithms designed
to search for one “best” representation. Bayesian methods offer another effective
way to make inference using overcomplete representations, where regularization
and shrinkage are introduced via prior distributions and efficient searching is
guided via Markov chain Monte Carlo (MCMC) algorithms (Wolfe et al., 2004).
Because of the stochastic nature of MCMC algorithms, several “optimal” repre-
sentations may be identified. In this paper, we propose a nonparametric Bayesian
approach for function estimation using continuous wavelet dictionaries (CWD).
As opposed to orthonormal wavelet basis functions that are subject to dyadic
constraints on their locations and scales, as at (1.2), the wavelet components
in a CWD have arbitrary locations and scales. An additional advantage of a
CWD is that it can be applied to non-equally spaced data without interpolation
or imputation of the missing data. We develop a novel reversible jump MCMC
(RJ-MCMC) algorithm that utilizes “local” information to construct efficient
proposal distributions in order to make inferences about the unknown function
f .

The remainder of this paper is arranged as follows. In Section 2 we introduce
the concept of stochastic expansions using a CWD. In Section 3 we discuss prior
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specifications for CWD. In Section 4 we describe posterior inference by means
of a RJ-MCMC sampling scheme and discuss various estimates of f , including
point estimates and a new method for simultaneous credible bands. In Section
5 we present results from simulation studies that show that our method leads
to better performance in terms of sparsity and mean squared error. We then
illustrate our method using non-equally spaced data. Concluding remarks are
given in Section 6.

2. The Model

Suppose φ and ψ are the compact-supported scaling and wavelet functions
that correspond to an r-regular multi-resolution analysis for some integer r > 0
(See Daubechies (1992)). In the continuous wavelet dictionary setting, we expand
the mean function of (1.1) as

f(x) = f0(x) +
K∑

k=0

βλk
ψλk

(x), (2.1)

where f0 is a fixed scaling function representing coarse-scale features given by

f0(x) =
M∑

m=1

ηmφλm(x), (2.2)

with φλm(t) ≡ a
1/2
m φ(am(t − bm)) for some finite set of indices λm = (am, bm) ∈

(0, a0) × [0, 1], i = 1, . . . ,M . The second term in equation (2.1) describes the
fine-scale “details” of the function with ψλk

(t) ≡ √
akψ(ak(t − bk)) for λk =

(ak, bk) ∈ [a0,∞) × [0, 1] constructed by scaling (ak) and shifting locations (bk)
of the mother wavelet ψ(·). In this representation, in addition to the scaling and
location parameters in λk, the number of wavelet elements K from the CWD in
the expansion is also an unknown parameter. We use the convention that when
k = 0, βλ0 ≡ 0, so that if K = 0 we obtain the null or zero function.

Motivated by Bayesian approaches, Abramovich, Sapatinas and Silverman
(2000) studied properties of stochastic expansions in overcomplete wavelet dictio-
naries and conditions such that the functions would belong to a particular Besov
space. Their stochastic expansions motivate the choice of prior distributions
given in the next section.

3. Prior Distributions

The unknown parameters in the model (2.1) are the error variance σ2, the
number of wavelet elements K and, given K, the corresponding coefficients
and location-scale indices {βλk

, λk}K
k=1 for each wavelet component. Following
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Clyde and George (2000), we adopt a non-informative reference prior for σ2,
p(σ2) ∝ 1/σ2. Although it is improper, it is easy to show that the corresponding
posterior distribution is proper for n ≥ 2. As in Abramovich et al. (2000), we
may view {βk, ak, bk}K

k=1 as a realization of a compound Poisson process, leading
to a Poisson distribution for K and, conditional on K, the triplets {βλk

, ak, bk}
being independent and identically distributed for k = 1, . . . ,K.

3.1. Prior distribution for scaling parameters a

Following Abramovich et al. (2000), the prior for the scale parameter a takes
the form

p(a) ∝ a−ζ , a0 ≤ a ≤ a1 and ζ > 0. (3.1)

The lower bound a0 corresponds to the coarsest-scale component allowable in the
function. We have used a0 = 1, which corresponds to the coarsest level wavelet
(j = 0) in a regular discrete wavelet transform; for the more general setting in
Abramovich et al. (2000), where the Poisson mean for K may be infinite, a0

needs to be larger than twice the support of the wavelet function ψ.
The upper bound a1 corresponds to the smallest finest-scale component.

Theoretically, a1 may be infinity to span the whole space as in Abramovich et al.
(2000). In practice, however, extremely large a may lead to narrowly supported
wavelet functions that have little or no effect on the likelihood. To see this,
suppose we have 1,024 equally-spaced data points and use a mother wavelet with
support of length 1. If we set a1 > 1, 024 , the support of a wavelet function could
fall entirely between two data points and have no effect on the likelihood. As a
result, the corresponding coefficient could not be estimated effectively from the
data and might lead to poor out-of-sample predictive properties. For this reason,
we set an upper bound for a so that the wavelet functions have large enough
support. These bounds depend on the spacing in the data and the support of
the wavelet ψ, and are discussed in more detail in the examples in Section 5.

Finally, the hyperparameter ζ controls the intensity or relative number of
fine-scale wavelet components in the function. If ζ is large, a priori we have
relatively few fine-scale (spiky) components in the function, while if ζ is small,
fine-scale components predominate. We set ζ = 1.5 for all examples in Section 5
and found that that posterior results were not very sensitive to this choice.

3.2. Prior distribution for location parameters b

Abramovich et al. (2000) place a uniform distribution on the location pa-
rameters. We construct a prior distribution composed of a mixture of a discrete
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uniform on the observed data location and a continuous uniform distribution on
[0, 1],

p(b) = π
n∑

i=1

1
n

δxi(b) + (1 − π), 0 < π < 1, (3.2)

where δxi(b) is a point mass at the data point xi. We set π = 1/2, although one
could place a prior distribution on π. This prior is a compromise of flexibility,
which allows b to be at arbitrary positions, and efficiency, which focuses on
the data points where the information is abundant. This mixture prior leads
to a more efficient RJ-MCMC algorithm by a novel proposal distribution for
dictionary elements constructed using information from residuals (discussed in
detail in the next section). Notice that when π = 1 and p(b) has support on
data points only, we return to the non-decimated discrete wavelet setting, and
when π = 0, we have the continuous uniform distribution from Abramovich et al.
(2000).

3.3. Prior for coefficients βλ

Given the location and scale of a wavelet function, the prior distribution
of the corresponding wavelet coefficient βλ is independent normal (Abramovich
et al. (2000)):

βλ | a ∼ N(0, ca−δ), (3.3)

where c is a fixed hyperparameter independent of a. One possible choice for c is to
set c = n, the sample size, as in the unit-information prior (Kass and Wasserman
(1995)). The hyperparameter δ controls the magnitude of the coefficients for the
fine scale wavelet components relative to the coarse scale wavelet components,
giving us more flexibility to adapt to the smoothness of the functions being
modeled. For example, if δ is large, we shrink the fine scale (spiky) wavelets
more, resulting in a smoother function, and vice versa. For all examples in
Section 5 we set δ = 2.

In the random expansion (2.1), if the number of elements K is infinite almost
surely (a.s.), normality of βλ is one of the conditions for f to be well-defined and to
belong to a certain function space (see discussion in Section 3.5 and Abramovich
et al. (2000)). However, as we shall see, our prior distribution on K implies that
K is finite (a.s.), thus the normality of βλ is not necessary. We may replace the
normal distribution with a heavier-tailed prior for β, e.g., Laplace with a scale
parameter that depends on a the same way as in (3.3),

p(β | a) =
1
2τ

exp
{
− |β|

τ

}
, τ2 =

ca−δ

2
, (3.4)
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or other scale mixtures of normals. These heavy-tailed priors have been shown to
have theoretical advantages over normal distributions, and may lead to greater
sparsity and improved performance (Clyde and George (2000) and Johnstone and
Silverman (2004)).

3.4. Prior distribution for K

The coefficients and indices {βk, ak, bk}K
k=1 in the stochastic expansion can be

viewed as i.i.d. samples generated from a compound Poisson process. Our prior
specification on (β, a, b) induces an intensity measure γa−ζp(β | a)p(b)dβ da db

on R × [a0, a1] × [0, 1], where γ is a non-negative scalar. This leads to a Poisson
prior distribution for K with mean given by

E(K) = γ

∫∫∫
R×[a0,a1]×[0,1]

a−ζp(β | a)p(b) dβ db da = γ c(a0, a1, ζ),

where

c(a0, a1, ζ) =
1 − (a0/a1)ζ−1

(ζ − 1)aζ−1
0

, if ζ 6= 1; log
a1

a0
, otherwise,

is always finite as long as a1 < ∞. Because the mean and variance of the Poisson
distribution are equal, the distribution for K may be too concentrated about the
mean a priori. By assigning γ a Gamma prior distribution, G(αγ , βγ), with rate
βγ , we obtain a negative binomial prior distribution NB(s, q) for K:

p(k|s, q) =
(

s + k − 1
k

)
qs(1 − q)K k = 0, 1, . . . , (3.5)

where s = αγ and q = βγ/(βγ + c(a0, a1, ζ)). This provides additional flexibility
and over-dispersion compared to the Poisson distribution. The hyperparame-
ters s and q may be determined by the gamma hyperparameters (αγ , βγ) and
c(a0, a1, ζ), or specified directly. We have chosen the hyperparameters s and q

by specifying the probability of the null model p(K = 0) and a quantile of K

(for example, the 95 percentile of p(K)). These two equations can be solved to
obtain the values of s and q (and thus αγ and βγ).

3.5. Function spaces

In practice, wavelets are often used to represent functions from certain Besov
spaces. Naturally one would ask under what kind of conditions the random func-
tion f will be in the same Besov space (a.s.) as the mother wavelet. If the
number of wavelet elements K is finite (a.s.), for example if K has a Poisson or
Negative Binomial prior distribution with a finite mean, (2.1) will have a finite
number of elements (a.s.) and f will belong to the same Besov space (a.s.) as
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does the mother wavelet function ψ for any reasonable choice of the probability
distribution for βλ. In our case, as long as a1 < ∞ this is always ensured. How-
ever, if a1 = ∞ and ζ ≤ 1, extra conditions that involve ζ and prior distributions
on β are needed for the random function f to be well-defined (see Abramovich
et al. (2000) for more details). As a practical matter, since we can only deal with
finite representations from a computational standpoint, restricting attention to
the Poisson or Negative Binomial with finite mean presents no problems.

4. Posterior Inference

For the purpose of this paper we first center the data Y and take f0(x) = 0,
so that f(x) represents departures from the overall mean. In principle, for an
f0(x) given by (2.2), it is straightforward to update the coefficients ηm via a Gibbs
step using a multivariate normal distribution (assuming normal or reference prior
distributions).

In a standard discrete wavelet transformation, where a and b have dyadic
constraints and the data are on an equally spaced grid, the empirical wavelet co-
efficients, which are sufficient statistics, may be obtained through filters without
evaluating the wavelet functions ψλ directly. In a CWD, the dictionary elements
do not have the tree-like structure needed for the cascade algorithm, therefore it
is necessary to evaluate each of the wavelet functions ψλ(x). The wavelet func-
tions in Daubechies’ family (except the Haar wavelet) and many other families
have no explicit representations. The Daubechies-Lagarias local pyramid algo-
rithm (Vidakovic (1999, Sec. 3.5.4)), however, does enable one to evaluate ψλ(·)
at an arbitrary point with preassigned precision using the wavelet filter coeffi-
cients. This involves a product of m matrices of size (2N − 1)× (2N − 1), where
N is the number of vanishing moments of ψ(·), and m is chosen to obtain the
desired degree of accuracy. We have found that taking m = 5 for the la8 wavelet
(N = 4) gives a desired level of accuracy, while balancing computational costs.

The task of searching over a continuous dictionary with infinitely many mod-
els can be extremely challenging. Since the dimensionality of each model, and
the model parameters, varies, we develop a reversible jump Markov chain Monte
Carlo algorithm (Green (1995)) to explore the posterior distribution of models
and model specific parameters. Our RJ-MCMC algorithm, includes three types
of moves: a birth step where we add a wavelet element (increasing K by 1), a
death step where we delete a wavelet element (decreasing K by 1), and an update
step where we move a wavelet element by changing the index λk and coefficient
βk (leaving K unchanged). For RJ-MCMC algorithms, good proposal distribu-
tions are important to speed up convergence. For example, proposing a “birth”
of a new wavelet dictionary element from the prior distribution on (β, a, b) may
simplify the calculation of the Metropolis Hastings ratio, but often results in
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slow convergence when it does not lead to proposal values where the likelihood is
high. Similarly, picking a component at random to remove may lead to frequent
attempts to remove important wavelets. We develop novel proposal distributions
for the birth and death steps that involve residuals and coefficients so that we are
more likely to target regions of the function where birth/deaths would success-
fully improve the function estimate. These proposal distributions can improve
convergence in practice since a successful birth is more likely where the residual
is large, and removing a wavelet for which the coefficient is small will not change
the likelihood dramatically. Because we propose a birth/update for one wavelet
at a time, these updates do not require any matrix inversion. Note that we only
need to evaluate a new wavelet function via the Daubechies-Lagarias algorithm in
the case of a birth step or update step that leads to a new λ. As we discuss later,
this can provide significant computational savings compared to methods for fixed
dimensional overcomplete dictionaries. We provide details of the algorithm in the
on-line supplement available at http://www.stat.sinica.edu.tw/statistica.

After T MCMC iterations post burn-in, each collection of the parameters
{β(t),a(t),b(t),K(t)}T

t=1 represents a sample from the joint posterior distribution,
where β(t) = (β(t)

1 , β2, . . . , β
(t)

K(t)), and a(t) and b(t) are defined similarly. At each
iteration t we obtain a posterior sample of f(x) from p(f | Y) by evaluating

f̂ (t)(x) =
K(t)∑
k=0

β
(t)

λ
(t)
k

ψ
λ
(t)
k

(x) (4.1)

at the posterior draws {β(t),a(t),b(t),K(t)}T
t=1. These posterior samples of f

provide a full description of the posterior distribution of f given the data Y.

4.1. Point estimates for f

A natural point estimate for f(x) is the posterior mean, which is approxi-
mated by the ergodic average of MCMC samples,

f̂AVE(x) =
1
T

T∑
t=1

f̂ (t)(x), (4.2)

where T is the number of MCMC iterations after burn-in and f̂ (t) represents the
estimate from the tth MCMC iteration given at (4.1).

While the posterior mean of f is an average over many sparse models, the
average itself is not necessarily sparse. When the goal is selection of a single
model, we choose to report the model which is closest to the posterior mean in
terms of mean squared error:

f̂∗ = argmin
f̂ (t)t∈{1,...,T}

n∑
i=1

[
f̂AVE(xi) − f̂ (t)(xi)

]2
. (4.3)

http://www.stat.sinica.edu.tw/statistica
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If β has a normal prior distribution, we can reduce the Monte Carlo variation
in estimating the mean of f(·) under model selection by replacing β(t) by its
posterior mean when we calculate f̂ (t),

β̂
(t)

= E(β | Y,a(t),b(t),K(t)) = (A(t)′A(t) + c−1D(aζ))−1A(t)′Y,

where A(t) is an n×K(t) matrix with A
(t)
ij ≡ ψ

λ
(t)
j

(xi) and D(aζ) is a K(t) ×K(t)

matrix with (a(t)
k )ζ on the diagonal, and zero otherwise.

4.2. Simultaneous credible bands for f

We propose a new method constructing a credible region that contains f(x)
simultaneously at all x with at least 1 − α posterior probability. Specifically, a
credible band corresponds to a pair of functions l(x) and u(x) which defines an
envelope along x,

C = {f : l(x) ≤ f(x) ≤ u(x), for all x},

such that Pr(f ∈ C | Y) ≥ 1 − α. In practice, the posterior probability is
approximated by using the empirical distribution based on MCMC samples and
the condition “for all x” is approximated by “for a fine grid (x1, . . . , xm) on the
range of x”, where the xjs could be observed data points, but not necessarily.
Our method for constructing credible bands is based on an L2 ball of errors,
motivated by work of Cox (1993) and Baraud (2004).

First we start with the ball

{f : ‖f − f̂AVE‖Σ ≤ Dα}, (4.4)

where ‖a‖Σ = a′Σ−1a is the L2 norm normalized by the estimated covariance
matrix Σ of the f(xi)’s, and Dα is the 100(1 − α)% quantile of all such scaled
L2 distances from MCMC samples. This ball gives the 1 − α probability bound
in the estimation error in scaled L2 loss. For better visualization, the credible
region takes the form of a hyper-rectangle containing the ball defined in (4.4).
The (1 − α) credible band is given as follows.

1. For the tth MCMC iteration, calculate the scaled L2 distance D(t) to the
ergodic average estimate from (4.2): D(t) = ‖f̂ (t) − f̂AVE‖Σ.

2. Calculate Dα, the 100(1 − α)% quantile of D(t).

3. Let TD
α be the collection of indices of MCMC samples of f of which the

distance to f̂AVE is below Dα: TD
α = {t : 1 ≤ t ≤ T, D(t) ≤ Dα}.
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Figure 1. (a) EBayes (Johnstone and Silverman (2004)) with Laplace prior
distribution (dash line), and CWD with the Gaussian prior distribution pos-
terior mean (solid line) fits of the null function, and (b) the posterior his-
togram for K (bars) and the NB(1, 0.01) prior distribution (solid line).

4. Our simultaneous credible region C is the minimum hyper-rectangle that con-
tains all the posterior samples in TD

α , namely,

l(xi) = min
t∈T D

α

f (t)(xi), u(xi) = max
t∈T D

α

f (t)(xi),

C = {f : l(xi) ≤ f(xi) ≤ u(xi), for all i}.

It is straight forward to show that the posterior coverage of C is at least 100(1−
α)%.

5. Examples

We illustrate our Bayesian CWD method and compare it to other approaches
in the literature in a series of simulation studies and an example. Throughout,
we used the la8 wavelet (Daubechies least asymmetric family with four vanishing
moments), the default in R, with a0 = 1 except where noted. The hyperparam-
eters were set to δ = 2 and ζ = 1.5 as discussed previously. The prior for the
number of coefficients K was negative binomial with s = 1 and q = 0.01, which
corresponds to 0.01 probability of the null model and 95% percentile at K = 298.
This prior distribution on K is relatively flat and covers a wide range of possible
models (see Figure 1(b)).

5.1. Null simulation

As the stochastic representation allows extremely flexible representations,
an initial concern is that the method may lead to over-fitting of the data. To
test this, we applied the CWD method using the Gaussian prior distribution on
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βλ to a data set of n = 1, 024 observations generated from the null function
f(x) = 0 with noise σ = 1. We set a1 = 500 (approximately n/2) so that each
wavelet was supported by an adequate number of data points. The results from
the simulation are shown in Figure 1. We can see from the posterior histogram
that the null model (K=0) is the one with the highest posterior probability. We
compare the results with EBayes (Johnstone and Silverman (2005a)), an empir-
ical Bayes method, carried out using their R package EBayesThresh (Johnstone
and Silverman (2005b)). Using the best combination of settings from Johnstone
and Silverman (2005a), we applied EBayes using the Laplace prior distribution
with the translation-invariant wavelet transform, an overcomplete representa-
tion. We used la8 with J = 4 (the default), where J is the number of levels
in the multi-resolution expansion, leading to nJ wavelet coefficients. EBayes
shrinks and thresholds nJ wavelet coefficients, while keeping the n scaling co-
efficients without any shrinkage or thresholding. In this example, even though
EBayes thresholded all but one of the wavelet coefficients to zero, the estimate
still appears “bumpy” due to the included 1,024 scaling coefficients.

5.2. Wavelet test functions

We carried out a second simulation study using four standard test functions
from Donoho and Johnstone (1994): bumps, blocks, doppler, and heavisine.
For each test function, 100 replications were generated with two levels of SNR
(signal-to-noise ratio), 3 (high) and 7 (low). In each replicate, the data were
simulated at 1,024 equally spaced points in [0, 1].

For the CWD method, we used the default choice of wavelet in R (la8) for all
functions except for blocks, where we used the Haar wavelet. Unlike many other
wavelet methods, we did not assume a boundary correction here, since some of
the functions (e.g. doppler) are clearly not periodic. We set the lower bound
for the scale parameter at a0 = 1 and the upper bound at a1 = 500, roughly
n/2, as in the null model simulation. The following results are based on one
million iterations of the RJ-MCMC algorithm, with a burn-in period of 500,000
iterations and the remaining iterations used for posterior inference.

We compared the CWD with EBayes (using the same settings as described
in the null simulation in Section 5.1) using the average mean squared error

MSE =
1
n

n∑
i=1

[
f̂(xi) − f(xi)

]2
. (5.1)

For CWD we calculated point estimates of f based on the posterior mean (PM)
in (4.2) for both the normal and Laplace prior distributions for β, along with the
model selection (MS) estimate from (4.3) with the normal prior. Figure 2 shows
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Figure 2. Box plots for mean squared error for the four test functions using
the EBayes method of Johnstone and Silverman (2005a), and the continuous
wavelet dictionary (CWD) method with the posterior mean (PM) under the
Gaussian and Laplace prior distributions, and with model selection (MS)
under the normal prior distribution.
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that the PM estimates have smaller MSE than EBayes for all four functions and
for both noise levels. The heavy-tailed Laplace prior with the CWD led to an
additional reduction in MSE except for in bumps, where it is roughly the same
as the CWD with Gaussian prior distributions. Using model selection under
squared error loss, we find that the EBayes estimate is better only for bumps and
doppler in the low noise scenario and for heavisine in the high noise scenario.
When we compared the number of non-zero coefficients in f̂ , however, the CWD
method clearly gave a much sparser representation than EBayes (See Figure 3).
We note that the EBayes summaries for K do not include the 1,024 coefficients
from the scaling function, which are not shrunk or thresholded. The on-line
supplement includes figures illustrating the fitted functions for the two methods.

5.3. Ethanol example

When the data are not equally spaced, EBayes and other methods based
on the regular discrete wavelet transform cannot be directly applied. Several
wavelet-based methods for non-equally spaced data have been proposed, includ-
ing Kovac and Silverman (2000), Nason (2002) and Amato, Antoniadis and Pen-
sky (2006). The CWD based method can also be applied directly to non-equally
spaced data sets without interpolation or imputing missing data. To illustrate
this point, we applied our method to a well-studied data set, the ethanol data,
from Brinkman (1981). This data set consists of n = 88 measurements from
an experiment where ethanol was burned in a single cylinder engine. The con-
centration of the total amount of nitric oxide and nitrogen dioxide in the engine
exhaust, normalized by the work done by the engine is related to the “equivalence
ratio”, a measure of the richness of the air ethanol mixture.

We applied our CWD method using the Gaussian and Laplace prior distri-
butions with 4, 8, and 10 vanishing moments of the least asymmetric Daubechies’
wavelets (la8, la16 and la20 in R). We set the upper bound a1 to 100, which
is roughly one half of the inverse of the median distance between observations.
Because the sample size is smaller, we used m = 10 in the Daubechies-Lagarias
algorithm. We show the estimated posterior mean curves defined in (4.2) in Fig-
ure 4, and the 95% simultaneous credible band with la16 in Figure 5 using the
Gaussian prior distribution on the coefficients. In calculating the L2 distance, the
posterior samples f (t) were evaluated at 512 equally-spaced grid points covering
the range of the data using the Daubechies-Lagarias algorithm.

This same data set has been studied by Nason (2002) using a linear inter-
polation method to address the problem of non-equally spaced observations. To
compare with that result, we performed a leave-one-out cross validation study
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Figure 3. Box plots for the number or average number (for PM) of non-
zero wavelet coefficients for the four test functions using the EBayes method
Johnstone and Silverman (2005a), and continuous wavelet dictionary (CWD)
method with the posterior mean (PM) under the normal and Laplace priors,
and with model selection (MS) under the normal prior distribution.
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Figure 4. The posterior mean using the CWD with the Gaussian prior
distribution for the ethanol data from Brinkman (1981).

Figure 5. Simultaneous credible bands (α = 0.05) for la16.

and calculated the cross validation score

CV-score =
1
n

n∑
i=1

[
f̂(−i)(xi) − Yi

]2
, (5.2)

where f̂(−i) is the estimated posterior mean of f using all of the data except
the ith point. With no attempts to optimize our hyperparameters, the CV score
from CWD with la16 ranks second out of the 60 combinations reported in Nason
(2002), and the estimated function looks very similar to their best combination.
We can see that over the left region, where there are fewer data points, there
seems to be greater uncertainty, as the credible band is wider and the estimates
have greater disagreement. On the right side, where all estimates seem to agree
on the same downward slope, the credible region is much narrower as we have
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more information here. We can see that CWD has managed to capture the main
feature of the data without over-fitting.

We also constructed 95% simultaneous credible bands for f(x) with la16
using methods of Besag, Green, Higdon and Mengersen (1995) and Crainiceanu,
Ruppert, Carroll, Joshi and Goodner (2007). Our credible band actually covers
about 95.75% of the posterior sample; other methods give comparable results
in this respect. From Figure 5 we can see that while all credible bands take a
similar shape, our L2 loss based credible region is narrower than Crainiceanu’s,
although the difference between our credible band and Besag’s is negligible.

We calculated the area of the credible region by numerical integration:

Area =
xn − x1

n

n∑
i=1

∣∣∣u(xi) − l(xi)
∣∣∣, (5.3)

where x1, . . . , xn are the grid locations where the functions are being evaluated.
The L2 based method had the smallest area of 0.69, while Besag’s method gave
0.70, and Crainiceanu was the largest with 0.92. In general with the same cov-
erage rate a smaller credible region is more desirable.

6. Conclusion

In this paper we have introduced a Bayesian method for function estimation
based on a stochastic expansion in a continuous wavelet dictionary. Despite
the richness of the potential representations, and the computational challenges
of evaluating the wavelet functions and model search, RJ-MCMC algorithms are
able to identify sparse representations in a reasonable time frame. The simulation
study showed that the new method leads to greater sparsity and improved mean
squared error performance over current wavelet-based methods. Because the
models do not require the data to be equally spaced, this permits wavelet methods
to be used in a greater variety of applications. We also introduced a new approach
for constructing simultaneous credible bands in the overcomplete setting that
appears to give narrower bands than other existing methods.

The price to pay for increased flexibility is computational cost. The major
cost is in the wavelet evaluation using the Daubechies-Lagarias (DL) algorithm.
For the examples in the wavelet test function simulation study with n = 1, 024,
the running time was about 1-1.5 hours per function when the DL algorithm
was used with the la8 wavelet (all running times are based on a single Intel 2.6
gigahertz processor). In contrast, the running time was only about 5-6 minutes
using the Haar wavelet since the DL algorithm is not required for evaluation
of the Haar wavelet. Running times for other wavelets that can be computed
analytically should be on the order of 5-6 minutes, as with the Haar wavelet.
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While the CWD is much more computationally intensive than EBayes (which
runs in seconds), the reductions in MSE were significant, with the MSE under
EBayes ranging from 15% to 60% higher than the MSE using the CWD (using
the same wavelet to generate the dictionary). The running times for the non-
equispaced ethanol example with n = 88 and 100,000 iterations of the RJ-MCMC
algorithm using wavelets la8, la16 and la20 were 3, 19 and 40 minutes, respec-
tively. These running times could be approximately cut in half by reducing m

to 5 (from m = 10) in the DL algorithm. In many practical applications, non-
equispaced designs often have small sample sizes (i.e., a few hundred samples).
Using la8, the current algorithm can run in about 10-20 minutes.

We note that using other methods for overcomplete representations based
on a fixed dimensional dictionary, such as the Dantzig selector (Candes and
Tao (2007)), LASSO (Tibshirani (1996)) or greedy methods (Barron, Cohen,
Dahmen and DeVore (2008)), will be just as expensive (more or less) if the
DL algorithm is used to precompute the wavelet dictionary elements on a fine
grid. For example, using a 1, 000 × 1, 000 grid for a and b will be the same
order of magnitude as running one million iterations of our RJ-MCMC algorithm.
However, the correlation between the dictionary elements in the 1, 000 × 1, 000
grid (or even coarser 100 × 100 grid) of a and b led us to empirical failure when
we tried to use the Dantzig selector. The high degree of correlation among
the dictionary elements violates theoretical conditions needed for optimality of
many algorithms in the “large p small n” paradigm (Candes and Tao (2007),
Donoho and Elad (2003) and Donoho et al. (2006)). Stochastic search variable
selection algorithms have also been used in the overcomplete setting (Wolfe et al.
(2004)); our approach may be viewed as a limiting version of such algorithms
for continuous dictionaries. Stochastic search algorithms for finite dictionaries
typically involve only birth and death steps for adding or deleting a dictionary
element. When there are high correlations among dictionary elements, it is often
difficult to adequately explore the multiple modes in the model space (due to the
over-completeness of the dictionary) using only birth and death steps. Because of
the update step in our RJ-MCMC algorithm, we are able to smoothly transition
from one dictionary element to a new one, making it easier to explore multiple
modes of the posterior distribution.

As a final note, the calculations for the simulations studies and examples
using the DL algorithm were done using an R package under development by the
first author. We expect that further improvements in running time will be possi-
ble by considering more efficient O(n) algorithms (e.g., Muñoz, Ertlé and Unser
(2002)) to evaluate wavelet functions at arbitrary points. Incorporating these
algorithms could significantly improve the efficiency of our code for Bayesian
function estimation using continuous wavelet dictionaries, and is a promising
direction for future research.
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