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Abstract: The two-stage design is a common cost-effective approach for genome-

wide association studies. The first stage serves as a screening to identify a subset

of single-nucleotide polymorphisms (SNPs) from 100,000 to 500,000 SNPs using a

fraction of case-control samples. In the second stage, only the selected SNPs are

genotyped using the remaining case-control samples. On the other hand, DNA

pooling is another common strategy to save genotyping cost. In this article, we

propose a method using DNA pooling in the first stage and genotype-based anal-

ysis in the second stage. A joint analysis to combine both stages is applied to a

two-stage design with DNA pooling when the underlying genetic model is known.

When the genetic model is unknown, we use a robust procedure in the joint analy-

sis by applying genetic model selection in the second stage based on the difference

of Hardy-Weinberg disequilibrium coefficients between cases and controls. Perfor-

mance of our method and comparison with other approaches are investigated by

simulation studies.
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1. Introduction

In candidate-gene association studies, one tests association between a dis-
ease and the candidate genetic marker. Since hundreds of thousands of single-
nucleotide polymorphisms (SNPs) can now be genotyped, genome-wide associa-
tion study (GWAS) becomes a promising and powerful approach to identify true
association between genetic markers and complex diseases. Although genotyping
costs have been reduced recently, cost-effective designs for GWAS are still desir-
able. Various two-stage designs have been proposed recently (see e.g., Satagopan,
Verbel, Venkatraman, Offit and Begg (2002), Satagopan and Elston (2003), Sa-
tagopan, Venkatraman and Begg (2004), Thomas, Xie and Gebregziabher (2004),
Thomas, Haile and Duggan (2005), Lin (2006), Wang, Thomas, Pe’er and Stram
(2006), Skol, Scott, Abecasis and Boehnke (2006), Zuo, Zou and Zhao (2006),
Bukszar and van den Oord (2006), Ji, Stephen, Chad, Nancy and Derek (2007),
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and Dube, Schmidt and Hauser (2007)). One common feature of these two-stage
designs is that a fraction of samples are genotyped for all SNPs in a first stage.
An association test is then applied to one SNP at a time. The most significant
SNPs are selected and then genotyped for the remaining samples. Association
analysis is then conducted for the selected SNPs in a second stage conditional
on the results in the first stage (Elston, Lin and Zheng (2007)). After a small
fraction of SNPs is identified by the above two-stage scan, more powerful and fo-
cused analysis can be conducted, e.g., haplotype analysis, multi-marker analysis,
fine mapping, and replication (Hoh and Ott (2003), Marchini, Donnelly and Car-
don (2005), Schaid, McDonnell, Hebbring, Cunningham and Thibodeau (2005),
and Wang, Zhu and Elston (2007)). Most research papers focus on cost-effective
two-stage designs for GWAS. In this article, however, we do not consider the
cost-effectiveness but focus on some analysis strategies for a given design (e.g.,
given the proportion of samples used and percentage of SNPs selected in each
stage).

DNA pooling is another cost-effective technique (Barcellos, Klitz, Field, To-
bias, Bowcock, Wilson, Nelson, Nagatomi and Thomson (1997), Sham, Bader,
Craig, O’Donovan and Owen (2002), and Norton, Williams, O’Donovan and
Owen (2004)) in which several pools of DNA are allelotyped rather than each
individual being genotyped. Zuo et al. (2006) applied the DNA pooling to the
first stage of a two-stage design. In their second stage, each individual of the
remaining samples is genotyped for the selected SNPs. In Skol et al. (2006),
individuals are genotyped in both stages. Thus, the design of Zuo et al. (2006)
would save more genotyping cost than that of Skol et al. (2006). For the analy-
sis, Zuo et al. (2006) combined case-control data in the two stages into a single
case-control sample and applied a single allele-based test (ABT) statistic. On
the other hand, Skol et al. (2006) considered a joint analysis by weighting the
two ABTs from the two stages with weights proportional to sample sizes in the
two stages. One advantage of using the joint analysis is that it allows differ-
ent allele frequencies in samples (heterogeneity) from the two stages. When the
ABT is used, ignoring possible measurement errors, application of DNA pooling
with a joint analysis would reduce more genotyping cost while retaining the same
statistical power compared to individual genotyping with a joint analysis.

The Cochran-Armitage trend test (CATT) is proposed for analysis of or-
dered case-control data (Armitage (1955), Cochran (1954), and Sasieni (1997)).
Optimal CATTs are available for different genetic models (Sasieni (1997) and
Freidlin, Zheng, Li and Gastwirth (2002)). We integrate the DNA pooling of
Zuo et al. (2006) with the joint analysis of Skol et al. (2006) to examine the
power gain while the optimal CATT and the ABT-based two-stage strategies are
employed. This, however, requires us to know the genetic model. When the ge-
netic model is unknown, which is usually the case in practice, we propose a robust
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joint analysis with genetic model selections followed by using the corresponding
optimal CATT in the second stage, while DNA pooling technique is used in the
first stage. Numerical and simulation results are presented to compare power
and robustness of our method with the existing procedures.

2. Background

2.1. Notation, genetic models and association tests

Consider a SNP with alleles A and a and frequency P (A) = p. Denote the
three genotypes by g0 = aa, g1 = Aa and g2 = AA, the disease prevalence by K =
P (case), and the penetrance by fl = P (case|gl) for l = 0, 1, 2. For a case-control
study with r cases and s controls, let xi and yj be, respectively, the number of
allele A for the ith case and the jth control for i = 1, . . . , r and j = 1, . . . , s.
Write pl = P (xi = l) and ql = P (yj = l) for l = 0, 1, 2. The null hypothesis
is H0 : pl = ql = P (gl). Genotype counts are rl in cases and sl in controls for
gl, l = 0, 1, 2. Then rl =

∑r
i=1 I(xi = l) and sl =

∑s
j=1 I(yj = l), where I(·) is

the indicator function. The counts (r0, r1, r2) and (s0, s1, s2) follow multinomial
distributions Mul(r, (p0, p1, p2)) and Mul(s, (q0, q1, q2)), respectively. Denote the
margins by nl = rl + sl and the total sample size by n = r + s.

Denote genotype relative risks (GRRs) by λ1 = f1/f0 and λ2 = f2/f0

(f0 > 0). We assume that A is the risk allele and that risk increases with
the number of allele A in the genotype, i.e., λ2 ≥ λ1 ≥ 1. Four commonly
used genetic models are recessive (REC), additive (ADD), multiplicative (MUL),
and dominant (DOM), corresponding to λ1 = 1, λ1 = (λ2 + 1)/2, λ2 = λ2

1 and
λ2 = λ1, respectively.

Two common association tests are ABT and CATT (Sasieni (1997)). The
ABT compares the frequencies of allele A in cases and controls, while the CATT
compares the genotype distributions in cases and controls. Three CATTs are
available depending on the genetic models. The same CATT is used for ADD
or MUL (Freidlin et al. (2002) and Zheng, Freidlin, Li and Gastwirth (2003)).
When Hardy-Weinberg equilibrium (HWE) holds in the combined case-control
samples, the ABT and the additive CATT (optimal for the ADD model) are
asymptotically equivalent (Sasieni (1997)). The ABT (TABT) and CATT (Tθ)
are given by

TABT =
(p̂1/2 + p̂2) − (q̂1/2 + q̂2)

{p̂(1 − p̂)(1/(2r) + 1/(2s))}1/2
, (2.1)

Tθ =
(p̂2 + θp̂1) − (q̂2 + θq̂1)

[{(p̂2 + θ2p̂1) − (p̂2 + θp̂1)2}(1/r + 1/s)]1/2
, (2.2)
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where p̂l = rl/r, q̂l = sl/s, p̂ = nl/n, and θ = 0, 1/2, 1 for the REC, ADD/MUL
and DOM models. Under H0, both tests are asymptotically N(0, 1).

2.2. Genetic model selections

When the true genetic model is unknown, Tθ cannot be directly used. The
genetic model, however, may be detected using Hardy-Weinberg disequilibrium
(HWD) coefficient, denoted by δ = P (AA)− {P (AA) + P (Aa)/2}2. Zaykin and
Nielsen (2000) and Song and Elston (2006) applied the difference of HWD in
cases and controls for testing association. Denote the HWD coefficients in cases
and controls by δ1 and δ0. The HWD trend test (Song and Elston (2006)) can be
written as THWD = (rs/n)1/2(δ̂1 − δ̂0)/[{1 − n2/n − n1/(2n)}{n2/n + n1/(2n)}],
which asymptotically follows N(0, 1) under H0.

Wittke-Thompson, Pluzhnikov and Cox (2005), Suh and Li (2007) and Zheng
and Ng (2008) studied the relationship between genetic models and HWD. Zheng
and Ng (2008) showed that, when HWE holds in the population, δ1 > δ0 under
the REC model and δ1 < δ0 under DOM model, regardless of the risk allele.
Thus, they used T1/2 to test association unless THWD > c0, under which they
selected the REC model, and used T0, or THWD < −c0, under which they selected
the DOM model and used T1, where c0 = 1.645 was used. This approach was
referred to as genetic model selection (GMS), which is more robust than some
existing methods and also robust to departure from HWE (Zheng and Ng (2008)).

3. Two-stage Design with DNA Pooling and Joint Analysis

Here we integrate the DNA pooling and the joint analysis of Skol et al. (2006)
into a two-stage design. Due to DNA pooling, the ABT is the only test that can
be used for the first stage. In the second stage, we could use the ABT as did in
Skol et al. (2006), the optimal CATT when the genetic model is known, or the
GMS when the model is unknown.

Similar to Zuo et al. (2006), in addition to r cases and s controls allelotyped
in stage 1 with DNA pooling, an additional r∗ cases and s∗ controls are individ-
ually genotyped in stage 2 for the selected SNPs. In stage 1, cases and controls
are grouped into m pools and the numbers of cases and controls in each pool
are h1 and h0, respectively (r = mh1 and s = mh0). We assume a simple pool-
ing measurement error mechanism (Barratt, Payne, Rance, Nutland, Todd and
Clayton (2002)) that assumes the estimated allele frequencies from the pooled
samples is equal to the true frequencies in the samples plus a disturbance vari-
able that is N(0, ε2). Usually, ε2 needs to be estimated using the replicates of
the DNA pooling from other sources (existing pooled data or prior knowledge).
Here, however, we assume ε2 is known, because it can be estimated in practice
during the genotyping process with a given genotyping platform (Barratt et al.
(2002)).
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3.1. Using the ABTs in both stages

The ABT for pooled data can be written as

Tpool =
p̂pool
1 − p̂pool

0

[2ε2/m + p̂pool(1 − p̂pool){1/(2r) + 1/(2s)}]1/2
,

where p̂pool
0 , p̂pool

1 and p̂pool are the estimates of allele frequency in controls,
cases, and combined samples (details are given in Appendix A). Under H0, Tpool

is asymptotically N(0, 1). For the second stage with additional r∗ cases and s∗
controls, we denote the ABT test as TABT. Denote the sample proportion in the
first stage as ω = n/(n + n∗) and n∗ = r∗ + s∗. Following the joint analysis
method of Skol et al. (2006), we propose the following joint test

JABT = ω1/2Tpool + (1 − ω)1/2TABT. (3.1)

The test statistic in (3.1) combines the design of Zuo et al. (2006) with DNA
pooling in stage 1 and the joint analysis of Skol et al. (2006) in stage 2. To
apply JABT with a total of M SNPs, we assume a fraction of 100α1% top-ranked
SNPs are selected in stage 1. Then, following Skol et al. (2006), to control the
genome-wide level at α, we need to determine thresholds c1 and c2 such that,
assuming A is the risk allele after stage 1 analysis,

PH0

(
|Tpool| > c1

)
= α1, (3.2)

PH0

(
|Tpool| > c1, |JABT| > c2, Tpool · TABT > 0

)
=

α

M
. (3.3)

The two ABTs have the same sign because the same risk allele is identified. The
formula for calculating c2 and asymptotic power derived by Skol et al. (2006) can
be applied, but the asymptotic covariances of the statistics Tpool and JABT under
H0 and a specific alternative H1 are different because of DNA pooling (Appendix
A). The asymptotic power of the joint analysis JABT can be written as (3.3), but
evaluated under H1 (see Appendix A).

3.2. Using the ABT in stage 1 and optimal CATT in stage 2

Because of the DNA pooling, the Tpool is the only statistic to use in stage
1. In stage 2, since individual genotypes are obtained, the CATT (2.2) can be
calculated. Therefore, we modify JABT in (3.1) as

Jθ = ω1/2Tpool + (1 − ω)1/2Tθ, (3.4)

where θ is chosen based on the known genetic model. Accordingly, (3.3) becomes

PH0

(
|Tpool| > c1, |Jθ| > c∗2, Tpool · Tθ > 0

)
=

α

M
. (3.5)
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Because TABT and Tθ have the same asymptotic distribution and they are both
independent of stage 1 analysis, c∗2 = c2. The asymptotic power using Jθ is
similar to (3.5), but evaluated under H1 (see Appendix B).

3.3. Using the ABT in stage 1 and GMS in stage 2

In Section 3.2, the genetic model is assumed to be known. For many common
and complex diseases, however, the genetic models are usually unknown to the
researchers. In this case, Jθ cannot be directly applied without specifying θ. In
practice, J1/2 or JABT may be applied as a robust choice regardless of the true
genetic model. Here we apply the GMS (Zheng and Ng (2008)) in the second
stage.

The two-stage GMS method works as follows. If Tpool > 0, then allele A is
regarded as the risk allele and we set Tmodel = T0 if THWD > c0, Tmodel = T1 if
THWD < c0, and Tmodel = T1/2 if |THWD| ≤ c0, where c0 = 1.645 as in Zheng and
Ng (2008). On the other hand, if Tpool < 0, then we can switch alleles A and a

and apply the above GMS similarly. The joint analysis is written as

JGMS = ω1/2Tpool + (1 − ω)1/2Tmodel. (3.6)

Note that in Zheng and Ng (2008), the risk allele is also the minor allele or it is
known. In our two-stage design, the risk allele is determined in stage 1. Thus,
we do not need to know the risk allele or to use the minor allele as the risk
allele. This is one advantage of the two-stage analysis. In the second stage, the
information about the risk allele is free because the Type I error for determining
the risk allele has been paid in the first stage. In fact, by the symmetry of the
normal distribution, it can be shown that the above procedure has the same
asymptotic Type I error.

To apply the joint analysis JGMS the threshold value c1 is given as before,
and c∗∗2 for stage 2 is determined by

PH0

(
|Tpool| > c1, |JGMS| > c∗∗2 , Tmodel · Tpool > 0

)
=

α

M
. (3.7)

The asymptotic power for the joint analysis JGMS can be obtained from (3.7)
evaluated under H1 (see Appendix C).

4. Results

4.1. Simulation studies

Three joint analysis strategies (JABT, Jθ and JGMS) for the two-stage design
with DNA pooling have been discussed in Section 3. They all have DNA pooling
with the ABT in the first stage, but have different procedures (the ABT, optimal
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CATT and GMS) in the second stage. In the following, we refer to these three
approaches as procedures II-ABT, II-CATT and II-GMS. Zuo et al. (2006) and Ji
et al. (2007) showed that the two-stage design is often more powerful with equal
fraction of samples in the two stages. Thus, we conducted simulation studies
using 1,000 cases and 1,000 controls that were split for the two stages with equal
proportion (r = s = r∗ = s∗ = 500). We also conducted simulations using
smaller sample size and got similar results (results are not reported here).

Four common genetic models were considered: REC, ADD, MUL and DOM.
For each model we set GRR (λ2) at 1.5, 1.8, 2.0 and 2.5 and the risk allele
frequency in the population to be p = 0.1, 0.3 and 0.5. Our GRR was taken to
be much smaller than that in Zuo et al. (2006) in which GRR was taken to be
4.0 under various models. The measurement error was assumed to be fixed at
ε2 = 0, 0.005, 0.01 and 0.03. We considered two DNA pooling settings: a single
pool (m = 1) and four pools (m = 4), similar to those used in Zuo et al. (2006).
Note that Zuo et al. (2006) only presented numerical results with a single pool.
The genome-wide level for testing 300,000 SNPs is 0.05, so the Type I error for a
single SNP was 1.67×10−7 by the Bonferroni correction. After the DNA pooling,
the top 5% (α1 = 0.05) SNPs were selected for stage 2. Zuo et al. (2006) and
Gail, Pfeiffer, Wheeler and Pee (2007) both suggested choosing the top 5% for
genome-wide scans. Given the above settings, our numerical results showed that
the threshold values are c1 = 1.96, c2 = c∗2 = 5.232, and c∗∗2 = 5.308 (5.319,
5.323) when the minor allele frequency p = 0.1 (0.3, 0.5), where only c∗∗2 depends
on the allele frequency. In each setting, results were obtained based on 100,000
replicates. We estimated the power for the above three procedures and report
relative power ratios under different parametric settings.

4.2. Comparing procedures II-ABT and II-CATT

Table 1 reports the power comparison between Jθ and JABT when the genetic
model is known (either recessive or dominant). We define the relative efficiency
(RE) as the ratio of the empirical power of II-CATT over that of II-ABT. When
m = 1 and ε2 = 0, there is no difference between DNA pooling and individual
genotyping in estimating the allele frequency. Thus, the RE is equal to that of
the comparison between using the ABT and the optimal CATT based on the
joint analysis of Skol et al. (2006). When the underlying genetic model was REC
or DOM (Table 1), using the second design was always more powerful than using
the first design. The gain in power could be substantial (RE is up to 3.5) for
common allele p and moderately large GRR. The gain also increased with ε, which
indicates that the design with optimal CATTs in stage 2 is more robust to the
measurement errors under the REC and DOM models. The gain in power under
these two models is not surprising because the optimal CATTs are used for the
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Table 1. Relative efficiency (RE) of joint analysis in stage 2 (RE = empirical
power of the optimal CATT over the power of the ABT) when DNA pooling
is employed in stage 1: REC and DOM models.

ε2

m = 1 m = 4

Model λ2 p 0 0.005 0.01 0.03 0 0.005 0.01 0.03

REC 1.5 0.1 * * * * * * * *

0.3 * * * * * * * *

0.5 1.63 1.64 1.73 2.27 1.59 1.64 1.67 1.89

1.8 0.1 * * * * * * * *

0.3 2.63 2.64 2.75 3.35 2.60 2.62 2.67 3.19

0.5 1.17 1.19 1.26 1.54 1.16 1.16 1.18 1.36

2.0 0.1 * * * * * * * *

0.3 2.10 2.18 2.43 3.49 2.08 2.09 2.25 2.61

0.5 1.03 1.03 1.06 1.28 1.03 1.03 1.03 1.12

2.5 0.1 * * * * * * * *

0.3 1.16 1.20 1.32 1.87 1.16 1.17 1.20 1.47

0.5 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

DOM 1.5 0.1 1.13 1.14 1.23 1.25 1.15 1.15 1.15 1.21

0.3 1.45 1.47 1.56 1.80 1.48 1.50 1.53 1.62

0.5 2.38 2.85 3.27 3.47 2.55 2.77 2.80 3.33

1.8 0.1 1.04 1.06 1.10 1.21 1.03 1.05 1.06 1.13

0.3 1.09 1.12 1.20 1.54 1.10 1.10 1.13 1.27

0.5 2.18 2.30 2.56 4.15 2.14 2.26 2.30 2.84

2.0 0.1 1.01 1.01 1.03 1.13 1.01 1.01 1.01 1.07

0.3 1.01 1.02 1.06 1.28 1.01 1.02 1.02 1.11

0.5 1.71 1.82 2.07 3.30 1.74 1.76 1.82 2.38

2.5 0.1 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

0.3 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.00

0.5 1.15 1.18 1.32 2.06 1.15 1.16 1.18 1.52

* The powers of the ABT and the CATT are approximately 0.

REC and DOM models (Sasieni (1997) and Freidlin et al. (2002)). The results
for the ADD and MUL models are reported in Table 2. From Sasieni (1997)
and Zheng et al. (2003), the ABT and the additive CATT are asymptotically
equivalent. Thus, the REs in Table 2 are all close to 1 under the ADD model. For
the MUL model, the ABT seems to be slightly more powerful than the additive
CATT . The REs in Table 2 do not change noticeably with the measurement
errors ε. To summarize, when the underlying genetic models are known, using
optimal CATT was preferable to using the ABT in the second stage.

4.3. Comparing II-ABT, II-CATT and II-GMS

To examine the performance of II-GMS, we first compared it with II-CATT
under the REC and DOM models even when the underlying models were known.
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Table 2. Relative efficiency (RE) of joint analysis in stage 2 (RE = empirical
power of the optimal CATT over the power of the ABT) when DNA pooling
is employed in stage 1: ADD and MUL models.

ε2

m = 1 m = 4
Model λ2 p 0 0.005 0.01 0.03 0 0.005 0.01 0.03
ADD 1.5 0.1 * * * * * * * *

0.3 0.97 0.99 1.00 1.00 0.98 0.95 0.98 0.97
0.5 0.98 0.99 0.94 0.93 0.98 0.97 0.98 0.98

1.8 0.1 1.00 0.98 0.99 1.00 1.01 0.97 0.95 1.03
0.3 1.00 1.00 1.00 0.99 1.00 1.00 1.00 0.98
0.5 1.00 0.99 0.98 0.98 1.00 0.99 0.99 0.99

2.0 0.1 0.99 1.00 0.96 0.98 0.99 0.99 0.99 0.95
0.3 1.00 1.00 1.00 0.98 1.00 1.00 1.00 0.99
0.5 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

2.5 0.1 1.00 1.00 0.99 0.97 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00

MUL 1.5 0.1 * * * * * * * *
0.3 0.97 0.99 0.98 0.84 0.98 0.97 0.96 0.99
0.5 0.95 0.92 0.94 0.93 0.97 0.97 0.97 0.95

1.8 0.1 0.96 0.95 0.94 0.94 0.98 0.97 0.95 0.96
0.3 0.98 0.98 0.98 0.92 0.98 0.99 0.98 0.97
0.5 0.98 0.98 0.98 0.96 0.99 0.99 0.98 0.98

2.0 0.1 0.98 0.98 0.96 0.89 0.98 0.98 0.97 0.95
0.3 0.99 0.99 0.98 0.96 0.99 0.99 0.99 0.98
0.5 1.00 0.99 0.99 0.96 1.00 0.99 0.99 0.98

2.5 0.1 0.99 0.98 0.96 0.98 0.99 0.98 0.98 0.97
0.3 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

* The powers of the ABT and the CATT are approximately 0.

Results are reported in Table 3. Note that II-GMS performed reasonably well
compared to II-CATT for the given models. Most REs were greater than 0.85,
with one RE less than 0.80.

For genome-wide association studies, however, the underlying genetic models
of SNPs with true association are usually unknown. Thus, we propose to use the
joint analysis using GMS for two-stage design with DNA pooling. We compare
the REs, defined as before, of II-ABT with II-GMS in stage 2. Results for the
REC and DOM models are reported in Table 4 and for the ADD and MUL
models in Table 5. From Table 4, II-GMS was overall more powerful than II-
ABT. Similar to Tables 1 and 2, II-GMS could gain substantial power compared
to II-ABT. The gain in power also increased with the measurement errors ε. On
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Table 3. Relative efficiency (RE) of joint analysis in stage 2 (RE = empirical
power of the GMS over the power of the optimal CATT) when DNA pooling
is employed in stage 1: REC and DOM models. The underlying genetic
model is known.

ε2

m = 1 m = 4

Model λ2 p 0 0.005 0.01 0.03 0 0.005 0.01 0.03

REC 1.5 0.1 * * * * * * * *

0.3 * * * * * * * *

0.5 0.88 0.88 0.86 0.83 0.88 0.89 0.86 0.85

1.8 0.1 * * * * * * * *

0.3 0.89 0.89 0.87 0.86 0.89 0.89 0.88 0.86

0.5 0.97 0.97 0.96 0.93 0.98 0.98 0.97 0.95

2.0 0.1 * * * * * * * *

0.3 0.94 0.93 0.92 0.88 0.93 0.93 0.92 0.89

0.5 1.00 1.00 0.99 0.96 1.00 1.00 1.00 0.98

2.5 0.1 * * * * * * * *

0.3 0.99 0.99 0.98 0.95 0.99 0.99 0.99 0.98

0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DOM 1.5 0.1 0.88 0.91 0.86 0.83 0.88 0.89 0.90 0.88

0.3 0.91 0.91 0.89 0.87 0.91 0.91 0.92 0.89

0.5 0.89 0.83 0.86 0.76 0.88 0.85 0.86 0.81

1.8 0.1 0.98 0.97 0.95 0.91 0.98 0.97 0.97 0.93

0.3 0.99 0.98 0.98 0.94 0.99 0.99 0.98 0.97

0.5 0.93 0.92 0.91 0.85 0.92 0.93 0.93 0.89

2.0 0.1 1.00 0.99 0.98 0.95 1.00 1.00 0.99 0.97

0.3 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.99

0.5 0.96 0.96 0.95 0.91 0.96 0.96 0.96 0.93

2.5 0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

0.5 1.00 0.99 0.99 0.97 1.00 1.00 0.99 0.99

* The powers of the GMS and the CATT are approximately 0.

the other hand, in Table 5, since the ABT is asymptotically equivalent to the
additive CATT, II-GMS was less powerful compared to II-ABT under the ADD
or MUL models in the two-stage design. However, the loss of power from using
II-GMS was slight in most situations, although the power loss increased with ε

and decreased with λ2. Under the REC model, when GRR = 1.8 and p = 0.3, the
RE was about 2.5 using II-GMS compared to using II-ABT. For the DOM model,
II-GMS and II-ABT had similar power except for the common allele frequencies,
under which, e.g., the RE was about 2 when GRR = 1.8 and p = 0.5. For the
ADD and MUL models, the largest loss of the power using II-GMS occured when
GRR = 1.5. When GRR = 1.8 , the RE using II-GMS was greater than 0.8 for
p = 0.1, and greater than 0.90 for p = 0.3. Thus, based on the results of the
four genetic models, II-GMS was more robust than II-ABT in the sense that it
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Table 4. Relative efficiency (RE) of joint analysis in stage 2 (RE = empir-
ical power of the GMS over the power of the ABT) when DNA pooling is
employed in stage 1: REC and DOM models. The underlying genetic model
is unknown.

ε2

m = 1 m = 4
Model λ2 p 0 0.005 0.01 0.03 0 0.005 0.01 0.03
REC 1.5 0.1 * * * * * * * *

0.3 * * * * * * * *
0.5 0.88 0.88 0.86 0.83 0.88 0.89 0.86 0.85

1.8 0.1 * * * * * * * *
0.3 0.89 0.89 0.87 0.86 0.89 0.89 0.88 0.86
0.5 0.97 0.97 0.96 0.93 0.98 0.98 0.97 0.95

2.0 0.1 * * * * * * * *
0.3 0.94 0.93 0.92 0.88 0.93 0.93 0.92 0.89
0.5 1.00 1.00 0.99 0.96 1.00 1.00 1.00 0.98

2.5 0.1 * * * * * * * *
0.3 0.99 0.99 0.98 0.95 0.99 0.99 0.99 0.98
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DOM 1.5 0.1 0.88 0.91 0.86 0.83 0.88 0.89 0.90 0.88
0.3 0.91 0.91 0.89 0.87 0.91 0.91 0.92 0.89
0.5 0.89 0.83 0.86 0.76 0.88 0.85 0.86 0.81

1.8 0.1 0.98 0.97 0.95 0.91 0.98 0.97 0.97 0.93
0.3 0.99 0.98 0.98 0.94 0.99 0.99 0.98 0.97
0.5 0.93 0.92 0.91 0.85 0.92 0.93 0.93 0.89

2.0 0.1 1.00 0.99 0.98 0.95 1.00 1.00 0.99 0.97
0.3 1.00 1.00 1.00 0.97 1.00 1.00 1.00 0.99
0.5 0.96 0.96 0.95 0.91 0.96 0.96 0.96 0.93

2.5 0.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 0.99 0.99 0.97 1.00 1.00 0.99 0.99

* The powers of the GMS and the CATT are approximately 0.

suffered minor power loss under the ADD/MUL models, relative to more gains
in power under the REC/DOM models.
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Table 5. Relative efficiency (RE) of joint analysis in stage 2 (RE = empir-
ical power of the GMS over the power of the ABT) when DNA pooling is
employed in stage 1: ADD and MUL models. The underlying genetic model
is unknown.

ε2

m = 1 m = 4
Model λ2 p 0 0.005 0.01 0.03 0 0.005 0.01 0.03
ADD 1.5 0.1 * * * * * * * *

0.3 0.90 0.90 0.91 1.00 0.88 0.95 0.93 0.85
0.5 0.89 0.90 0.88 0.83 0.89 0.95 0.90 0.93

1.8 0.1 0.85 0.86 0.84 0.86 0.92 0.87 0.84 0.88
0.3 0.96 0.96 0.95 0.89 0.96 0.97 0.96 0.92
0.5 0.95 0.94 0.92 0.88 0.96 0.96 0.95 0.92

2.0 0.1 0.92 0.92 0.87 0.86 0.92 0.91 0.89 0.83
0.3 0.99 0.98 0.97 0.93 0.98 0.98 0.98 0.96
0.5 0.98 0.98 0.97 0.92 0.98 0.97 0.97 0.96

2.5 0.1 0.98 0.97 0.96 0.91 0.98 0.98 0.97 0.95
0.3 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
0.5 1.00 1.00 0.99 0.98 1.00 1.00 1.00 0.99

MUL 1.5 0.1 * * * * * * * *
0.3 0.85 0.90 1.00 0.79 0.88 0.96 0.88 0.84
0.5 0.89 0.86 0.84 0.80 0.89 0.90 0.92 0.84

1.8 0.1 0.84 0.89 0.73 0.81 0.86 0.81 0.86 0.86
0.3 0.93 0.92 0.90 0.82 0.93 0.93 0.93 0.87
0.5 0.94 0.94 0.93 0.84 0.95 0.95 0.94 0.93

2.0 0.1 0.86 0.86 0.83 0.70 0.86 0.88 0.83 0.80
0.3 0.96 0.95 0.94 0.86 0.96 0.96 0.96 0.92
0.5 0.98 0.96 0.95 0.90 0.97 0.98 0.97 0.93

2.5 0.1 0.93 0.91 0.87 0.82 0.93 0.93 0.92 0.84
0.3 1.00 1.00 0.99 0.95 1.00 1.00 1.00 0.98
0.5 1.00 1.00 1.00 0.96 1.00 1.00 1.00 0.99

* The powers of the GMS and ABT are approximately 0.

have greatly improved our presentation.

Appendix A

Let xij (yij) be the number of allele A carried by the jth individual in the
ith pool in cases (controls), and ui and vi be the i.i.d. disturbance variables from
N(0, ε2). Let p̂pool

1i = 2h−1
1

∑h1
j=1 xij + ui and p̂pool

0i = 2h−1
0

∑h0
j=1 yij + vi. Then

write p̂pool
1 = m−1

∑m
i=1 p̂pool

1i , p̂pool
0 = m−1

∑m
i=1 p̂pool

0i and p̂pool = ψp̂pool
1 + (1 −

ψ)p̂pool
0 , where ψ = r/n.
Note that c1 is the 100(1 − α1/2)th percentile of N(0, 1). For c2, under H0,
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Tpool and TABT are independent and asymptotically N(0, 1), distribution Φ(x)
and density φ(x). Thus, c2 asymptotically satisfies∫∫

R1

φ(x)φ(y)dxdy = 2
∫∫

R2

φ(x)φ(y)dxdy =
α

M
, (A.1)

where R1 = {|x| > c1,
∣∣w1x + w2y| > c2, xy > 0}, R2 = {x > c1, w1x + w2y >

c2, y > 0}, w1 = ω1/2, and w2 = (1 − ω)1/2. Further, (A.1) can be written as∫ c2/w1

c1

Φ
(

n1/2x − (n + n∗)1/2c2

n
1/2
∗

)
dΦ(x) +

1
2
Φ

(
− c2

w1

)
=

α

2M
,

from which c2 can be solved numerically.
In order to calculate the asymptotic power for JABT for a given genetic model

with the joint distribution of Tpool and TABT under H1, we need to compute the
means and variances of the two statistics under H1. Write ppool

1 = p2 + p1/2 and
ppool
0 = q2 + q1/2, with estimates given before. Since (ui, vi) are independent

of genotypes, µ = EH1(p̂
pool
1 − p̂pool

0 ) = ppool
1 − ppool

0 and VarH1(p̂
pool
1 − p̂pool

0 ) =
σ∗2 + 2ε2/m, where σ∗2 = {4p2 + p1 − (2p2 + p1)2}/(4r) + {4q2 + q1 − (2q2 +
q1)2}/(4s). Let p∗ = ψppool

1 + (1 − ψ)ppool
0 . Then EH1(p̂

pool) = p∗. Define
σ2 = p∗(1 − p∗){1/(2r) + 1/(2s)}. Let Z1 ∼ N(µ1, σ

2
1), where

µ1 =
µ

(σ2 + 2ε2/m)1/2
, σ2

1 =
σ∗2 + 2ε2/m

σ2 + 2ε2/m
.

Then, under H1, Tpool and Z1 have the same asymptotic distribution.
For stage 2, let ψ∗ = r∗/n∗ and pcase with pcont used to denote the allele A’s

frequencies in case and control groups, p∗ = ψ∗pcase+(1−ψ∗)pcont = EH1(p̂), and
p̂, given in TABT, is the allele frequency estimate from data in stage 2 under the
null. Write σ2

∗ = p∗(1− p∗){1/(2r∗) + 1/(2s∗)}. Similar to the above derivations
for stage 1, for stage 2, we have asymptotically that TABT and Z2 have the same
asymptotic distribution where Z2 ∼ N(µ2, σ

2
2) under H1, with µ2 = µ/σ∗ and

σ2
2 = σ∗2/σ2

∗. Let Φi(x) be the distribution function of N(µi, σ
2
i ) for i = 1, 2,

then the asymptotic power of JABT, πABT, is

πABT =
∫∫

R1

dΦ1(x)dΦ2(y) =
∫∫

R2

dΦ1(x)dΦ2(y) +
∫∫

R3

dΦ1(x)dΦ2(y),

where R3 = {x < −c1, w1x + w2y < −c2, y < 0}.

Appendix B

The asymptotic power of Jθ, πCATT, is similar to πABT with TABT being
replaced by Tθ. The correlations among the test statistics are different under H1.
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In the following, the higher order terms are omitted. Let Uθ = p2 +θp1−q2−θq1

and Ûθ = p̂2 + θp̂1 − q̂2 − θq̂1, where p̂l = r∗l/r∗ and q̂l = s∗l/s∗ for l = 0, 1, 2.
(Note that p̂l = rl/r and q̂l = sl/s were used before.) Under H0, pl = ql = πl for
l = 0, 1, 2. Then EH0(Ûθ) = 0, VarH0(Ûθ) = {π2+θ2π1−(π2+θπ1)2}(1/r∗+1/s∗),
which can be estimated by V̂arH0(Ûθ), where π̂l = (r∗l + s∗l)/n∗ = n∗l/n∗. Write
σ2∗

θ = n∗V̂arH0(Ûθ), so Tθ can be written as Tθ = n
1/2
∗ Ûθ/σ∗

θ in distribution. Let
µθ = EH1(Ûθ) and σ2

θ = VarH1(n
1/2
∗ Ûθ) = {(θ2p1 + p2 − (θp1 + p2)2)}(n∗/r∗) +

{(θ2q1 + q2 − (θq1 + q2)2)}(n∗/s∗). Then, under H1, Tθ and Z3 have the same
asymptotic distribution, where Z3 ∼ N(µ3, σ

2
3) with distribution function Φ3(x),

where µ3 = n
1/2
∗ µθ/σ∗

θ and σ2
3 = σ2

θ/σ2∗
θ . Then the asymptotic power can be

written as

πCATT =
∫∫

R1

dΦ1(x)dΦ3(y) =
∫∫

R2

dΦ1(x)dΦ3(y) +
∫∫

R3

dΦ1(x)dΦ3(y).

Appendix C

Write under either H0 or H1,

Σ1 = Var
(

p̂1

p̂2

)
=

1
r∗

(
p1(1 − p1) − p1p2

−p1p2 p2(1 − p2)

)
,

Σ0 = Var
(

q̂1

q̂2

)
=

1
s∗

(
q1(1 − q1) − q1q2

−q1q2 q2(1 − q2)

)
.

Let f(x, y) = x(1−x)(x/2+y)2 +2xy(x/2+y)(1−x−2y)+y(1−y)(1−x−2y)2.
Under H0, EH0(δ̂1 − δ̂0) = 0 and VarH0(δ̂1 − δ̂0) = f(π1, π2)(1/r∗ + 1/s∗). If
σ2∗

HWD = n∗V̂arH0(δ̂1 − δ̂0) = f(π̂1, π̂2)(n∗/r∗ + n∗/s∗), we can write THWD as

THWD =
n

1/2
∗ (δ̂1 − δ̂0)

σ∗
HWD

.

We can write σ2
HWD = n∗VarH1(δ̂1 − δ̂0) = f(p1, p2)(n∗/r∗) + f(q1, q2)(n∗/s∗)

by the Delta method. Therefore, THWD and Z4 have the same asymptotic dis-
tribution, where Z4 ∼ N(µ4, σ

2
4) under H1 with µ4 = n

1/2
∗ (δ1 − δ0)/σ∗

HWD and
σ2

4 = σ2
HWD/σ2∗

HWD.
Let Tpool = x. To find the threshold c∗∗2 in (3.7), the left hand side of (3.7)

can be written as

PH0(x > c1, THWD > c0, w1x + w2T0 > c∗∗2 , T0 > 0)
+PH0(x > c1, THWD < −c0, w1x + w2T1 > c∗∗2 , T1 > 0)
+PH0(x < −c1, THWD > c0, w1x + w2T1 < −c∗∗2 , T1 < 0)
+PH0(x < −c1, THWD < −c0, w1x + w2T0 < −c∗∗2 , T0 < 0)
+PH0(|x| > c1, |THWD| ≤ c0, |w1x + w2T1/2| > c∗∗2 , T1/2 · x > 0), (A.2)
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where each probability is a function of the correlation between THWD and Tθ

in the second stage. From Zheng and Ng (2008), corrH0(THWD, T0) = {(1 −
p)/(1 + p)}1/2 + O(n−1), corrH0(THWD, T1) = −{p/(2 − p)}1/2 + O(n−1), and
THWD and T1/2 are asymptotically independent under H0 with order O(n−1).
Let ρ0 = {(1−p)/(1+p)}1/2 and ρ1 = −{p/(2−p)}1/2. Let Φ0(y, z) and Φ1(y, z)
be the distribution of bivariate normal with mean (0, 0) and covariance matrices

Λ0 =
(

1 ρ0

ρ0 1

)
and Λ1 =

(
1 ρ1

ρ1 1

)
, respectively. Let A1 = {x > c1, y >

c0, z > 0, w1x + w2z > c∗∗2 }, A2 = {x > c1, y < −c0, z > 0, w1x + w2z > c∗∗2 },
A3 = {x < −c1, y > c0, z < 0, w1x + w2z < −c∗∗2 }, A4 = {x < −c1, y < −c0, z <

0, w1x + w2z < −c∗∗2 }, and A5 = {|x| > c1, |y| ≤ c0, z < 0, |w1x + w2z| >

c∗∗2 }. Then (A.2) can be written as
∫
A1

dΦ(x)dΦ0(y, z) +
∫
A2

dΦ(x)dΦ1(y, z) +∫
A3

dΦ(x)dΦ1(y, z) +
∫
A4

dΦ(x)dΦ0(y, z) +
∫
A5

dΦ(x)dΦ(y)dΦ(z).
To obtain the power of JGMS, we need the correlation between Tθ and THWD

under H1,

ρ∗θ = corrH1(THWD, Tθ) =
n∗

σHWDσθ

{
CovH1

(
δ̂1, Ûθ

)
− CovH1

(
δ̂0, Ûθ

)}
.

Let f1(x, y) = y − (y + x/2)2 and f2(x, y) = y + θx. Then

CovH1

(
δ̂1, Ûθ

)
= CovH1

(
f1(p̂1, p̂2), f2(p̂1, p̂2)

)
.

A similar expression can be obtained for CovH1(δ̂0, Ûθ). Using the Delta method,

CovH1

(
δ̂1, Ûθ

)
=

(
∂f1(p1, p2)

∂p1

∂f1(p1, p2)
∂p2

)
Σ1

(∂f2(p1,p2)
∂p1

∂f2(p1,p2)
∂p2

)
. (A.3)

Write gθ(x, y) = θ{x(1 − x)(y + x/2) + xy(1 − x − 2y)} − {xy(y + x/2) + y(1 −
y)(1 − x − 2y)} and φ∗ = lim r∗/n∗.

Let ξ∗θ = −{gθ(p1, p2)/φ∗ + gθ(q1, q2)/(1− φ∗)}/(σhwdσθ). Under H1, Z5 has
a bivariate normal distribution with mean vector (µ4, µ3)′ and covariance matrix

σ2
hwd

σ2∗
hwd

− ξ∗θ
σhwdσθ

σ∗
hwdσ

∗
θ

−ξ∗θ
σhwdσθ

σ∗
hwdσ

∗
θ

σ2
θ

σ2∗
θ

 . (A.4)

Then (Thwd, Tθ)′ and Z5 have same asymptotic distribution under H1. If Φ̃θ(x, y)
is the joint distribution function of THWD and Tθ, the power function of JGMS
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can be written as

πGMS =
∫

A1

dΦ(x)dΦ̃0(y, z) +
∫

A2

dΦ(x)dΦ̃1(y, z) +
∫

A3

dΦ(x)dΦ̃1(y, z)

+
∫

A4

dΦ(x)dΦ̃0(y, z) +
∫

A5

dΦ(x)dΦ̃1/2(y, z). (A.5)

Regions Ai, i = 1, . . . , 5 are given as above.
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