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This note contains proofs for Theorems 1-6, and their corollaries.

S.1. Proof of Theorem 1. Without loss of generality, let µ0 = 0.We need to

show that the prior MGF:
∫

et
′βπIMR(β)dβ

∝
∫

|X ′Ω(β)X+λI |1/2 exp

{

− 1

2c0
β
′(X ′Ω(β)X+λI)β + t′β

}

dβ (S.1.1)

exists for some t in a neighborhood including zero. As previously, we have I(β) =
X ′Ω(β)X . By Corollary 13.7.4 in Harville (1997), we have,

|I(β) + λI | =

p
∑

s=0

λs
∑

T

|I(β)(i1,...,is)|, (S.1.2)

where T = {i1, . . . , is} is an s-dimensional subset of the p positive integers {1, . . . , p}
and the summation is over all such

(

p
s

)

subsets; and |I(β)(i1,...,is)| is the determinant
of the (p− s)× (p− s) submatrix of I(β) obtained by leaving out the (i1, . . . , is)-th
rows and columns of I(β). Then, using (S.1.2), we have

(S.1.1) =

∫
[ p

∑

s=0

λs
∑

T

|I(β)(i1,...,is)|
]

1
2

exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ

≤
∫ p

∑

s=0

λs/2
∑

T

|I(β)(i1,...,is)| 12 exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ.

(S.1.3)

Now by applying the Cauchy-Binet formula, we have

|I(β)(i1,...,is)| =
∑

V (T )

c(ai1 , . . . , aip−s)

p−s
∏

j=1

ωij ,

S1
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where V (T ) = {i1, . . . , ip−s}, and c(ai1 , . . . , aip−s) = |X(p−s)
∗ |2, with X

(p−s)′

∗ =
(xi1 , . . . , xip−s) being a (p−s)×(p−s) matrix with j-th column xij (j = 1, . . . , p−s);
so that

(S.1.3) =

∫ p
∑

s=0

λs/2
∑

T

[

∑

V (T )

c(ai1 , . . . , aip−s)

p−s
∏

j=1

ωij

]
1
2

exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ

≤
∫ p

∑

s=0

λs/2
∑

T

∑

V (T )

c
1
2 (ai1 , . . . , aip−s)

p−s
∏

j=1

ω
1
2

ij
e−

1
2c0

β′(I(β)+λI)β+t′βdβ. (S.1.4)

Now, for any s such that p − s > n, c(ai1 , . . . , aip−s) = 0. So

(S.1.4) ≤
∫ p

∑

s=p−n

λs/2
∑

T

∑

V (T )

c
1
2 (ai1 , . . . , aip−s)

p−s
∏

j=1

ω
1
2

ij
e−

1
2c0

β′(I(β)+λI)β+t′βdβ.(S.1.5)

Now, without loss of generality, taking (i1, . . . , ip−s) = (1, . . . , p− s), the finiteness
of (S.1.5) is equivalent to the finiteness of

∫ p
∑

s=p−n

p−s
∏

j=1

ω
1
2

j exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ, (S.1.6)

as λ, c(ai1 , . . . , aip−s) are constants that do not depend on β. For any positive semi-
definite matrices A and B, |A+B| ≥ |A| ⇒ x′(A+B)x ≥ x′Ax. So we can simplify
(S.1.6) as

(S.1.6) ≤
∫ p

∑

s=p−n

p−s
∏

j=1

[

vj(β)δ2
j (β)

]
1
2

exp

{

− λ

2c0
β′β + t′β

}

dβ. (S.1.7)

Now let vj(β) = δj(β) = 1 when j = n + 1, . . . , p. Let us construct a p × p matrix

X∗ =
[

X
x0

]

, where x0 is a (p − n) × p matrix such that X∗ is positive definite

(p.d.). If X is of rank n, this can always be done. Then, make the substitution
u = X∗β, so that β = (X∗)−1u ⇒ |J | = |(X∗)−1|. Denoting Q = (X∗)−1, we have
β′β = u′Q′Qu. So, finiteness of (S.1.7) is equivalent to finiteness of

=

∫
[ p

∏

j=1

v(θ(uj))
1
2 δ2(θ(uj))

]

exp

{

− λ

2c0
u′Q′Qu + t′Qu

}

du. (S.1.8)

Now, we need to find a scalar constant M1 > 0 such that u′Q′Qu ≥ M1u
′u

for all u. Since Q is p.d., a necessary and sufficient condition for this to hold is

|Q′Q| ≥ Mp
1 ⇒ |X∗| ≤ M

−p/2
1 . So the required M1 > 0 exists, as |X∗| is bounded

above. Next, we have,

(S.1.8) ≤
∫ p

∏

j=1

[

v(θ(uj))
1/2δ(θ(uj))

]

exp

{

− M1λ

2c0
u′u + t′Qu

}

du

=

p
∏

j=1

∫
[

v(θ(uj))
1/2δ(θ(uj))

]

e
−M1λ

2c0
u2

j+τjuj duj , (S.1.9)
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where τ ′ = t′Q. Finally, make the transformation rj = θ(uj) ⇒ uj = θ−1(rj). Then
(S.1.9) becomes a product of p one dimensional integrals

p
∏

j=1

∫
[

v(rj)
1/2δ(rj)

]

e−
M1λ

2c0
[θ−1(rj)]

2+τjθ−1(rj)

∣

∣

∣

∣

duj

drj

∣

∣

∣

∣

drj

=

p
∏

j=1

∫

e−
M1λ

2c0
[θ−1(rj)]

2+τjθ−1(rj)

[

d2b(rj)

dr2
j

]1/2

drj , (S.1.10)

as d
drj

θ−1(rj) = δ(rj) =
drj

duj
. So if each integral in (S.1.10) is finite for some τj in

a open interval containing zero, the prior MGF exists. The corollaries immediately
follow.

Proof of Corollary 1.2. To see that Corollary 1.2 holds, take λ = 0 in (S.1.3),
then the expression reduces to only the term with s = 0. Continue the proof until
Eqn (S.1.7), where, instead of augmenting the matrix, delete the last n− p rows to
get a square p × p matrix. The condition then follows.

S.2. Proof of Theorem 2. Starting with (S.1.1) in the proof of Theorem 1,
we have

(S.1.1) =

∫
[ p

∑

s=0

λs
∑

T

|I(β)(i1,...,is)|
]

1
2

exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ

≥
∫

[

λs|I(β)(i1,...,is)|
]

1
2

exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ, (S.2.1)

for every s = 0, . . . , p. So finiteness of (S.2.1) necessitates finiteness of each integral
∫

λs/2|I(β)(i1,...,is)| 12 exp

{

− 1

2c0
β′(I(β) + λI)β + t′β

}

dβ. (S.2.2)

In practice, it is sufficient to check the non-existence of (S.2.2) for any s = 0, . . . , p,
to disprove existence of the prior MGF.

Proof of Corollary 2.1. To see that Corollary 2.1 holds, take λ = 0 in (S.2.1),
and thus the only non-zero term is the s = 0 term. Continuing the proof the same
way, the necessary condition is the finiteness of the same integral, with s = λ = 0.

S.3. Proof of Theorem 3. This proof follows along the same lines as the
proof of Theorem 1, with the likelihood term added, and setting wi = 0 (for i =
n + 1, . . . , p), so that

∑p
i=n+1 φ−1wi[yiθi − b(θi)] = 0.

S.4. Proof of Theorem 4. Existence of MGFs for specific models are shown
through application of Theorems 1-3 below.

• Binomial with canonical link. Here b(θ) = log(1+ eθ), so b′′(θ) = eθ

(1+eθ)2
.

Thus the sufficient condition (3.3) is satisfied.
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• Binomial with probit link. For the probit link, the link function is given by

θ(η) = log

[

Φ(η)
1−Φ(η)

]

, so that θ−1(η) = Φ−1
(

eη

1+eη

)

. To check if the sufficient

condition (3.3) holds, we need to check finiteness of

∫ ∞

−∞
exp

[

− λM

2c0
[Φ−1

(

er

1 + er

)

]2 + τΦ−1

(

er

1 + er

) ]

er/2

1 + er
dr

=

∫

exp

[

− λM

2c0
z2 + τz

]

φ(z)
√

Φ(z)[1 − Φ(z)]
dz,

which is finite, since φ(z)√
Φ(z)[1−Φ(z)]

is bounded.

• Poisson with canonical link. b(θ) = eθ ⇒ b′′(θ) = eθ. E(e(1/2+τ)θ) exists,
so the sufficient condition (3.3) is satisfied.

• Poisson with identity link. Here θ(η) = log(η) ⇒ θ−1(η) = eη ⇒ d
drθ−1(r) =

er.

Now,

∫ ∞

−∞
e−

λM
2c0

e2r+τer

er/2dr =

∫ ∞

0

e−
λM
2c0

u+τ
√

uu− 3
4 du.

(S.4.1)

The existence of (S.4.1) is equivalent to the existence of E

[

eτ
√

uu−1

]

when

u ∼ Gamma(p, α), where the shape parameter p = 5
4 and the scale parameter

α = λM
2c0

. If τ < 0, E

[

eτ
√

uu−1

]

< E(u−1), which exists for any p > 1

(by Corollary 2.1 of Piegorsch and Casella (1985)). If τ > 0, the existence of
(S.4.1) is equivalent to the existence of E(u−1) where u ∼ Gamma( 5

4 , λM
2c0

−τ),

which exists as long as τ < λM
2c0

. So (S.4.1) exists for any τ ∈ (−∞, λM
2c0

), so
the sufficient condition (3.3) is satisfied.

• Gamma with canonical link. Here, b(θ) = − log(−θ), so b′′(θ) = 1
θ2 . The

sufficient condition would be satisfied by the existence of
∫ ∞
0

e−
λM
2c0

r2+τrr−1dr =
∫ ∞
0 e

−λM
2c0

u+τ
√

u
u−1du, which does not exist for τ > 0, since in that case, with

u ∼ Exponential(λM
2c0

), E(u−1eτ
√

u) > E(u−1) = ∞. Since the sufficient con-
dition (3.3) fails, we then check if the minimum necessary condition holds,
by taking p = 1 and checking the (p − 1)-th term in the integral. Since

a11(β) = x2vx = x2

x2β2 = 1
β2 , the integral in the necessity condition (3.4) for

the prior MGF reduces to

∫ ∞

−∞
β−2e

− β2

2c0

(

x2

β2
+λ

)

dβ = e
− x2

2c0

∫ ∞

−∞
β−2e

− λ
2c0

β2

dβ = ∞,

since the second negative moment of a Gaussian distribution is infinite. Hence
the necessary condition fails.

• Gamma with log link. With the log link, η = log(µ), or log(−1/θ) = η,
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which implies that θ−1(η) = − log(−η). So the integral in (3.3) reduces to

∫ ∞

0

exp

{

−λM

2c0
(log r)2+τ(− log r)

}(

1

r

)1+1/2

dr =

∫ ∞

0

[

1

rlog r

]
λM
2c0

(

1

r

)τ+ 3
2

dr

which is infinite, and hence the sufficient condition does not hold. It is straight-
forward to check that the necessity condition (3.4) holds. Hence from these
conditions we cannot determine whether the prior MGF exists. We will return
to this model in Section 3.2 and show that the prior MGF does exist here due
to a special result.

• Inverse Gaussian with canonical link. Here b(θ) = −(−2θ)1/2 ⇒ b′′(θ) =
−(−2θ)−3/2, and θ−1(r) = r. So the prior MGF would exist if the integral

∫ ∞

0

e−
λM
2c0

r2+τrr−
3
4 dr =

∫ ∞

0

e−
λM
2c0

u+τ
√

uu− 3
4
− 1

2 du (S.4.2)

were finite. Now (S.4.2) is greater than E(u−5/4) for an exponential distri-
bution with mean 2c0

λM when τ < 0, and hence is infinite. Next we check the

necessity condition for p = 1. a11(β) = x1/2β−3/2, and the integral to check
necessity is

∫ ∞

0

β− 3
4 e

− 1
2c0

(
√

xβ1/2+λβ2)+tβ
dβ =

∫ ∞

0

u− 3
8
− 1

2 e
−

√
x

2c0
u1/4+tu1/2− λ

2c0
u
du

<

∫ ∞

0

u− 7
8 e−(

√
x

2c0
+t− λ

2c0
)u1/4

du =

∫ ∞

0

v−
7
2
+3e−(

√
x

2c0
+t− λ

2c0
)vdv < ∞.

So the sufficiency condition (3.3) is not satisfied, but the necessity condition
(3.4) is satisfied, so that we cannot directly determine whether the prior MGF
of β exists.

• Posterior MGF existence. The existence of the posterior MGFs can be
checked in the same way as the prior MGFs, and are shown below.

– Binomial with canonical link. The posterior MGF exists, as the sufficient

condition (3.5) is satisfied:
∫

exp

[

− λM
2c0

r2+(τ+φ−1wy)r

]

er

(1+er)φ−1w+1
<

∞.

– Gamma with log link. Prior MGF existence is shown in Section 3.2. The
posterior MGF also exists, as

∫ ∞

0

[

1

rlog r

]
λM
2c0

(

1

r

)τ+ 3
2
−φ−1w

e−φ−1wrydr <

∫ ∞

0

r−τ− 3
2
+αe−αrydr < ∞

(S.4.3)

for τ + 3
2 −α < 1, by Corollary 2.1 of Piegorsch and Casella (1985). (For

a gamma model, φ−1 = α, w = 1.) A special case is the exponential
model, with α = 1. In this case, it can be seen that the posterior MGF
exists, as the integral (S.4.3) is finite for τ < 1

2 .
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– Poisson with canonical link. The sufficient condition (3.5) would be sat-

isfied by the finiteness of the integral
∫ ∞
−∞ e−

λM
2c0

r2+τr+yr−er

dr, that is, if

E(e(τ+y)r−er

) exists for a Gaussian distribution with variance c0

λM . Since

0 < eer

< 1, E(e(τ+y)r−er

) < E(e(τ+y)r) < ∞, and the posterior MGF
exists.

S.5. Proof of Theorem 5.

Upper bound

From (3.7), Σ−1 = (1 + 1/c0)X
′X + λ/c0Ip and since both are positive semi-definite,

⇒ |Σ−1| ≥ |(1 + 1/c0)X
′X | + |λ/c0Ip|. (S.5.1)

When p > n, |(1 + 1/c0)X
′X | = 0. Also, from (S.5.1), |Σ| ≤

(

c0

λ

)p
. So as p −→ ∞,

|Σ| −→ 0 if c0 < λ.
Lower bound

|Σ−1| = |(1 + 1/c0)X
′X + λ/c0Ip| =

(

λ

c0

)p∣
∣

∣

∣

In +
c0 + 1

λ
XX ′

∣

∣

∣

∣

,

since |A + BC| = |A||Ik + CA−1B|. By Hadamard’s inequality,

|Σ−1|2 ≤
(

λ

c0

)p n
∏

i=1

[ n
∑

k=1

(

1 +
c0 + 1

λ
x′

ixk

)2]

. (S.5.2)

Now let x0 be chosen such that x′
ixk ≤ x2

0 (for 1 ≤ i, k ≤ n). Then,

(S.5.2) ≤
(

λ

c0

)p

nn

(

1 +
c0 + 1

λ
x2

0

)2n

⇒ |Σ| ≥
(

c0

λ

)p/2

(

1 + c0+1
λ x2

0

)−n

nn/2
. (S.5.3)

From (S.5.2) and (S.5.3) it is easy to see that limp−→∞ |Σ| = 0 if c0 < λ. However,
if c0 > λ, and n is fixed, then limp−→∞ |Σ| = ∞, which proves the corollary.

S.6. Proof of Theorem 6. Bias = E

[

E(β|Y )− β

]

= (ΣX ′X − I)β, where

Σ =

[

c0+1
c0

X ′X + λ
c0

Ip

]−1

.

Part 1: Average bias. This is given by

1

p

p
∑

i=1

bias(βp) = J ′(ΣX ′X − I)β

= − 1

p(c0 + 1)

[

J ′ +
λc0

c0 + 1
J ′

(

X ′X +
λ

c0 + 1
Ip

)−1]

β.
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Now, let β = BJ , where B = diag(|β1|, . . . , |βp|), and J denotes a p-dimensional
vector of ones. Now,

∣

∣

∣

∣

(

X ′X +
λ

c0 + 1
Ip

)−1

B

∣

∣

∣

∣

=

∣

∣

∣

∣

X ′X +
λ

c0 + 1
Ip

∣

∣

∣

∣

−1

|B| ≤
∣

∣

∣

∣

c0 + 1

λ
B

∣

∣

∣

∣

,(S.6.1)

since |X ′X + λ
c0+1Ip| ≥ | λ

c0+1Ip|. So (S.6.1) implies that

J ′
(

X ′X +
λ

c0 + 1
Ip

)−1

BJ ≤ c0 + 1

λ
J ′BJ , so finally,

‖ average bias ‖≤ 1

p(c0 + 1)

(

1 +
c0 + 1

λ

c0λ

c0 + 1

) p
∑

i=1

|βi| =
1

p

p
∑

i=1

|βi|.

Part 2: Bound on determinant of bias matrix. Let D = ΣX ′X − I . Then,

D = [(c0X
′X + X ′X + λI ]−1c0(X

′X) − I = −[c0X
′X + X ′X + λI ]−1(X ′X + λI).

So, |D| =
|X ′X + λI |

|c0X ′X + X ′X + λI | ≤ 1,

which again shows that ‖ Dβ ‖2= β′D′Dβ ≤ β′β.
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