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Abstract: We consider regular fractions of s-level factorials arranged in block de-

signs. Optimal designs are explored under the criterion of general minimum lower

order confounding which aims, in an elaborate manner, at keeping the lower order

factorial effects unaliased with one another and unconfounded with blocks. A finite

projective geometric formulation, that identifies the alias sets with the points and

the blocking system with a flat of the geometry, forms the mathematical basis of our

approach. Theoretical results and tables are obtained in terms of complementary

sets and an idea of double complementation is found to be useful in some situations.
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1. Introduction

Optimal selection of regular fractional factorial plans, under model uncer-
tainty, has been a subject of considerable recent interest. Blocking makes the
problem significantly more complex because it warrants simultaneous handling
of two wordlength patterns (WLPs), one arising from the choice of the fraction
and the other due to blocking. Design criteria, involving either interpenetration
of the two WLPs (Sitter, Chen and Feder (1997), and Cheng and Wu (2002)) or
their combination (Chen and Cheng (1999), and Cheng and Tang (2005)) have
been proposed and extensively studied; see Mukerjee and Wu (2006, Chap. 7)
for a review. These criteria, based on the effect hierarchy principle (Wu and
Hamada (2000, p.112)), are inspired by that of minimum aberration (MA) in
the unblocked case and are all motivated, in various senses, by the objectives of
(a) keeping the lower order factorial effects unaliased with one another and (b)
avoiding their being confounded with blocks. For unblocked two-level factorials,
Zhang, Li, Zhao and Ai (2008) introduced a new criterion of general minimum
lower order confounding (GMLOC or GMC for short) that aims at achieving (a)
in a very elaborate manner. Zhang and Mukerjee (2009) obtained, for general
s-level factorials and in the unblocked case, results on the GMC criterion in terms
of complementary sets.
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The purpose of the present paper is to develop, in the presence of blocks, a
theory for the GMC criterion via the use of complementary sets. This is done
for general s-level factorials. The GMC criterion, as adapted to block designs,
is motivated by the twin objectives (a) and (b) above and attempts to realize
these objectives via explicit consideration of the alias sets in addition to the two
WLPs. A finite projective geometric formulation, as well as the findings in Zhang
and Mukerjee (2009) in the unblocked case, form the foundation of our results.
Substantial additional work is, however, required because in the blocked case one
needs to deal with three sets, one signifying the fraction, one for blocking and a
third one which is the complement of the union of the first two. Our final results
and tables are expected to be particularly useful in the practically important
nearly saturated situation where the complementary set is relatively small in size
and hence easy to handle. This advantage of considering complementary sets
has been well recognized for other design criteria as well, both in the blocked
and unblocked cases; see Tang and Wu (1996), Suen, Chen and Wu (1997), Chen
and Cheng (1999) and Cheng and Tang (2005), among others. An auxiliary
approach of double complementation is seen to further simplify the derivation in
some situations.

2. GMC Criterion for Block Designs

Consider an sn factorial involving n factors each at s levels, s (≥ 2) being
a prime or prime power. A typical pencil b = (b1, . . . , bn)′ is a nonnull n-vector
over the finite field GF (s), and pencils with proportional elements are considered
identical. A pencil with i nonzero elements represents a factorial effect involving
i factors and is called an ith order pencil (1 ≤ i ≤ n). The case i = 1 gives a
main effect (ME) while the case i > 1 corresponds to an interaction.

With reference to an sn factorial, we are interested in regular 1/sm fractions
arranged in sr blocks, where 1 ≤ m < n, 1 ≤ r < n−m and, to avoid trivialities,
n ≥ 4. Such a design will be simply referred to as an (sn−m, sr) design. For 1 ≤
i ≤ n, let Ai be the number of ith order pencils appearing in the defining relation
of the design and Bi be the number of ith order pencils that are confounded with
its blocks. Given the utmost importance of the MEs, we consider only those
designs where no ME pencil appears in the defining equation or is confounded
with blocks, and no two ME pencils are aliased with each other. Then A1 = A2 =
B1 = 0 and, as per the terminology introduced in Mukerjee and Wu (1999), the
design has blocked resolution three or higher.

The sequences (A3, . . . , An) and (B2, . . . , Bn), arising respectively from the
choice of the fraction and blocking, are called the WLPs of the design. As hinted
in the introduction, blocked MA criteria, involving either interpenetration or
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combination of these two WLPs have received attention in the literature. These
include criteria based on sequential minimization of

W (1) = (A3, B2, A4, B3, A5, B4, . . .), W (2) = (A3, A4, B2, A5, A6, B3, A7, . . .),
W (3) = (A3, B2, A4, A5, B3, A6, A7, . . .), W (4) = (3A3 + B2, A4, 10A5 + B3, . . .).

Sitter, Chen and Feder (1997) proposed W (1), Zhang and Park (2000) considered
W (3), while Cheng and Wu (2002) suggested both W (2) and W (3). Chen and
Cheng (1999) also mentioned W (3). For two-level factorials, Chen and Cheng
(1999) considered W (4) and Cheng and Tang (2005) discussed variations thereof,
one of which has the same leading term as W (4).

We now introduce the GMC criterion for (sn−m, sr) designs of blocked resolu-
tion three or higher. For 1 ≤ i ≤ n, there are Ki [=

(
n
i

)
(s−1)i−1] ith order pencils,

of which Ki−Ai−Bi (= #
i C0, say) neither appear in the defining relation nor are

confounded with blocks, and hence remain estimable unless they are aliased with
other potentially important pencils. Suppose among these Ki −Ai −Bi pencils,
there are #

i C
(k)
j , each of which is aliased with k jth order pencils (excluding itself,

if j = i), and write #
i Cj for the vector (#i C

(0)
j , #

i C
(1)
j , . . . , #

i C
(Kj)
j ), 1 ≤ i, j ≤ n.

The sequence

#C =
(

#
1C2,

#
2C0,

#
2C1,

#
2C2,

#
1C3,

#
2C3,

#
3C0,

#
3C1,

#
3C2,

#
3C3, . . .

)
(2.1)

is called the aliased effect-number pattern (AENP) of the design. The AENP
incorporates the loss of information on pencils due to appearance in the defining
equation or confounding with blocks via the terms #

i C0, and captures the nature
of aliasing explicitly via the terms #

i C
(k)
j (i, j ≥ 1).

The effect hierarchy principle helps in explaining why it is meaningful to
consider the terms in (2.1) sequentially from left to right. Suppose, in addition
to the MEs, two-factor interactions (2fis) are possibly present. Then the first
priority is estimating the MEs, i.e., keeping them unaliased with the 2fi pencils
to the extent possible, and this makes #

1C2 the first term in (2.1). Turning next
to the estimation of any 2fi pencil, note that confounding with blocks would
render this impossible while, for an unconfounded 2fi pencil, aliasing with a ME
pencil would pose a more serious challenge than that with another 2fi pencil.
Since A2 = 0, we thus get the three subsequent terms #

2C0,
#
2C1 and #

2C2 in that
order. Similarly, if three-factor interactions (3fis) are also possibly present, then
estimation of the MEs and the 2fis leads to the next two terms #

1C3 and #
2C3

in (2.1) and, thereafter, estimation of the 3fis themselves entails the terms #
3C0,

#
3C1,

#
3C2 and #

3C3 in that order.
We also observe that for any fixed i and j (i, j ≥ 1), the first element #

i C
(0)
j of

#
i Cj signifies no aliasing, while the subsequent elements #

i C
(k)
j signify progressively
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more severe aliasing as k increases. Hence, in addition to considering the terms
in (2.1) from left to right as indicated above, upon reaching a particular #

i Cj

(i, j ≥ 1), it makes sense to maximize its elements sequentially from left to right;
similarly when any #

i C0 (= Ki − Ai − Bi) is reached, one should try to make
it as large as possible. These points, when summed up, amount to sequential
maximization of the elements of #C in (2.1), from left to right, which is precisely
how we define the GMC criterion for block designs. As a consequence of this
definition, the terms #

j C1 (j ≥ 2) can be dropped from (2.1) because analogously
to the unblocked case (Zhang and Mukerjee (2009)), they are uniquely determined
by some of the preceding terms. Thus, in effect, the blocked GMC criterion aims
at sequential maximization, from left to right, of the elements of a reduced version
of (2.1) given by

#C =
(

#
1C2,

#
2C0,

#
2C2,

#
1C3,

#
2C3,

#
3C0,

#
3C2,

#
3C3, . . .

)
. (2.2)

We remark that this can as well be looked upon as a very elaborate version of
the clear effects criterion, e.g., the first element of (2.2), namely #

1C
(0)
2 , represents

the number of clear ME pencils.

3. Geometric Formulation and Preliminary Results

Let P be the set of points of the finite projective geometry PG(n−m−1, s).
As usual, points with proportional coordinates are identical. A (w − 1)-flat of P

is an Lw-subset of P that is closed, up to proportionality, under the formation
of nonnull linear combinations. Here Lw = (sw − 1)/(s − 1) (w = 1, 2, . . .). For
any nonempty subset Q of P , let V (Q) be the matrix given by the points of Q

as columns. Then the following well-known result holds (see e.g., Mukerjee and
Wu (2006, Chap. 7)).

Lemma 1. Any (sn−m, sr) design d of blocked resolution three or higher is
represented by an ordered pair of disjoint subsets (T0, T ) of P such that T0 is an
(r − 1)-flat, T has cardinality n, the matrix V (T ) has full row rank, and

(a) any pencil b appears in the defining relation of d if and only if V (T )b = 0,

(b) any pencil b is confounded with blocks in d if and only if V (T )b is nonnull
and proportional to some point of T0,

(c) any two pencils b(1) and b(2), neither of which is a defining pencil or con-
founded with blocks, are aliased with each other in d if and only if V (T )b(1)

and V (T )b(2) are proportional to the same point of P \ T0.

In view of Lemma 1, an (sn−m, sr) design d of blocked resolution three or
higher will be denoted simply by the corresponding pair of sets (T0, T ). Lemma
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1 also implies that such a design can exist only if Lr + n ≤ Ln−m, a condition
which is assumed to hold. Lemma 1(c) shows a useful one to one correspondence
between the unconfounded alias sets and the points of P \ T0. Consider any
(r − 1)-flat T0, any point π, and any nonempty subset Q, of P . Let q = #Q,
where # denotes cardinality, and Ωiq be the set of q-vectors over GF (s) having
i nonzero elements. For i ≥ 1, define

Ri(Q, π) = (s − 1)−1#{λ : λ ∈ Ωiq, V (Q)λ is nonnull and proportional to π},
(3.1)

Bi(T0, Q) =
∑
π∈T0

Ri(Q, π). (3.2)

In particular, for an (sn−m, sr) design (T0, T ), Lemma 1(b), (c) and (3.1),
(3.2) show that Bi(T0, T ) is the same as Bi in the blocking WLP of the design,
while Ri(T, π) equals the number of ith order pencils appearing in the alias set
corresponding to π, for every π ∈ P \ T0. Consequently,

#
i C

(k)
i = (k + 1)#{π : π ∈ P \ T0, Ri(T, π) = k + 1}, 0 ≤ k ≤ Ki, 1 ≤ i ≤ n,

(3.3)
#
i C

(k)
j =

∑
jk

Ri(T, π), 0 ≤ k ≤ Kj , 1 ≤ i 6= j ≤ n, (3.4)

where
∑

jk is sum over π such that π ∈ P \ T0 and Rj(T, π) = k. Let T̃ be the
complement of T in P \ T0 and U = T0 ∪ T̃ . Write f = #T̃ . Then #U = Lr + f

(= u, say). Lemma 2 below connects the leading terms of the AENP of the
design (T0, T ) with either the complementary set T̃ or the set U containing T̃ .
Parts (a) and (c)−(e) of the lemma follow from Zhang and Mukerjee (2009)
using (3.3), (3.4) and the fact that U is the complement of T in P . Part (b)
follows from Lemmas 6.3.3 and 6.3.4 of Mukerjee and Wu (2006) noting that
#
2C0 = K2 − B2(T0, T ). In Lemma 2, c0, c1 and c2 are constants which may
depend on s, n, m and r, but not on the specific choice of T0 and T . The details
on these constants will not be needed in the sequel.

Lemma 2. For the design (T0, T ),

(a) #
1C

(k)
2 = #{π : π ∈ T, (1/2)(s − 1)(n − u − 1) + R2(U, π) = k}, 0 ≤ k ≤ K2,

(b) #
2C0 = c0 − B2(T0, T̃ ),

(c) #
2C

(k)
2 = (k+1)[#{π : π ∈ T, (1/2)(s−1)(n−u−1)+R2(U, π) = k+1}+#{π :

π ∈ T̃ , (1/2)(s − 1)(n − u + 1) + R2(U, π) = k + 1}], 0 ≤ k ≤ K2,

(d) #
1C

(k)
3 = #{π : π ∈ T, c1 − (2s − 3)R2(U, π) − R3(U, π) = k}, 0 ≤ k ≤ K3,
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(e) #
2C

(k)
3 =

∑(1)
3k {(1/2)(s − 1)(n − u − 1) + R2(U, π)} +

∑(2)
3k {(1/2)(s − 1)(n −

u + 1) + R2(U, π)}, 0 ≤ k ≤ K3,

where
∑(1)

3k is sum over π such that π ∈ T and c1−(2s−3)R2(U, π)−R3(U, π) = k,

while
∑(2)

3k is sum over π such that π ∈ T̃ and c2−(2s−3)R2(U, π)−R3(U, π) = k.

This section is concluded with another lemma that arises from Lemma 2(a)
and which follows via the same arguments as used by Zhang and Mukerjee (2009)
in the unblocked case. For a block design (T0, T ), let δ = (δ1, . . . , δn) be the vector
with elements R2(U, π), π ∈ T , arranged in nondecreasing order. Also, write

g = #{π : π ∈ T,R2(U, π) > 0}. (3.5)

Lemma 3.
(a) Suppose the vectors δ for two designs are not identical, and let j be the small-

est integer such that the quantities δj for the two designs differ. Then the
design with a smaller δj dominates the other under the GMC criterion.

(b) A design can have GMC only if it minimizes g.

(c) If u (= Lr + f) equals Lw, with w ≥ r, then a design has GMC if and only
if the corresponding set U is a (w − 1)-flat.

(d) Let s = 2. If 4 ≤ u ≤ 6 or 8 ≤ u ≤ 14, then a design can have GMC only if
U is contained in a 2-flat or a 3-flat, respectively.

(e) Let s = 3. If 5 ≤ u ≤ 12, then a design can have GMC only if U is contained
in a 2-flat.

4. Some Results under the Blocked GMC Criterion

We now build upon the ideas and preliminary results presented in Section
3 to obtain some theoretical results on optimal block designs under the GMC
criterion. These will also be useful in preparing the tables that follow in the next
section. To avoid trivialities, hereafter we assume that the set T̃ is nonempty,
i.e., f > 0, which implies that u > Lr.

The first result, shown in Theorem 1 below and proved in the Appendix,
extends 3(c), in the two level case, to the situation where u is not exactly equal
but close to the cardinality of a flat. Let π1, . . . , πw be linearly independent
points of the projective geometry P , where w > r. Denote the (r − 1)-flat
spanned by π1, . . . , πr by ∆r, and the (w − 1)-flat spanned by π1 . . . , πw by ∆w.
Let ∆ = ∆w \ ∆r.

Theorem 1. Let s = 2. For u = 2w − j, where w > r and j = 2, 3, 4, the design
given by T0 = ∆r and T̃ as shown below has GMC:
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(a) T̃ = ∆ \ {πr+1}, if j = 2 and w > r;

(b1) T̃ = ∆ \ {πr+1, π1 + πr+1}, if j = 3 and w = r + 1;

(b2) T̃ = ∆ \ {πr+1, πr+2}, if j = 3 and w ≥ r + 2;

(c1) T̃ = ∆ \ {πr+1, π1 + πr+1, π2 + πr+1}, if j = 4 and w = r + 1;

(c2) T̃ = ∆ \ {πr+1, πr+2, π1 + πr+1 + πr+2}, if j = 4 and w ≥ r + 2.

Part (c2) of Theorem 1 springs a little surprise because, in analogy with
(b2), one would rather expect the choice T̃ = ∆ \ {πr+1, πr+2, πr+3} to entail a
GMC design for w ≥ r + 3. The proof in the Appendix will clarify why this is
not really the case. Turning to general s, we have Theorem 2 below pertaining
to the case f ≤ sr, where f = #T̃ . For s = 2, Chen and Cheng (1999) reported
the same necessary condition as in Theorem 2 under their blocked MA criterion
based on the combined WLP W (4) shown in Section 2. However, despite this
identity of the necessary conditions, it will be seen in the next section that their
criterion and GMC do not always yield the same optimal design.

Theorem 2. If f ≤ sr, then a design can have GMC only if U is contained in
an r-flat.

Proof. If an (r − 1)-flat is nested in an r-flat, then there are sr points that
belong to the latter but not to the former. Hence for f ≤ sr, one can always
choose T0 and T̃ such that their union U is contained in an r-flat, say ∆. Then
the points of U cannot span any point outside ∆, so that by (3.1) and (3.5), for
the resulting design, we get

g ≤ #∆ − #U = sr − f. (4.1)

Next consider a design for which U is not contained in an r-flat. Then there exist
linearly independent points πj , 1 ≤ j ≤ r + 2, such that π1, . . . , πr span T0 while
πr+1, πr+2 ∈ T̃ . Let ∆(j) be the r-flat spanned by π1, . . . , πr and πr+j (j = 1, 2).
Every point of ∆(j) \T0, other than πr+j , is spanned by πr+j and one point of T0.
Hence by (3.1), R2(U, π) > 0 for every π that belongs to ∆(1) ∪ ∆(2) but not to
U . Since #{∆(1) ∪ ∆(2)} = 2sr + Lr, it follows from (3.5) that the design under
consideration must satisfy g ≥ #{∆(1) ∪∆(2)} −#U = 2sr − f . Comparing this
with (4.1), the result follows from Lemma 3(b).

Theorem 3 below shows how the class of competing designs, that satisfy the
necessary condition in Theorem 2, can be reduced further in the two-level case,
thereby facilitating the application of the GMC criterion. Part (b) of Theorem 3
formally resembles Lemma 3(a) but is actually much deeper because it is reached
only after passing through Theorem 2 and Theorem 3(a). For s = 2 and f ≤ 2r,
consider any design meeting the condition in Theorem 2, and write Ũ for the
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complement of U in the r-flat that contains U . Then #Ũ = 2r − f = p, say; cf.
(4.1). Let θ = (θ1, . . . , θp) be the vector with elements R3(Ũ , π), π ∈ Ũ , arranged
in nondecreasing order. Since U (= T0 ∪ T̃ ) is the complement of T in the entire
projective geometry, we get Ũ ⊂ T , and consideration of Ũ amounts to double
complementation. Typically, Ũ is much smaller than T and this helps.

Theorem 3. Let s = 2 and f ≤ 2r. Consider designs for which U is contained
in an r-flat.

(a) All such designs have the same #
1C2,

#
2C0 and #

2C2.
(b) Suppose the vectors θ for two such designs are not identical and let j be the

smallest integer such that the quantities θj for the two designs differ. Then
the design with a smaller θj dominates the other under the GMC criterion.

Proof. (a) For every design under consideration, T̃ is of the form

T̃ = {α, α + α1, . . . , α + αf−1}, (4.2)

where α /∈ T0 and α1, . . . , αf−1 are distinct members of T0. By (4.2), any two
points of U can add up to a point outside T0 if and only if one of these points is
in T0 and the other is in T̃ . Hence, from (3.1), R2(U, π) equals f − 1 for every
π ∈ T̃ , is f for every π ∈ Ũ , and is 0 for every π ∈ T \ Ũ . Since Ũ ⊂ T , Lemma
2(a), (c) now show that all designs considered here have the same #

1C2 and #
2C2.

Also, by (4.2) and Lemma 2(b), they all have the same B2(T0, T̃ ) and hence the
same #

2C0.
(b) In view of part (a), under the GMC criterion, one needs to consider the

next term #
1C3 in the AENP (2.2) for discrimination among the designs that are

being considered. As Ũ ⊂ T , by Lemma 2(d) with s = 2 we get, for 0 ≤ k ≤ K3,

#
1C

(k)
3 = #{π : π ∈ Ũ , c1 − R2(U, π) − R3(U, π) = k}

+#{π : π ∈ T \ Ũ , c1 − R2(U, π) − R3(U, π) = k}. (4.3)

Since the points of U cannot span a point outside the r-flat containing U , by
(3.1) we further get R2(U, π) = R3(U, π) = 0 for every π ∈ T \ Ũ , so that the
second term on the right-hand side, say c(k), does not depend on the specific
design. Also, as noted in the proof of (a), R2(U, pi) = f for every π ∈ Ũ . Hence
(4.3) yields

#
1C

(k)
3 = c(k) + #{π : π ∈ Ũ , c1 − f − R3(U, π) = k}. (4.4)

Since U and Ũ are complements of each other in an r-flat, which in itself is
isomorphic to a finite projective geometry of dimension r, invoking a result from
Zhang and Mukerjee (2009, Sec. 3) for the unblocked case, for any π ∈ Ũ , we
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obtain R3(U, π) = c−R2(Ũ , π)−R3(Ũ , π), where c is a constant that may depend
on n, m and r, but not on the specific design. From (4.2) and the definition of Ũ ,
observe that Ũ = {α + α1, α + α2, . . .}, where {α1, α2, . . .} is the complement of
{α1, . . . , αf−1} in T0. Then, any two points of Ũ add up to a point of T0, i.e., by
(3.1), R2(Ũ , π) = 0, for every π ∈ Ũ . The facts just noted, together with (4.4),
imply that

#
1C

(k)
3 = c(k) + #{π : π ∈ Ũ , R3(Ũ , π) = k + f + c − c1}.

Recalling the definition of θ, part (b) of the theorem is now evident.

Curiously, Theorem 3 does not have a counterpart for s ≥ 3, in which case
designs meeting the necessary condition in Theorem 2 can be discriminated even
on the basis of #

1C2. Example 3 of the next section will serve as an illustration.

5. Examples and Design Tables

This section presents three tables, Tables 1, 2 and 3, showing optimal block
designs under the GMC criterion for (i) s = 2, u (= 2r − 1 + f) ≤ 15, (ii) s = 2,
r = 4, f ≤ 16, and (iii) s = 3, u [= (1/2)(3r − 1) + f ] ≤ 13. These tables have a
reasonably wide coverage of designs that accommodate a relatively large number
of factors vis-à-vis the number of runs. For example, with two-level factorials, in
addition to completely settling the case of 16-run designs, Table 1 covers 32-run
designs for n ≥ 16, 64-run designs for n ≥ 48 and 128-run designs for n ≥ 112,
where n is the number of factors. Furthermore, with 16 blocks, Table 2 covers
64-run designs for 32 ≤ n ≤ 47 and 128-run designs for 96 ≤ n ≤ 111. With
three-level factorials, Table 3 completely settles the case of 27-run designs and
covers 81-run designs for n ≥ 27.

Some of the tabulated optimal designs, such as the ones corresponding to
(a) r = 1 and f = 3, 4, 5, 11, 12, 13, or (b) r = 2 and f = 1, 2, 3, 9, 10, 11 or
(c) r = 3 and f = 5, 6, 7, in the two level case, follow directly from Theorem
1. For the rest, use of Theorems 2, 3 and Lemma 3 significantly reduces the
search. In particular, for each f considered in Table 2, Theorem 3(b) yields
the solution. Three illustrative examples follow. We often represent any point
(x1, x2, . . . , xn−m)′ of the finite projective geometry using the simple notation
1x12x2 · · · (n − m)xn−m , with ixi dropped if xi = 0.

Example 1. With reference to Table 1, let s = 2, r = 2, and f = 7. This is
one of the more challenging situations because none of the results of Section 4
is applicable. But here u = 10 and Lemma 3(d) shows that for a design to have
GMC, the set U must be contained in a 3-flat. But then U itself represents an
unblocked 210−6 design and, following Chen, Sun and Wu (1993), there are four
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nonisomorphic possibilities for U , namely

(a) U = {1, 2, 3, 4, 12, 13, 23, 14, 234, 1234}, (b) U = {1, 2, 3, 4, 12, 13, 23, 14, 24, 134},
(c) U = {1, 2, 3, 4, 12, 13, 23, 14, 24, 34}, (d) U = {1, 2, 3, 4, 12, 13, 23, 123, 14, 24}.

The vector δ in Lemma 3(a) equals (0n−5, 4, 4, 4, 4, 5) and (0n−5, 3, 3, 4, 4, 4) for
(a) and (b), while it equals (0n−5, 3, 3, 3, 3, 3) for both (c) and (d), where 0j

is the null row vector of order j. Thus (a) and (b) are eliminated by Lemma
3(a), i.e., via consideration of #

1C2. Continuing with (c) and (d), we consider all
possible ways of partitioning U in either case into T0 and T̃ , keeping in mind
that here r = 2 and hence T0 has to be a 1-flat, i.e., a line. This reveals that,
up to isomorphism, the unique minimizer of B2(T0, T̃ ) is T0 = {1, 4, 14}, T̃ =
{2, 3, 12, 13, 23, 123, 24}, arising from (d). By Lemma 2(b), this gives the optimal
deign under the GMC criterion. The design actually shown in Table 1 for r = 2
and f = 7 is isomorphic to the one so obtained.

Example 2. With reference to Table 2, let s = 2, r = 4 and f = 10. By
Theorem 2, T̃ must have the form (4.2). But then the subset {α1, . . . , α9}, of the
3-flat T0, represents an unblocked 29−5 design. Hence, without loss of generality,
if one takes T0 as the 3-flat generated by the points 1, 2, 3 and 4, then following
Chen, Sun and Wu (1993), at most five nonisomorphic possibilities for T̃ emerge:

(a) T̃ = {5, 15, 25, 35, 45, 125, 135, 145, 2345, 12345},
(b) T̃ = {5, 15, 25, 35, 45, 125, 135, 245, 345, 12345},
(c) T̃ = {5, 15, 25, 35, 45, 125, 135, 235, 145, 2345},
(d) T̃ = {5, 15, 25, 35, 45, 125, 135, 235, 145, 245},
(e) T̃ = {5, 15, 25, 35, 45, 125, 135, 235, 1235, 145}.

When viewed as block designs in conjunction with T0, however, (a) and (e) turn
out to be isomorphic, and the same happens with (c) and (d). Thus it remains to
compare (a), (b) and (c), for which the vector θ in Theorem 3(b) is found to be
(2, 2, 2, 2, 2, 2), (0, 0, 0, 0, 0, 0), and (0, 0, 1, 1, 1, 1), respectively. Hence the design
with T̃ as in (b) has GMC.

Example 3. With reference to Table 3, let s = 3, r = 2 and f = 3. Then
f < 3r and, by Theorem 2, the set U for a GMC design must be contained in a
2-flat. Only two nonisomorphic possibilities arise, namely, T̃ = {3, 13, 132} and
T̃ = {3, 13, 23}, with T0 = {1, 2, 12, 122} in both cases. The vector δ considered in
Lemma 3equals (0n−6, 3, 3, 3, 3, 3, 3) for the first design and (0n−6, 3, 3, 3, 4, 4, 4)
for the second design. Hence the first design has GMC. Here one could discrimi-
nate between the two designs on the basis of δ, i.e., #

1C2. This may be contrasted
with what was seen in Theorem 3(a) for s = 2.
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Table 1. Optimal designs under the blocked GMC criterion for s = 2
and u ≤ 15.

r f eT

1 1 {2}
1 2 {2, 12}
1 3 {2, 3, 23}
1 4 {2, 12, 3, 23}
1 5 {2, 12, 3, 13, 23}
1 6 {2, 12, 3, 13, 23, 123}
1 7 {2, 3, 23, 4, 24, 34, 234}
1 8 {2, 3, 23, 4, 24, 34, 234, 12}
1 9 {2, 3, 23, 4, 24, 34, 234, 12, 13}
1 10 {2, 12, 3, 13, 23, 123, 4, 24, 34, 234}
1 11 {2, 3, 23, 4, 14, 24, 124, 34, 134, 234, 1234}
1 12 {2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 134, 234}
1 13 {2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234}
1 14 {2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}
2 1 {3}
2 2 {3, 13}
2 3 {3, 13, 23}
2 4 {3, 13, 23, 123}
2 5 {3, 13, 23, 123, 4}
2 6 {3, 13, 4, 14, 34, 134}
2 7 {3, 13, 23, 4, 14, 34, 134}
2 8 {3, 13, 23, 4, 14, 24, 34, 134}
2 9 {3, 13, 23, 4, 14, 24, 34, 134, 234}
2 10 {3, 13, 23, 123, 4, 14, 124, 34, 134, 234}
2 11 {3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234}
2 12 {3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}
3 1 {4}
3 2 {4, 14}
3 3 {4, 14, 24}
3 4 {4, 14, 24, 34}
3 5 {4, 14, 24, 124, 34}
3 6 {4, 14, 24, 124, 134, 234}
3 7 {4, 14, 24, 124, 34, 134, 234}
3 8 {4, 14, 24, 124, 34, 134, 234, 1234}
Note: For r=1, T0 ={1}; for r=2, T0 ={1, 2, 12}; for r=3, T0 ={1, 2, 12, 3, 13, 23, 123}.

Analogously to the fact that in the unblocked case the clear effects criterion
does not always agree with the MA criterion, the present blocked GMC criterion
agrees to a considerable extent but not always with the criteria, mentioned in
Section 2, that are solely based on the two WLPs. For example, in the setup of
Table 1, the GMC criterion agrees with the three MA criteria arising from W (1),
W (2), and W (3) except when (i) r = 1, f = 9, (ii) r = 1, f = 10, (iii) r = 1,
f = 11, and (iv) r = 2, f = 7. Under (i) and (iv), the GMC criterion agrees with
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W (1) and W (3) but differs from W (2), while under (ii) and (iii) it differs from all
the three. Similarly, in the setup of Table 2, the GMC criterion agrees with the
one arising from W (4) except when 5 ≤ f ≤ 9.

Appendix: Proof of Theorem 1

Let ψ denote the number of lines contained in U , and φ1 and φ2 denote the
numbers of pairs, arising out of the points of U , with sum falling inside U and
outside U , respectively. Clearly,

φ1 + φ2 =
u(u − 1)

2
, ψ =

φ1

3
. (A.1)

Lemma 4. If 2w−1 ≤ u < 2w−1, then φ2 ≥ (u−h)(2h−u+1) where h = 2w−1−1,
and the case of equality arises only if U is contained in a (w − 1)-flat.

Proof. For u as stated, following Chen and Hedayat (1996), ψ ≤ (1/6)h(h −
1)+(1/2)(u−h)(u−h−1), with equality only if U is contained in a (w−1)-flat.
The result now follows by noting that φ2 = (1/2)u(u − 1) − 3ψ, by (A.1).

Lemma 5. If u = 2w − j, where w > r and j = 2, 3, 4, then a design can have
GMC only if U is contained in a (w − 1)-flat.

Proof. For w ≤ 4, the result is either trivial or covered by Lemma 3(d). So,
we consider only w ≥ 5. Then the stated form of u satisfies 2w−1 ≤ u < 2w − 1,
and hence the inequality in Lemma 4 holds. Moreover, with u as stated, one can
always construct a design such that U is contained in a (w − 1)-flat and hence,
analogously to (4.1), for such a design one gets

g ≤ j − 1. (A.2)

Let G be the set of points which lie in T (i.e., outside U) and equal the sum of
any two points of U . By (3.1) and (3.5), g = #G. Since no two lines can have
more than one point in common, there are at most [(1/2)u] pairs of points (here
[(1/2)u] is the largest integer in (1/2)u), arising out of U , with sum equal to any
particular point of G. Thus

φ2 ≤ g
[u

2

]
. (A.3)

Together with Lemma 4, this implies that (u − h)(2h − u + 1) ≤ φ2 ≤ g[(1/2)u],
i.e.,

(h + 2 − j)(j − 1) ≤ φ2 ≤ g
[
h + 1 − j

2

]
(A.4)

because u = 2w − j = 2h + 2 − j.
If j = 2, then (A.4) yields g ≥ 1, so that by (A.2) the minimum possible

value of g is 1. Thus, by Lemma 3(b), a design can have GMC only if it has
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Table 2. Optimal designs under the blocked GMC criterion for s = 2, r = 4,
f ≤ 16.

f eT

1 {5}
2 {5, 15}
3 {5, 15, 25}
4 {5, 15, 25, 35}
5 {5, 15, 25, 35, 1235}
6 {5, 15, 25, 125, 35, 135}
7 {5, 15, 25, 125, 35, 135, 235}
8 {5, 15, 25, 35, 1235, 45, 1245, 1345}
9 {5, 15, 25, 125, 35, 135, 45, 145, 2345}
10 {5, 15, 25, 125, 35, 135, 45, 245, 345, 12345}
11 {5, 15, 25, 125, 35, 135, 235, 45, 145, 245, 345}
12 {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 345}
13 {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345}
14 {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345}
15 {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345}
16 {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345}
Note: T0 = {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}.

Table 3. Optimal designs under the blocked GMC criterion for s = 3 and
u ≤ 13.

r f eT

1 1 {2}
1 2 {2, 12}
1 3 {2, 12, 122}
1 4 {2, 3, 23, 232}
1 5 {2, 3, 23, 232, 13}
1 6 {2, 12, 122, 3, 23, 232}
1 7 {2, 3, 23, 232, 13, 123, 1223}
1 8 {2, 122, 3, 132, 232, 1232, 1223, 12232}
1 9 {2, 12, 122, 3, 13, 23, 232, 1223, 12232}
1 10 {2, 12, 122, 3, 13, 132, 23, 232, 123, 1232}
1 11 {2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 1223}
1 12 {2, 12, 122, 3, 13, 132, 23, 232, 123, 1232, 1223, 12232}
2 1 {3}
2 2 {3, 13}
2 3 {3, 13, 132}
2 4 {3, 13, 132, 232}
2 5 {3, 13, 132, 23, 232}
2 6 {3, 13, 132, 23, 232, 123}
2 7 {3, 13, 132, 23, 232, 123, 1232}
2 8 {3, 13, 132, 23, 232, 123, 1232, 1223}
2 9 {3, 13, 132, 23, 232, 123, 1232, 1223, 12232}
Note: For r = 1, T0 = {1}; for r = 2, T0 = {1, 2, 12, 122}.
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g = 1, in which case equality holds throughout in (A.4) and hence in Lemma 4,
and consequently U is contained in a (w − 1)-flat. The same arguments prove
the result for j = 3.

Finally, let j = 4. Then (A.4) yields g ≥ 3(h−2)/(h−1), i.e., g ≥ 3, because
g is an integer, and h ≥ 15 as w ≥ 5. Using (A.2) again, the minimum possible
value of g is 3. Thus, as before, a design can have GMC only if it has g = 3, in
which case (A.4) yields

3(h − 2) ≤ φ2 ≤ 3(h − 1). (A.5)

Now, for u = 2w−4, it is not hard to see that (1/2)u(u−1) is an integral multiple
of 3. Hence, by (A.1), so is φ2 because ψ is an integer. Therefore, (A.5) implies
that φ2 equals either 3(h−2) or 3(h−1). If φ2 = 3(h−2), then equality holds in
Lemma 4 and the result follows. Continuing with g = 3, next let φ2 = 3(h − 1).
Then equality holds in (A.3), and hence writing G = {β1, β2, β3}, for every i

(= 1, 2, 3) there exists a partitioning of U into 2w−1 − 2 pairs of points such that
the two points in each of these pairs add up to βi. As a result, one can find
points α0, α1 and α2 in U such that

α0 + α1 = β1, α0 + α2 = β2. (A.6)

Furthermore, if β1+β2 ∈ U , then there exists α ∈ U such that α+(β1+β2) = β1,
i.e., α = β2, which is impossible as α belongs to U while β2 does not. Thus
β1+β2 /∈ U . On the other hand, by (A.6), β1+β2 = α1+α2, so that β1+β2 ∈ G,
by the definition of G. Since β3 is the only point of G other than β1 and β2, we
get β3 = β1 +β2. It follows that the union of U and G, having cardinality 2w −1,
is closed under the addition of distinct elements, i.e., this union is a (w − 1)-flat
which contains U .

Proof of Theorem 1. We sketch a proof of only part (c2). The proofs of
other parts are similar and simpler. In view of Lemma 5, it suffices to consider
designs for which T0 = ∆r and U is contained in ∆w, where ∆r and ∆w are as
defined above the statement of the theorem. The idea of double complementation
is again useful. Let Ũ be the complement of U in ∆w, or equivalently of T̃ in
∆ = ∆w \ ∆r. Note that Ũ ⊂ T . The only nonisomorphic possibilities for Ũ are
as follows:

(a) Ũ = {πr+1, π1 + πr+1, π2 + πr+1}, (b) Ũ = {πr+1, πr+2, π1+πr+1},
(c) Ũ = {πr+1, πr+2, πr+1 + πr+2}, (d) Ũ = {πr+1, πr+2, π1+πr+1+πr+2},
(e) Ũ = {πr+1, πr+2, πr+3}.

Of these, (a) cannot arise when r = 1, while (e) cannot arise when w = r + 2.
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For discrimination among (a)−(e) under the GMC criterion, the following
facts will be useful. Among these, (i)−(iv) follow from Zhang and Mukerjee
(2009, Sec. 3), because U and Ũ are complements of each other in ∆w which in
itself is isomorphic to a finite projective geometry of dimension w− 1. Similarly,
(v) follows from Mukerjee and Wu (2006, Chap. 6). Finally, (vi) arises because
the points of U cannot span a point outside ∆w.

(i) If π ∈ U then R2(U, π) = l1 + R2(Ũ , π).

(ii) If π ∈ Ũ then R2(U, π) = l2 + R2(Ũ , π).

(iii) If π ∈ U then R3(U, π) = l3 − R2(Ũ , π) − R3(Ũ , π).

(iv) If π ∈ Ũ then R3(U, π) = l4 − R2(Ũ , π) − R3(Ũ , π).

(v) B2(T0, T̃ ) = l5 + B2(T0, Ũ).

(vi) If π ∈ T \ Ũ then R2(U, π) = R3(U, π) = 0.

Here l1, . . . , l5 are constants not depending on the specific design. For instance,
l1 = 2w−1 − 4.

By (3.1), with Ũ as in (c) above, R2(Ũ , π) = 1 for each π ∈ Ũ , while with
Ũ as in (a), (b), (d) or (e) above, R2(Ũ , π) = 0 for each π ∈ Ũ . Hence using
the facts (ii) and (vi) along with Lemma 3(a), consideration of #

1C2 eliminates
(c). Next, by (3.2), with Ũ as in (a), (b), (d), and (e), B2(T0, Ũ) equals 3, 1, 0,
and 0 respectively. As a result, using (v) and Lemma 2(b), consideration of #

2C0

eliminates (a) and (b). It remains to compare (d) and (e) on the basis of the
subsequent terms of the AENP (2.2).

Recalling that T̃ = ∆ \ Ũ , we observe two additional facts.

(vii) With both (d) and (e), R2(Ũ , π) = R3(Ũ , π) = 0 for every π ∈ Ũ , R2(Ũ , π)
= 1 for three points π of T̃ , and R2(Ũ , π) = 0 for every other π ∈ T̃ .

(viii) With (d), R3(Ũ , π) = 0 for every π ∈ T̃ . On the other hand, with (e),
R3(Ũ , π) = 1 for one point π of T̃ , this point being different from the three
points of T̃ with R2(Ũ , π) = 1, and R3(Ũ , π) = 0 for every other π ∈ T̃ .

The fact (vii), in conjunction with (i),(ii), (iv), and (vi), implies that the
choices of Ũ as in (d) and (e) entail the same #

2C2 and #
1C3, as one may verify

using parts (c) and (d) of Lemma 2. Turning to the next term #
2C3, let ρ(k) =

#
2C

(k)
3 (d)− #

2C
(k)
3 (e), where #

2C
(k)
3 (d) and #

2C
(k)
3 (e) are the values of #

2C
(k)
3 for the

choices (d) and (e), respectively, of Ũ . Some intricate algebra, based on Lemma
2(e) together with the facts (i)−(iv) and (vi)−(viii) and the expression for l1 as
mentioned above, shows the existence of an integer k0 such that ρ(k) = 0 if k < k0

and ρ(k) = (1/2)(n − 3) if k = k0. Since n ≥ 4, it follows that (d) dominates (e)
under the GMC criterion, thus completing the proof.
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