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Abstract: Supersaturated design (SSD) has received much interest because of its

potential in factor screening experiments. Most studies focus on the construction

and analysis of symmetrical SSDs. This paper considers the construction of asym-

metrical (or mixed-level) SSDs. A new construction method, called the substitution

method, for E(fNOD ) optimal and nearly-optimal SSDs is proposed. The basic idea

of this method is to divide the rows of one design into several blocks, and then sub-

stitute the levels of another design with these blocks. The two designs can be SSDs

and saturated orthogonal arrays, and their selections are investigated in detail. The

properties of the designs generated are also discussed, and many new designs are

tabulated for practical use.
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1. Introduction

The supersaturated design (SSD) is a kind of factorial design in which the
number of runs is not enough to estimate all the main effects. Sometimes scien-
tists and engineers meet in conducting experiments in which, from a large number
of factors, they need to screen out a few significant ones in a relatively small num-
ber of experimental runs. In such situations SSDs may be useful. Booth and Cox
(1962) examined these designs systematically and proposed the E(s2) criterion,
but such designs were not studied further until the appearance of work by Lin
(1993) and Wu (1993). SSDs have become increasingly popular in recent years
because of their potential in factor screening experiments. Most studies have
focused on the construction and analysis of symmetrical SSDs. However, much
practical experience indicates that mixed-level SSDs also have wide use.

Researches on mixed-level SSDs include the early work by Fang, Lin, and
Liu (2000, 2003) who proposed the E(fNOD) criterion and the FSOA method for
constructing mixed-level SSDs, and by Yamada and Matsui (2002) and Yamada
and Lin (2002) who used χ2 to evaluate mixed-level SSDs. Fang, Ge, Liu, and
Qin (2004a) and Koukouvinos and Mantas (2005) constructed many E(fNOD)
optimal mixed-level SSDs. Li, Liu, and Zhang (2004) derived a lower bound
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of χ2 along with the sufficient and necessary condition for achieving it. Recent
work on mixed-level SSD includes Xu (2003), Xu and Wu (2005), Liu, Fang, and
Hickernell (2006), Yamada, Matsui, Matsui, Lin, and Tahashi (2006), Ai, Fang,
and He (2007), Zhang, Zhang, and Liu (2007), Tang, Ai, Ge, and Fang (2007),
Chen and Liu (2008a,b), Liu and Lin (2009), and Liu and Zhang (2009).

The main purpose of this article is to provide a construction method, called
the substitution method, for mixed-level SSDs. Section 2 proposes the general
construction method for SSDs and gives an illustrative example. The method
is carried out by substituting the levels of a support design by the row-blocks
of a blocked design. In Section 3, the selections of the equidistant blocked and
support designs are investigated and the properties of the generated designs are
discussed. Section 4 extends the method to the case of non-equidistant designs,
and provides general steps for selecting blocked and support designs. The last
section contains some further discussions. Many new designs are tabulated in
the Appendix for practical use.

The rest of this section is devoted to the E(fNOD) criterion that will be used.
A qi-level design of n runs and mi factors, denoted by D(n; qmi

i ), is an n × mi

matrix Di = (dkj), where each column takes values from a set of qi symbols,
say {1, . . . , qi}; a mixed-level design with n runs and m =

∑t
i=1 mi factors,

denoted by D(n; q1
m1 · · · qt

mt), is an n ×
∑t

i=1 mi matrix D = [D1, . . . , Dt]. D

is called an orthogonal array of strength 2, denoted by Ln(q1
m1 · · · qt

mt), if for
any two columns all possible level-combinations appear equally often. When∑t

i=1(qi−1)mi = n−1, D is called a saturated design, and when
∑t

i=1(qi−1)mi >

n−1, the design is called a supersaturated design (SSD). Two columns are called
fully aliased if one column can be obtained from the other by permuting levels.
A design is called balanced if each column of the design has the equal occurrence
property of the levels. Throughout the paper, we only consider balanced designs.

For a D(n; q1
m1 · · · qt

mt), we suppose the ith and jth columns di and dj have
qi and qj levels, respectively. The E(fNOD) criterion is

E(fNOD) =

∑
1≤i<j≤m fNOD(di, dj)(

m
2

) , where

fNOD(di, dj) =
qi∑

a=1

qj∑
b=1

(
nab(di, dj) −

n

qiqj

)2

,

and nab(di, dj) is the number of (a, b)-pairs in (di, dj). Let λhl be the coincidence
number between the hth and lth rows. Fang, Lin, and Liu (2000, 2003) expressed
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E(fNOD) in terms of λhl’s as

E(fNOD) =

∑n
h,l=1,h 6=l λ

2
hl

m(m − 1)
+ Cf , where (1.1)

Cf =
nm

m − 1
− n2

m(m − 1)

( t∑
i=1

mi

qi
+

t∑
i=1

mi(mi − 1)
q2
i

+
t∑

i=1

t∑
j=1,j 6=i

mimj

qiqj

)
,

and obtained a lower bound of it. Then the lower bound was improved by Fang,
Ge, Liu, and Qin (2004a) as

E(fNOD) ≥ n(n − 1)
m(m − 1)

[
(bλc + 1 − λ)(λ − bλc) + λ2

]
+ Cf . (1.2)

Equality is achieved in (1.2) if and only if all the values of λhl (h 6= l) take at
most two different values bλc and bλc+ 1, where bλc denotes the integer part of
λ, and

λ =
n

∑t
i=1 mi/qi − m

n − 1
. (1.3)

Note that m − λhl is the Hamming distance between the hth and lth rows,
a design with equal Hamming distances, m − λ, is called an equidistant design,
and a design with Hamming distances m− bλc and m− bλc − 1 is called a weak
equidistant design (Zhang, Fang, Li, and Sudjianto (2005)). Obviously both
designs are E(fNOD) optimal.

Another class of design criteria relies on maximum fNOD(di, dj) values
(Koukouvinos and Mantas (2005) and Chen and Liu (2008a)):

max f qu,qu

NOD
=max

{
fNOD(di,dj)|1 ≤ i < j ≤ m, both di and dj have qu levels

}
,

max f qu,qv

NOD
=max

{
fNOD(di,dj)|1 ≤ i, j ≤ m,di has qu levels, dj has qv levels,

qu 6= qv

}
.

The χ2(D) criterion defined by Yamada and Lin (1999) and Yamada and
Matsui (2002) is in fact to minimize χ2(D) =

∑
1≤i<j≤m qiqjfNOD(di, dj)/n.

There are also several other criteria for evaluating mixed-level SSDs, such as
the (i) discrete discrepancy (Fang, Lin, and Liu (2000, 2003)), (ii) minimum
moment aberration (Xu (2003)). (iii) generalized minimum aberration (Xu and
Wu (2001, 2005)), and (iv) minimum projection uniformity (Hickernell and Liu
(2002)) criteria. It is obvious that E(fNOD) and χ2(D) are equivalent in the
symmetric case, and it has been shown that they are extensions of existing criteria



1708 MIN-QIAN LIU AND ZHAO-YANG CAI

for symmetric SSDs; they are closely related to the other four criteria for mixed-
level SSDs. In this paper, we mainly adopt E(fNOD) to evaluate the newly
constructed SSDs.

2. The General Construction Method

Since Fang, Lin, and Liu (2000, 2003) proposed the E(fNOD) criterion, there
have been several papers concerning the construction of E(fNOD)-optimal SSDs,
such as Fang, Ge, and Liu (2002, 2004) Fang, Ge, Liu, and Qin (2004b), Aggarwal
and Gupta (2004), Koukouvinos and Stylianou (2004), Georgiou and Koukouvi-
nos (2006) and Georgiou, Koukouvinos, and Mantas (2006) on multi-level SSDs,
Fang, Ge, Liu, and Qin (2004a), Koukouvinos and Mantas (2005), and Chen and
Liu (2008a,b) on mixed-level SSDs. As we can see from the previous section and
Fang, Ge, Liu, and Qin (2004a), there are strict restrictions on the run size n,
level sizes q1, . . . , qt, and the respective numbers of factors m1, . . . ,mt, for a de-
sign to attain the lower bound of E(fNOD). For many cases, even though the λ in
(1.3) is an integer, this lower bound may not be achieved and there is still a need
for further research on the construction of SSDs with small values of E(fNOD),
in particular for the mixed-level case. We now introduce a general construction
method for SSDs. The main steps of the construction are as follows.

Step 1. Select a design D(n; qm1
1 · · · qmt

t ) with m =
∑t

i=1 mi and another design
D(kp; pr). (Note that p can be different from q1, . . . , qt, but should be
a positive divisor of n.)

Step 2. Divide the n rows of D(n; qm1
1 · · · qmt

t ) into p blocks with n/p rows and
m columns each; denote these p blocks by b1, . . . , bp, respectively.

Step 3. Substitute the p levels, say 1, . . . , p, in D(kp; pr) by b1, . . . , bp, respec-
tively, then obtain a design D(kn; qm1r

1 · · · qmtr
t ).

We call this method the substitution method, and call the two designs D(n;
qm1
1 · · · qmt

t ) and D(kp; pr) the blocked design and the support design, respectively.
We know that equidistant designs are a special kind of E(fNOD) optimal

designs, and they include saturated Ln(qm)’s with m = (n − 1)/(q − 1). Such
designs can be selected as blocked and support designs. In this paper we construct
mixed-level SSDs from the known equidistant designs (most of which are SSDs),
and investigate their properties.

Example 1. Table 1 shows an equidistant design D(6; 2133), constructed from
an L9(34) via the FSOA method, proposed by Fang, Lin, and Liu (2003), and
Table 2 tabulates an equidistant design D(12; 611) due to Lu, Hu, and Zheng
(2003). Take the D(6; 2133) as a blocked design and divide its six rows into six
blocks as indicated in Table 1, i.e., the ith row forms bi for i = 1, . . . , 6. Take the
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Table 1. A blocked design D(6; 2133)

Block 1 2 3 4
b1 1 1 1 1
b2 1 2 2 2
b3 1 3 3 3
b4 2 1 2 3
b5 2 2 3 1
b6 2 3 1 2

Table 2. An SSD D(12; 611)

1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2 2 2
2 1 3 3 3 3 3 3 3 3 2
2 2 1 4 4 4 4 4 4 4 3
3 3 2 1 5 5 5 5 4 3 4
4 4 3 2 1 6 6 5 5 4 5
3 5 4 3 2 1 6 6 6 5 3
5 3 5 4 3 2 1 6 5 6 6
6 4 6 5 4 3 2 1 6 6 4
4 6 6 6 5 4 3 2 1 5 6
5 6 4 5 6 5 4 3 2 1 5
6 5 5 6 6 6 5 4 3 2 1

Table 3. Generated SSD D(12; 211333)

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2

1 2 2 2 1 1 1 1 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 3 3 3 1 2 2 2

1 2 2 2 1 2 2 2 1 1 1 1 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 1 3 3 3

1 3 3 3 1 3 3 3 1 2 2 2 1 1 1 1 2 2 3 1 2 2 3 1 2 2 3 1 2 2 3 1 2 1 2 3 1 3 3 3 2 1 2 3

2 1 2 3 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1 2 3 1 2 2 3 1 2 2 2 3 1 2 2 3 1 2 1 2 3 2 2 3 1

1 3 3 3 2 2 3 1 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1 2 3 1 2 2 3 1 2 2 3 1 2 2 2 3 1 1 3 3 3

2 2 3 1 1 3 3 3 2 2 3 1 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1 2 3 1 2 2 2 3 1 2 3 1 2 2 3 1 2

2 3 1 2 2 1 2 3 2 3 1 2 2 2 3 1 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1 2 3 1 2 2 3 1 2 2 1 2 3

2 1 2 3 2 3 1 2 2 3 1 2 2 3 1 2 2 2 3 1 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1 2 2 3 1 2 3 1 2

2 2 3 1 2 3 1 2 2 1 2 3 2 2 3 1 2 3 1 2 2 2 3 1 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1 2 2 3 1

2 3 1 2 2 2 3 1 2 2 3 1 2 3 1 2 2 3 1 2 2 3 1 2 2 2 3 1 2 1 2 3 1 3 3 3 1 2 2 2 1 1 1 1

D(12; 611) as a support design and substitute its six levels 1, . . . , 6 by b1, . . . , b6,
respectively, to obtain an SSD D(12; 211333) as shown in Table 3. It can be
easily checked that the coincidence number between any two distinct rows of this
generated design is 14, and thus the design is E(fNOD) optimal, the E(fNOD)
value is 4.4651, the lower bound given in (1.2). It is known that in the blocked
design D(6; 2133), the 2-level factor is orthogonal to any of the 3-level factors. It
can be verified that if we divide the 44 columns of this generated design into 11
sub-designs of 4 sequential columns each, then within any sub-design the 2-level
factor is still orthogonal to any of the 3-level factors.
Remark 1. Note that our method can always produce E(fNOD) optimal designs
by selecting appropriate blocked and support designs. In the following section,
we set guidelines for producing them.
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3. Selection of The Blocked and Support Designs and Properties of
The Generated Design

The previous section presented the construction procedure for mixed-level
SSDs. Throughout this section, both the blocked and support designs are equidis-
tant designs. As for how to divide the rows of D(n; qm1

1 · · · qmt
t ) into p blocks, we

have the following.

Theorem 1. Let the blocked and support designs be equidistant designs.

(1). If n > p and k > 1, no matter how the rows of the blocked design D(n; qm1
1

· · · qmt
t ) are divided, the generated design has only two different values of

coincidence numbers between its rows, and its E(fNOD) is a constant.
(2). If n = p or k = 1, no matter how the rows of the design D(n; qm1

1 · · · qmt
t )

are divided, the generated design has constant coincidence numbers between
its rows, and thus is E(fNOD) optimal.

Proof. (1). From the definition of equidistant design in Section 1, we know
that the coincidence numbers of the blocked design D(n; qm1

1 · · · qmt
t ) take the

constant λ given in (1.3) and those of the support design D(kp; pr) are

λ∗ =
r(k − 1)
(kp − 1)

. (3.1)

The mr columns of the generated design D(kn; qm1r
1 · · · qmtr

t ) can be divided into
r sub-designs C1, . . . , Cr of m sequential columns each, and the kn rows can be
divided into kp row-groups where, in each sub-design, there are k replicates of
the blocks b1, . . . , bp. For the hth row of bi and the lth row of bj , the coincidence
number takes the value m if i = j and h = l, and the value λ otherwise. From
the construction method, we know that the number of coincident blocks between
any two distinct row-groups of the generated design is λ∗.

Now consider the coincidence number between the ith and jth rows (i 6= j)
of the generated design. Based on the above discussion, it can be easily shown
that

λij =
{

λ∗m + (r − λ∗)λ, if i = j mod n
p ;

rλ, otherwise ,
(3.2)

and the frequencies of these two values are N1 = kn(kp−1) and N2 = kn(kn−kp),
respectively. Thus

∑kn
i,j=1 λ2

ij is a constant no matter how the design D(n; qm1
1

· · · qmt
t ) is divided, so E(fNOD) is constant.

(2). If n = p, the λij ’s for i 6= j can only take the first value given in (3.2),
and if k = 1, we have λ∗ = 0 from (3.1) and thus λij = rλ. In either of these
cases, E(fNOD) achieves its lower bound and the generated design is E(fNOD)
optimal.
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The E(fNOD) optimality of the generated design in Example 1 can be directly
verified since n = p = 6. The next theorem considers the selection of the support
design in order to get a generated design with a smaller E(fNOD).

Theorem 2. Given a blocked design D(n; qm1
1 · · · qmt

t ), suppose there exist sup-
port designs D(kpi; pi

r), i = 1, 2 with k > 1 and p1 < p2. Then the D(kn; qm1r
1 · · ·

qmtr
t ) generated from D(kp2; p2

r) has a smaller E(fNOD) than the one generated
from D(kp1; p1

r).

Proof. For the blocked design, the coincidence numbers between its rows take
the constant λ given in (1.3). For any D(kpi; pi

r), the coincidence numbers take
the value λ∗

i = r(k − 1)/(kpi − 1), i = 1, 2. Then, similar to the proof of Theorem
1, the corresponding D(kn; qm1r

1 · · · qt
mtr) takes the coincidence number values

λ∗
i1 = λ∗

i m + (r − λ∗
i )λ and λ∗

i2
= rλ, with frequencies Ni1 = kn(kpi − 1) and

Ni2 = kn(kn − kpi), respectively, i = 1, 2. Since p1 < p2, we can easily have

λ∗
1 > λ∗

2, λ∗
11 > λ∗

21 > λ∗
22 = λ∗

12,

N11 < N21, N12 > N22, N11λ
∗
11 + N12λ

∗
12 = N21λ

∗
21 + N22λ

∗
22.

Then, based on the expression of E(fNOD) in (1.1) and the majorization the-
ory recently used in Zhang, Fang, Li, and Sudjianto (2005) and Liu, Fang, and
Hickernell (2006), we get the assertion of the theorem.

From the construction method, we know that the largest possible value of
p for the support design is n; then, based on Theorem 2 and conclusion (2) of
Theorem 1, we have the following.

Corollary 1. Given a blocked design D(n; qm1
1 · · · qmt

t ), if there exists a support
design D(kn; nr) with k > 1, then among all the possible D(kn; qm1r

1 · · · qmtr
t )

generated from D(kpi; pi
r), the one corresponding to D(kn; nr) has the smallest

E(fNOD), and only this generated design achieves the lower bound of E(fNOD).

The above results tell us how to divide a blocked design and how to se-
lect a good support design in terms of the E(fNOD) criterion. As for the near-
orthogonality of columns of the generated designs, one has the following.

Theorem 3. Let bi, si, and gi be the ith columns of the blocked design D(n; qm1
1

· · · qmt
t ), support design D(kp; pr), and generated design D(kn; qm1r

1 · · · qmtr
t ), re-

spectively, and bl = (bl1, . . . , blm) be the lth block of the blocked design with n = p.

(1). fNOD(gi′ , gj′) = k2fNOD(bi, bj). In particular if the blocked design is an
Ln(qm1

1 · · · qmt
t ), fNOD(gi′ , gj′) = 0, where i′ = (u−1)m+i, j′ = (u−1)m+j,

u = 1, . . . , r, i, j = 1, . . . ,m, i 6= j.
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(2). When n = p, nab(gi′ , gj′) =
∑

S nhl(su, sv). In particular if the support de-
sign is an Lkn(nr), fNOD(gi′ , gj′) = 0, where S = {(h, l) : bhi = a, blj = b},
i′ = (u − 1)m + i, j′ = (v − 1)m + j, u, v = 1, . . . , r, u 6= v, i, j = 1, . . . ,m.

(3). If the blocked and support designs are an Ln(qm1
1 · · · qmt

t ) and an Lkn(nr), re-
spectively, then the generated design is an Lkn(qm1r

1 · · · qmtr
t ). Furthermore,

if the blocked design is a saturated Ln(qm) and the Lkn(nr) is saturated,
then the generated design is a saturated Lkn(qmr).

Remark 2. The properties given in this theorem are valid for both equidis-
tant and non-equidistant blocked and support designs. Note that the E(fNOD)
criterion is not enough to prevent the existence of fully aliased columns in the
design. The mr columns of the generated design can be divided into r sub-
designs of m sequential columns each. Conclusion (1) of this theorem guarantees
that the near-orthogonality measured by fNOD of the blocked design is well kept
within each sub-design of the generated design. Since it can be easily shown
that fNOD(di, dj) =

∑qi
a=1

∑qj

b=1(nab(di, dj))2 −n2/(qiqj), conclusion (2) ensures
that the near-orthogonality between columns of the support design is well kept
between sub-designs of the generated design. Conclusion (3) is a special case
which ensures the production of orthogonal generated designs.

These properties are very helpful when we have some prior information about
the activeness of the factors; one can allocate the possibly active factors, or the
ones of interest, into orthogonal columns in order to avoid aliasing among those
factors when screening them.

4. Extensions to Non-equidistant Designs

In the above discussion, the blocked and support designs are equidistant
designs, but such designs may not exit for some given parameters. In such cases,
we can replace the blocked and/or support designs with non-equidistant designs,
such as weak equidistant designs.

Theorem 4. Given an equidistant blocked design D(n; q1
m1 · · · qt

mt) and a sup-
port design D(kp; pr) with different values of coincidence numbers between its
rows, then no matter how the blocked design is divided, the generated design
D(kn; q1

m1r · · · qt
mtr) has a constant E(fNOD).

Proof. For the blocked design, the coincidence numbers between its rows take
the constant λ given in (1.3). Suppose, among the kp(kp−1) coincidence numbers
of D(kp; pr), there are Ni with the value λ∗

i for i = 1, . . . , l, hence
∑l

i=1 Ni =
kp(kp − 1). Then the coincidence numbers of the generated design take l + 1
values: βi = λ∗

i m + (r − λ∗
i )λ, for i = 1, . . . , l, and βl+1 = rλ, with frequencies
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Mi = Nin/p, for i = 1, . . . , l, and Ml+1 = kn(kn−kp), respectively. The assertion
follows.

Note that, when n = p, Ml+1 = 0 and there are only l values of coincidence
numbers in the generated design.

Example 2. Suppose we want to construct an SSD D(12; 210330) with the
D(6; 2133) shown in Table 1 as the blocked design. For the support design, we
take the D(12; 610) formed by the first ten columns of the design in Table 2.
It can be seen that this D(12; 610) is a weak equidistant design, and thus an
E(fNOD) optimal one. The generated design D(12; 210330) consists of the first
ten sub-designs of the design shown in Table 3. It has two values of coincidence
numbers, 10 and 13, and its E(fNOD) is 4.46 with the lower bound being 4.42.

Theorem 2 and Corollary 1 suggest selecting the equidistant support designs
with large level sizes (run sizes), in particular the n-level ones if they exist.
However, for some cases, such equidistant designs may not exist though there
may exist equidistant designs with smaller level sizes.

Theorem 5. Given an equidistant blocked design D(n; qm1
1 · · · qmt

t ), suppose there
exist a support design D(kp; pr) with λ∗ coincidences between its rows, where
k > 1 and p < n, and another support design D(kn;nr) with λ∗

1, . . . , λ
∗
l (l ≥ 2)

coincidences satisfying
0 ≤ λ∗

1 < · · · < λ∗
l ≤ λ∗. (4.1)

Then if there exist at least two strict inequalities in (4.1), the D(kn; qm1r
1 · · · qmtr

t )
generated from D(kn; nr) has a smaller E(fNOD) than the one generated from
D(kp; pr) (p < n); otherwise, the two generated designs have the same E(fNOD).

Proof. For the blocked design, the coincidence numbers between its rows take
the constant λ given in (1.3). It can be easily shown that the design generated
from the D(kp; pr) takes two values of coincidence numbers: λ∗

11 = rλ and λ∗
12 =

λ∗m + (r − λ∗)λ, and the other generated design takes l different values: λ∗
2i =

λ∗
i m + (r − λ∗

i )λ, for i = 1, . . . , l. Since (4.1) holds,

λ∗
11 ≤ λ∗

21 < · · · < λ∗
2l ≤ λ∗

12. (4.2)

The condition that there exist at least two strict inequalities in (4.1) implies that
there exist at least two strict inequalities in (4.2). Thus, based on the expression
of E(fNOD) in (1.1) and majorization theory, the assertions follow.

Remark 3. When l > 2, there are at least two strict inequalities in (4.1) as well
as in (4.2); when l = 2, if 0 < λ∗

1 and/or λ∗
l < λ∗, there exist at least two strict

inequalities in (4.1); if λ∗
1 = 0 and λ∗

l = λ∗, the two generated designs perform
the same in terms of E(fNOD). Note that when l = 1, it can be shown that
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0 < λ∗
1 < λ∗, i.e., the condition that there exist at least two strict inequalities

in (4.1) holds; this is the case of equidistant support designs and the design
generated from D(kn; nr) is E(fNOD) optimal (cf. Corollary 1).

Remark 4. When there exist no equidistant blocked designs, we can choose
weak equidistant designs or other E(fNOD) optimal or nearly-optimal ones as
blocked designs. As we can see from the proof of Theorem 1, for example for
the case of k = 1 (i.e., λ∗ = 0), if we have a non-equidistant blocked design with
l different coincidence numbers λ1, . . . , λl, then the generated design will have
coincidence numbers in the form of

∑l
i=1 riλi with

∑l
i=1 ri = r. From (1.1),

these values should spread as equally as possible, as should λ1, . . . , λl, hence we
prefer to select the best blocked design in terms of E(fNOD).

Based on the above discussion, we have the following steps for the selec-
tions of the blocked design D(n; qm1

1 · · · qmt
t ) and support design D(kp; pr) for

constructing a D(kn; qm1r
1 · · · qmtr

t ).

Step 1. Select two equidistant designs D(n; qm1
1 · · · qmt

t ) and D(kp; pr) satisfying
n = p or k = 1 if they exist (cf. Theorem 1 and Corollary 1).

Step 2. Select an equidistant blocked design D(n; qm1
1 · · · qmt

t ) and a weak equi-
distant support design D(kn; nr) (i.e., n = p) according to Theorem 5
and Remark 3.

Step 3. Select a weak equidistant blocked design D(n; qm1
1 · · · qmt

t ) and an equi-
distant support design D(p; pr) (i.e., k = 1) according to Remark 4.

Step 4. If (weak) equidistant designs are difficult to obtain, select other good
designs in terms of E(fNOD).

Remark 5. Note that, if there exist more than one candidate for any set of given
parameters, one looks to select a design with smaller maximum fNOD values in
order to keep the max f qu,qu

NOD
and max f qu,qv

NOD
values of the generated design as

small as possible (cf. Theorem 3).

Appendices A and B tabulate some E(fNOD) optimal designs which are con-
structed from two equidistant designs D(n; qm1

1 · · · qmt
t ) and D(kn;nr). Note

that the orthogonal arrays used in the tables can be found from the sites main-
tained by Dr. N. J. A. Sloane (http://www.research.att.com/~njas/oadir/)
and Dr. W. F. Kuhfeld (http://support.sas.com/techsup/technote/ts723.
html). Each equidistant blocked design in Appendix B is obtained by adding an
n-level column to the corresponding blocked design in Appendix A, this column
is a permutation of the n levels. All the designs in these two tables are new
except for those designs marked with ∗ that can also be constructed by other
methods, e.g., those proposed by Georgiou and Koukouvinos (2006) and Geor-
giou, Koukouvinos, and Mantas (2006). In particular, the designs D(81; 340) and

http://www.research.att.com/~njas/oadir/
http://support.sas.com/techsup/technote/ts723.html
http://support.sas.com/techsup/technote/ts723.html
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D(256; 485) (corresponding to the two 1’s marked with ◦) are saturated orthog-
onal arrays (cf. (3) of Theorem 3). Since all the selected source designs perform
well in terms of their maximum fNOD values, there are no fully aliased columns in
these generated designs, and they also have the properties mentioned in Theorem
3.

Many other E(fNOD) optimal or nearly-optimal designs can be constructed
using this new method, especially for the case of k = 1. For this case, the support
designs D(p; pr) can be uniform designs and orthogonal Latin hypercube designs
(Fang, Li, and Sudjianto (2006), Steinberg and Lin (2006) and Pang, Liu, and
Lin (2009)).

5. Further Discussion

The substitution method is easy to perform, and the generated designs have
low values of E(fNOD). The near-orthogonality between columns in terms of
max f qu,qu

NOD
and max f qu,qv

NOD
of the blocked design is well kept within each sub-

design of the generated design, and that of the support design is well kept between
sub-designs of the generated design. In some cases, the coincidence numbers of
the generated design may take more that two different values; from (1.1), the
coincidence numbers should spread as equally as possible. In order to improve
these designs with respect to E(fNOD), we can use them as starting designs for
the Robin Hood Swap algorithm of Zhang, Fang, Li, and Sudjianto (2005), or
the NOA algorithm of Nguyen (1996).

The method proposed in this paper includes several existing methods as
special cases. When the blocked design is an Ln(qm) and the support design
is a D(n; nr), our method reduces to the collapsing method proposed by Fang,
Lin, and Ma (2000) and the row permutation method of Lu and Sun (2001),
Aggarwal and Gupta (2004), Koukouvinos and Stylianou (2004), and Georgiou,
Koukouvinos, and Mantas (2006); when the blocked and support designs are
both q-level equidistant designs, our method reduces to a method proposed by
Lu and Wan (2007).
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Appendix A: Some E(fNOD) optimal designs.

Blocked design [Source] Support design [Source] Generated design
D(6; 35) [FGL04†] D(12; 611) [LHZ03] D(12; 355)∗

D(6; 35) [FGL04] D(12; 622) [GK06] D(12; 3110)
D(6; 35) [FGL04] D(12; 633) [GK06] D(12; 3165)
D(6; 35) [FGL04] D(18; 617) [LHZ03] D(18; 385)
D(6; 35) [FGL04] D(18; 634) [GK06] D(18; 3170)
D(6; 35) [FGL04] D(24; 623) [LHZ03] D(24; 3115)
D(6; 35) [FGL04] D(30; 629) [LFXY02] D(30; 3145)
D(6; 35) [FGL04] D(36; 635) [LFXY02] D(36; 3175)
D(6; 35) [FGL04] D(42; 641) [LFXY02] D(42; 3205)
D(9; 34k) [FGL04] L81(910) [OA‡] D(81; 340k), k = 1◦, . . . , 7
D(9; 38k) [GKM06] L81(910) [OA] D(81; 380k), k = 4, 5, 6
D(8; 47) [FGL02] D(32; 831) [FGLQ04b] D(32; 4217)
D(8; 47k) [GK06] D(32; 831) [FGLQ04b] D(32; 4217k), k = 2, . . . , 6
D(8; 47) [FGL02] L64(89) [OA] D(64; 463)∗

D(8; 47k) [GK06] L64(89) [OA] D(64; 463k)∗, k = 2, . . . , 6
D(16; 45k) [FGLQ04b] L256(1617) [OA] D(256; 485k), k = 1◦, . . . , 7
D(6; 2133) [FLL03] D(12; 611) [LHZ03] D(12; 211333)
D(6; 2133) [FLL03] D(12; 622) [GK06] D(12; 222366)
D(6; 2133) [FLL03] D(12; 633) [GK06] D(12; 233399)
D(6; 2133) [FLL03] D(18; 617) [LHZ03] D(18; 217351)
D(6; 2133) [FLL03] D(18; 634) [GK06] D(18; 2343102)
D(6; 2133) [FLL03] D(24; 623) [LHZ03] D(24; 223369)
D(6; 2133) [FLL03] D(30; 629) [LFXY02] D(30; 229387)
D(6; 2133) [FLL03] D(36; 635) [LFXY02] D(36; 2353105)
D(6; 2133) [FLL03] D(42; 641) [LFXY02] D(42; 2413123)
D(8; 2144) [FLL03] D(32; 831) [FGLQ04b] D(32; 2314124)
D(8; 2844) [KM05] D(32; 831) [FGLQ04b] D(32; 22484124)
D(8; 2144) [FLL03] L64(89) [OA] D(64; 29436)
D(8; 2844) [KM05] L64(89) [OA] D(64; 272436)
D(16; 2188) [FLL03] L256(1617) [OA] D(256; 2178136)
† FGL04: Fang, Ge, and Liu (2004); etc.
‡ OA: orthogonal array.
∗ Designs that can also be constructed via other existing methods.
◦ Saturated orthogonal arrays.
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Appendix B: More E(fNOD) optimal designs.

Blocked design [Source§] Support design [Source] Generated design
D(6; 3561) [FGL04†] D(12; 611) [LHZ03] D(12; 355611)
D(6; 3561) [FGL04] D(12; 622) [GK06] D(12; 3110622)
D(6; 3561) [FGL04] D(12; 633) [GK06] D(12; 3165633)
D(6; 3561) [FGL04] D(18; 617) [LHZ03] D(18; 385617)
D(6; 3561) [FGL04] D(18; 634) [GK06] D(18; 3170634)
D(6; 3561) [FGL04] D(24; 623) [LHZ03] D(24; 3115623)
D(6; 3561) [FGL04] D(30; 629) [LFXY02] D(30; 3145629)
D(6; 3561) [FGL04] D(36; 635) [LFXY02] D(36; 3175635)
D(6; 3561) [FGL04] D(42; 641) [LFXY02] D(42; 3205641)
D(9; 34k91) [FGL04] L81(910) [OA‡] D(81; 340k910), k = 1, . . . , 7
D(9; 38k91) [GKM06] L81(910) [OA] D(81; 380k910), k = 4, 5, 6
D(8; 4781) [FGL02] D(32; 831) [FGLQ04b] D(32; 4217831)
D(8; 47k81) [GK06] D(32; 831) [FGLQ04b] D(32; 4217k831), k = 2, . . . , 6
D(8; 4781) [FGL02] L64(89) [OA] D(64; 46389)
D(8; 47k81) [GK06] L64(89) [OA] D(64; 463k89), k = 2, . . . , 6
D(16; 45k161) [FGLQ04b] L256(1617) [OA] D(256; 485k1617), k = 1, . . . , 7
D(6; 213361) [FLL03] D(12; 611) [LHZ03] D(12; 211333611)
D(6; 213361) [FLL03] D(12; 622) [GK06] D(12; 222366622)
D(6; 213361) [FLL03] D(12; 633) [GK06] D(12; 233399633)
D(6; 213361) [FLL03] D(18; 617) [LHZ03] D(18; 217351617)
D(6; 213361) [FLL03] D(18; 634) [GK06] D(18; 2343102634)
D(6; 213361) [FLL03] D(24; 623) [LHZ03] D(24; 223369623)
D(6; 213361) [FLL03] D(30; 629) [LFXY02] D(30; 229387629)
D(6; 213361) [FLL03] D(36; 635) [LFXY02] D(36; 2353105635)
D(6; 213361) [FLL03] D(42; 641) [LFXY02] D(42; 2413123641)
D(8; 214481) [FLL03] D(32; 831) [FGLQ04b] D(32; 2314124831)
D(8; 284481) [KM05] D(32; 831) [FGLQ04b] D(32; 22484124831)
D(8; 214481) [FLL03] L64(89) [OA] D(64; 2943689)
D(8; 284481) [KM05] L64(89) [OA] D(64; 27243689)
D(16; 2188161) [FLL03] L256(1617) [OA] D(256; 21781361617)
§ The blocked design is obtained by adding an n-level column to the source.
† FGL04: Fang, Ge, and Liu (2004); etc.
‡ OA: orthogonal array.
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